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Abstract—Optimization and control of reactive
distribution in the power systems leads to thedbetiperation of the
reactive power resources. Reactive power controbuges
considerably the power losses and effective loadkimproves the
power factor of the power systems. Another impdrtaason of the
reactive power control is improving the voltagefjpeoof the power
system. In this paper, voltage and reactive powarttrol using
Neural Network techniques have been applied to 3Beshines-
Tehran Electric Company. In this suggested ANN ubleages of PQ
shines have been considered as the input of the .AABb, the
generators voltages, tap transformers and shunpeosators have
been considered as the output of ANN. Results if tbchniques
have been compared with the Linear ProgrammingiMiation of
the transmission line power losses has been caesidas the
objective function of the linear programming teciue. The
comparison of the results of the ANN technique with LP shows
that the ANN technique improves the precision aeduces the
computation time. ANN technique also has a simpiecture and
this causes to use the operator experience.

Keywords—voltage control, linear programming, artificial mal
network, power systems

|. INTRODUCTION

I N a stable power system, the total loads and the plmsses
should be equal with the generated power. The tiamiaf
the reactive power will change the bus voltagesusTh
keeping the voltage at a constant value is an itapbifactor
for the stability of the power system [6]. It is portant to
notice that load type and its variations are moegomfactors
in the voltage and reactive power control. Threejoma
methods are used to control the voltage in the pey&em.

1- Changing the set point of generator exciters.
2- Changing the tap of the transformers
3- Using the shunt compensators

In the first method, thermal limits of theergerator
windings are considered as a constraint to limgt generated
and consumed reactive power of the generators.
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Thus in the recent years, a lot of studies have beeen out
for the modern reactive power and voltage contsohaerm
for the improvement of the reliability and the ski&pin the
power systems [2][3][12].
introduced for solution of the reactive power andltage
control optimisation problem. To solve this problethe
mathematical optimisation methods have been usathdds
for reactive power and voltage control could beegatised
into two major categories: methods based on theridhmic
methods and the methods based on the artificialligeence.
In this paper, the Linear Programming techniqueelected as
algorithmic method, and Artificial Neural Networkahnique
is selected as an artificial intelligence methoffil[1][13]. The
data of the 33-shines of the Tehran Electric corpaave
been used for the solution of the problem of treetige power
and voltage control by these two method and thes hseen
compared with each other.

Il. LINEAR PROGRAMMING METHOD

Recently High speed, reliability and precision loé Linear
Programming (LP), causes it to be used in the paystem
networks as a very effective and reliable method tfee
optimization problems. In this method, reactive powources
and transformer taps are as the control variables laus
voltages and the reactive power of the generat@saa the
related variables. Linear Programming problems miade
using the sensitivity relations based on the NevRaphson
power flows. The objective function is minimizatiaf the
power losses and improvement of the voltage piofié.

The relation between the control variables andvidleage
buses are made using the load models and thedraresftaps
and Jacobean matrixes. This relation also defieerdtation
between the variables and the reactive power ctedéeo the
busses

AP =LTAV
AQ,, < AAV <AQ

Minimize:

max

Subject to:

AR : Variations of Transmission losses
L: Vector coefficients of objective function

AV . vector variations of Shines Voltage

AQ: Vector variations of shines reactive power
A: Conditional functions Coefficients matrix

This method results in reduction of calculation dirand
memory space. Artificial Neural Networks extenswélave
been considered in the optimization problems [4][7]

These methods have been
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David Rumelhart and James Mcland have revolutighize 'Avl

the ANN methods after the introduction of the ErReck
Propagations based methods [7]. These methods

categorized as the dynamic methods processing en th K

experimental data, knowledge and the rules govgraoimtheir
behavior, transform them to the network structure.

ANN with a parallel structure has a parallel andcku
processing with the large data storage and nomdlim@pping,
as a great capability. After the network is traitgdthe initial
cases, ANN could have a very good output for thectial
inputs [7].

I1l. CASE STUDY

In this paper, the case study is the 33-buses fewaver
company network. This network has 71 transmissioes| 13
generators (one as the reference and others eBMHauses)
and 20 PQ buses.

The control variablesare

a) bus voltages no. 1to 13
b) reactive power sources at buses 4, 15 and 28

c) transformer taps of the lines 6-6, 7-9 and 4-8

Controlled variables are as following below
a) Voltages of shines numbers 1 t013
b) Reactive source of shines numbers 4, 11 28
¢) Tap transformers of lines numbers 6-8, 8-8

Fig. 1 Tehran power company network

A.Linear Programming I mplementation

Bus 1 has been selected as the reference bus aed Bu
3... m have been selected as the PV buses and budes.m
have been selected as the PQ buses.

B. Equations and Constraints of Linear Programming
Method

Equations and the constraints of the LP As it wastioned
in the section 2, system model and the objectivetfan have
been linearized using the elements of the Jacohednthe
sensitivity Matrixes. The equations are as follayvin

are AV,
ap | RLOR OR OR R
Colov, oV, v 0Q,, ot
m e « AV,
AQux
At

L~ J:m 1)
In a practical system, there are some constraimts® control
variables and the related variables.

AV,™ (AV(AV,™ i = 12,..m

Atij min <Atij <Atij max

AQm+Xmin <AQm+x<AQm+xmax

Av.max :Vimax _Vi,AVimin :Vimin _V

Ati, max - tij max _t Atij min - tij min _ tiji

)

)

ij 1

D™= Q= Qur Qs = Qs Qe
2Q,™ Q™ =12....m
AV VOV = ©)

M =Q ™ -Q, ™" =Q""-Q,
AVijin :\/ijax_v AVijin :\/ijin_v

Lj? Lj

Finally the LP problem for the controllinfthe reactive
power and the voltage are as following.

C.Objective Function

The objective is to minimize the power losses bmeso
control variables, tap transformers and the reacfrower
sources. Equations and the constraints have bsensdied in
the section 2 and 2.1.4.
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Minimize:
—AVI _
AV,
oP O0P 0P 0P
AP, = L—t— -t 4)
av, "av, 0qQ,., at,
AV,
AQm+)<
Atij
Subject to:

_Aleln [S1 S2 S37] _Aleax
20,™ ) ~ |ag™
av._™ AV, AV, ™
.AV m | _|S4 S5 S6||. 3 'AV

"mm B l . AV h nmax
av, . AQ,. | |2V
: o At )
AV.™ . . L © lav
8Q,.," | | : AQ,