
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1793

 Abstract—This paper describes how the correct endian mode of
the TMS320C6713 DSK board can be identified. It also explains how
the TMS320C6713 DSK board can be used in the little endian and in
the big endian modes for assembly language programming in
particular and for signal processing in general. Similarly, it discusses
how crucially important it is for a user of the TMS320C6713 DSK
board to identify the mode of operation and then use it correctly
during the development stages of the assembly language
programming; otherwise, it will cause unnecessary confusion and
erroneous results as far as storing data into the memory and loading
data from the memory is concerned. Furthermore, it highlights and
strongly recommends to the users of the TMS320C6713 DSK board
to be aware of the availability and importance of various display
options in the Code Composer Studio (CCS) for correctly
interpreting and displaying the desired data in the memory. The
information presented in this paper will be of great importance and
interest to those practitioners and developers who wants to use the
TMS320C6713 DSK board for assembly language programming as
well as input-output signal processing manipulations. Finally,
examples that clearly illustrate the concept are presented.

Keywords—Assembly language programming, big endian mode,
little endian mode, signal processing.

I. INTRODUCTION
HERE are two different architectures for handling
memory storage [1]. They are referred to as little endian

and big endian and they are related to the order in which the
bytes are stored in the memory [1]. It is worth mentioning that
the majority of the single-board computers such as MC600,
MC68000, MC68020, and TMS320C30 EVM operate in big
endian mode by default. However, the TMS320C6713 DSP
Starter Kit (DSK) board can operate in little endian as well as
in big endian modes, provided the necessary steps are
implemented.

The two terms such as little endian and big endian are taken
from "little end in" and "big end in" respectively and they
refer to the way in which data is stored in the memory [1]. In
little endian mode, the little end of the data is stored first,
which means that a number like 0x6B8A is stored in the
memory as (0x8A, 0x6B). The little end, or lower end, of the
data is stored first (i.e. 0x8A). The same applies to a four-byte
number; for example, a number like 0xABCDEF12 would be
stored as (0x12, 0xEF, 0xCD, 0xAB). In other words, in little

Abdullah Wardak is currently a senior lecturer in Southampton Solent

University, School of Computing and Communications, Faculty of
Technology, East Park Terrace, Southampton SO14 OYN, UK (phone:
0044(0)2380319213, fax: 0044(0)2380334441, e-mail:
Abdullah.wardak@solent.ac.uk).

endian mode, the lower memory addresses contain the least
significant byte of the data. However, in big endian mode, the
big end of the data is stored first, which means that a number
like 0xABCD is stored in the memory as (0xAB, 0xCD). The
big end, or upper end, of the data is stored first. The same is
true for a four-byte number; for instance, a number like
0xABCDEF12 would be stored as (0xAB, 0xCD, 0xEF,
0x12). In other words, in big endian mode, the lower memory
addresses contain the most significant byte of the data [1].

It is crucially important for a user of the TMS320C6713
DSK board to check its endianness before embarking on
assembly language programming. Clear understanding of the
two operating modes of the DSK board can save a tremendous
amount of time during the development stage of the
application software.

II. THE TMS320C6713 DSK BOARD
Digital signal processors such as the TMS320C6x family of

processors are like fast special-purpose microprocessors with
a specialized type of architecture and instruction sets suitable
for signal processing [2]. The TMS320C6713 DSK board is
powerful and relatively cheap, having the necessary
supporting tools for real-time signal processing [2]-[11]. It
includes the TMS320C6713 floating-point digital signal
processor and a 32-bit stereo codec TLV320AIC23 (AIC23)
for input and output (see Fig.1). The onboard codec AIC23
uses a sigma–delta technology that provides A/D and D/A [2].
The DSK board operates at 225MHz and it can be easily set to
variable sampling rates of 8 to 96 kHz [2]. Four connectors on
the DSK board provide input and output. They are: LINE IN
for line input, MIC IN for microphone input, LINE OUT for
line output, and HEADPHONE for a headphone output. Note
that LINE OUT is multiplexed with HEADPHONE. The
status of the four user dip switches on the DSK board can be
read, which provides the user with a feedback control
interface. For more information regarding the TMS320C6713
DSK board, refer to references [12], [13], [18]-[20].

Practical Guidelines and Examples
for the Users of the TMS320C6713 DSK

Abdullah A Wardak

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1794

Fig. 1 Block diagram of the TMS320C6713 DSK board [12]

III. ENDIANNESS OF THE TMS320C6713 DSK BOARD
The TMS320C6713 DSK Board can operate in the little

endian as well as in the big endian mode. However, it is set up
by default in the little endian mode [12], [13]. A user can
change its mode from the little endian to the big endian mode
and vice versa by implementing the necessary steps. Anyone
who wants to use the TMS320C6713 DSK board for assembly
language programming and signal processing needs to identify
the endian mode of the board first; otherwise, this will cause
unnecessary confusion and erroneous results.

A. To Set the TMS320C6713 DSK Board in the Little
Endian Mode

The TMS320C6713 DSK board operates in little endian
mode by default [13]. To set the TMS320C6713 DSK board
in the little endian mode, all FOUR of the following
conditions must be satisfied.

1. Switch 1 in the Config SW3 as shown in Fig.1 must

be placed in the OFF position [12], [14], [15].

2. After setting switch No.1 in the OFF position, EN in

the Code Composer Studio must indicate 1. This is
read only register and indicates the mode of the DSK
board. When EN=1, the DSK board operates in the
little endian mode and when EN=0, the DSK board
operates in the big endian mode. The value of EN can
be displayed in the CCS by Clicking
View → Clicking Register → Clicking Core
Registers as shown in Fig.2.

3. The endianness of the TMS320C6713 DSK board

must be set to Little Endian as shown in Fig.2. This
can be done by Clicking Project → Click Build
Options → Highlight Advanced and make sure the
Endianness is set to Little Endian and press OK.

4. Add the library file: rts6700.lib for assembly
language programming and add the library files:
rts6700.lib, csl6713.lib, dsk6713bsl.lib for signal

processing (i.e. input and output signal
manipulation).

Fig. 2 A screen-shot of the CCS for little endian mode

B. To Set the TMS320C6713 DSK Board in the Big
Endian Mode

The TMS320C6713 DSK Board is setup in the little endian
mode by default [12], [13]. However, for the TMS320C6713
DSK board to operate in the big endian mode, all FOUR of
the following conditions must be satisfied.

1. Switch No.1 in the Config SW3 as shown in Fig.1,

must be in the ON position.

2. As a result of step 1, EN in the Code Composer

Studio must indicate 0. This is read only register and
indicates the mode of the DSK board. When EN=0,
the DSK board operates in the big endian mode. The
value of EN can be displayed in the CCS by Clicking
View → Clicking Register → Clicking Core
Registers as shown in Fig. 3.

3. The endianness of the TMS320C6713 DSK board

needs to be set to Big Endian as shown in Fig.3. This
can be done by Clicking Project → Click Build
Options → Highlight Advanced and make sure the
Endianness is set to Big Endian and press OK

4. Add the library file: rts6701e.lib for assembly

language programming and add the library files:
rts6701e.lib, csl6713e.lib, dsk6713bsle.lib for signal
processing (i.e. input and output manipulation). For
more clarity see Figs. 1 and 3.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1795

Fig. 3 A screen-shot of the CCS for big endian mode

IV. VARIOUS DISPLAY OPTIONS
The screen-shot of the CCS for displaying the contents of

memory locations using various display options when the
TMS320C6713 DSK board is operated in the little endian
mode, is shown in Fig. 4. These display options include 32-
Bit, 16-Bit, and 8-Bit Hex C-Styles and so on. It is very
important for a user of the CCS to be aware of these various
display options; otherwise, it can lead to a serious confusion
regarding the interpretation of the memory contents. For
example, in Fig. 4, the contents of the memory location 0x100
can be totally misinterpreted using the 32-Bit display option
compared with using the 8-Bit Hex C-Style display options
when the TMS320C6713 DSK board is operated in little
endian mode.

All users of the CCS without any doubt will interpret the
contents of the memory location pointed to by arrow No.1 in
Fig. 4, to be stored in the way shown in Fig. 5. However, the
correct way in which the data is stored is shown in Fig. 6. The
correct result of Fig. 6 is confirmed by the contents of the
memory location pointed to by arrow No. 2 in Fig. 4, which is
displaying the contents by choosing 8-Bit Hex C Style display
option. Therefore, for a user of the TMS320C6713 DSK
board, the use of the correct display option plays a crucial rule
in the interpretation of the correct result.

⎭
⎬
⎫

 Fig. 4 A screen-shot of the CCS for little endian mode

100
101
102
103

12
34
56
78

Byte

Memory

Fig. 5 Wrong interpretation

100
101
102
103

78
56
34
12

Byte

Memory

Fig. 6 Correct interpretation

V. STORING/LOADING DATA INTO/FROM MEMORY IN
BIG/LITTLE ENDIAN MODE

A user, who has used a particular single-board computer
for his/her application and then decides to use another one,
needs to know how data is stored in the memory of the new
single-board computer [17]. This can cause a major
confusion if it is not understood properly. Figs. (7a-12a)
illustrate how the registers values are stored into the memory
when the TMS320C6713 DSK board is operated in the big
endian mode. Similarly, Figs. (7b-12b) explain how the
registers values are stored in the memory when the
TMS320C6713 DSK board is operated in the little endian
mode. As Fig. 7a illustrates, in the big endian mode, the big
end (i.e. the most significant byte) of the data is stored first.
This means that a hex number like 0xAA23B4F3 is stored in
the memory as shown in Fig. 10a. The big end, or upper end,
of the data (i.e. 0xAA) is stored first (see Fig. 10a). The same
is true for a two-byte value; for example, a hex number like
0x6DC9 would be stored as shown in Fig. 11a. In other
words, in the big endian mode, the lower memory addresses
contain the most significant byte of the data [1].

However, in the little endian mode, the little end (i.e. the
least significant byte) of the data is stored first (see Fig. 7b).
This means that a hex number like 0xAA23B4F3 is stored in
the memory as shown in Fig. 4b. The little end, or lower end,
of the data (i.e. 0xF3) is stored first. The same is true for a
two-byte value; for example, a hex number like 0x6DC9
would be stored as shown in Fig. 11b. In other words, in the
little endian mode, the lower memory addresses contain the
least significant byte of the data [1].

Loading data from the memory also varies from one
system to another. This can also become very confusing for a
user of a system if not understood properly. Figs. (13a-15a)
explain how registers are loaded from the memory when the
TMS320C6713 DSK board is operated in the big endian
mode. Figs. (13b-15b) describe how registers are loaded
from the memory when the TMS320C6713 DSK board is
operated in the little endian mode.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1796

Fig. 7 Storing a word (W) of data in the memory in big and little

endian mode

Fig. 8 Storing a half-word (H) of data in the memory in big and little
endian mode

Fig. 9 Storing a byte (B) of data in the memory in big and little
endian mode

Fig. 10 Example of storing a word (W) in the memory in big and

little endian mode

Fig. 11 Example of storing a half-word(H) in the memory in big and
little endian mode

Fig. 12 Storing a byte (B) in memory in big/little endian mode

Fig. 13 Example of reading a word (W) from memory in big and
little endian mode

Fig. 14 Example of reading half-word (W) from memory in big and
little endian mode

Fig. 15 Example of reading a byte (B) from memory in big and little
endian mode

VI. PRESENTED EXAMPLES
The examples implemented in this section, highlight the

comparisons and contrasts of the two endian modes in great
detail. For better understanding, the screen-shots of the Code
Composer Studio for these examples are also included.

Example-1: In this example, all 32-bits of A0 are stored at
the memory location, whose address is in A1. A word (W) in
the TMS320C6713 DSP environment means 32-bits (4 bytes).
Note that in this example, the DSK board is operated in the
little-endian mode.

Following is the screen-shot of the CCS that is taken after

the execution of the instruction presented in Example-1.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1797

Example-2: In this example, all 32-bits of A0 are stored at
the memory location, whose address is in A1. A word (W) in
the TMS320C6713 DSP environment means 32-bits (4 bytes).
Note that in this example, the DSK board is operated in the
big-endian mode.

Following is the screen-shot of the Code Composer Studio

that is taken after the execution of the instruction presented in
Example-2.

Example-3: In this example, the 32-bit content of the

memory location, whose address is in A0, is loaded into A1.
 Note that in this example, the DSK board is operated in the
little-endian mode.

Following is the screen-shot of the Code Composer Studio
that is taken after the execution of the instruction presented in
Example-3.

Example-4: In this example, the 32-bit content of the

memory location, whose address is in A0, is loaded into A1.
Note that in this example, the DSK board is operated in the
big-endian mode.

Following is the screen-shot of the Code Composer Studio

that is taken after the execution of the instruction presented in
Example-4.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:9, 2008

1798

VII. IMPORTANT REMARKS
Most of the TMS320C6713 instructions require one CPU

clock cycle for their execution [6]. However, it is very
important to note that the instructions such as LDW need to
access slow external memory and the results of the load
instructions are not available immediately at the end of the
execution. This execution-delay result is referred to as a delay
slot. For instance, consider loading up the content of memory
at address pointed by A0 to A1 and then moving A1 to A2
[19].

LDW .D1 *A0, A1
 MV.D1 A1, A2

Note that the result of the LDW is not immediately
available after LDW instruction is executed. Hence, the MV
instruction does not copy the desired value of A1 to A2. To
stop this, the CPU needs to wait until the result of the LDW
instruction is correctly loaded into A1 before executing the
MV instruction. For load instructions, 4 extra clock cycles are
needed until the load results are valid. Each NOP instruction
makes the CPU idle for one clock cycle and hence the
resulting code will be like this [19]:

LDW .D1 *A0, A1
NOP 4
MV .D1 A1, A2

Then a question might be asked as to why the designer of
the CPU did not allocate 5 clock cycles in the first place to the
LDW instruction than let the programmer insert 4 NOPs? The
answer is that a user can insert other instructions than NOPs
as long as those instructions do not use the result of LDW
instruction above. By doing this, the CPU can execute
additional instructions while waiting for the result of the LDW
instruction above [19].

VIII. CONCLUSION
The concept of the little endian and the big endian mode of

the TMS320C6713 DSK board have been comprehensively
described. The concept presented in this paper will be of great
value and interest to many users who are employing a micro-

based system for their applications; and especially for those
users who want to use the TMS320C6713 DSK board for
assembly language programming and signal processing. It is
strongly recommended to the users of the TMS320C6713
DSK board to identify the endian mode of the board first and
then employ the board for signal processing purpose;
especially in assembly language program. Otherwise, it would
cause lots of confusion and erroneous results as far as
storing/loading the data into/from the memory are concerned.
Furthermore, the users of the TMS320C6713 DSK board are
advised to use the board in the big endian mode rather than in
the little endian mode, as this will not cause unnecessary
confusions. Examples (1-4) present the comparisons and
contrasts of the two endian modes in great detail. For better
understanding, the screen-shots of the Code Composer Studio
for some of the examples are also presented.

ACKNOWLEDGMENT
I would like to thank Southampton Solent University,

Faculty of Technology, for giving me the opportunity and help
to carry out this work. I would also like to thank Kevin Walsh
and Jomo Batola for their support and encouragement.

REFERENCES
[1] http://support.microsoft.com/kb/q102025/
[2] R. Chassaing, Digital Signal Processing and Applications with the 6713

and C6416 DSK. New York: Wiley, 2005, Ch. 1.
[3] TMS320C6000 Programmer’s Guide, SPRU198G, Texas Instruments,

Dallas, TX, 2002.
[4] TMS320C6211 Fixed-Point Digital Signal Processor–TMS320C6711

Floating-Point Digital Signal Processor, SPRS073C, Texas Instruments,
Dallas, TX, 2000.

[5] TMS320C6000 Peripherals Reference Guide, SPRU190D,Texas
Instruments, Dallas, TX, 2001.

[6] TMS320C6000 Optimizing C Compiler User’s Guide, SPRU187K,
Texas Instruments, Dallas, TX, 2001.

[7] TMS320C6000 Technical Brief, SPRU197D, Texas Instruments, Dallas,
TX, 1999.

[8] TMS320C64x Technical Overview, SPRU395, Texas Instruments,
Dallas, TX, 2000.

[9] TMS320C6x Peripheral Support Library Programmer’s Reference,
SPRU273B, Texas Instruments, Dallas, TX, 1998.

[10] Code Composer Studio User’s Guide, SPRU328B, Texas Instruments,
Dallas, TX, 2000.

[11] TMS320C6000 Code Composer Studio Tutorial, SPRU301C, Texas
Instruments, Dallas, TX, 2000.

[12] TMS320C6713 DSK Technical Reference, 506735-0001 Rev.A, May,
2003.

[13] TMS320C6713 Floating Point Digital Signal Processor, Literature
Number: SPRS186L, December 2001 - Revised November 2005, P.69.

[14] http://www4.ncsu.edu/~cayunker/mae586/MAE586-tech-manual.pdf
[15] Embedded Target for the TI TMS320C6000™ DSP Platform For Use

with Simulink® User’s Guide Version 2 p.76 little endian
[16] http://www.mathworks.com/access/helpdesk_r13/help/pdf_doc/tic6000/t

ic6000.pdf
[17] A A Wardak, “Real-Time 3-D Image Generation with TMS320C30

EVM”, Journal of Microcomputer Applications, Vol. 18, pp 355-373,
1995, Academic Press Limited.

[18] TMS320C6000 CPU and Instruction Set Reference Guide, Literature
Number: SPRU189F, Section 1.5, P. 1-6, October 2000.

[19] Rice University, ELEC434, C62x Assembly Premier II, Lab3. Fall 2004.
[20] Code Composer Studio, Getting Started Guide, Literature Number:

SPRU509C, November 2001.
[21] TMS320C6000 Assembly Language Tools, User's Guide, Literature

Number: SPRU186K, October 2002.

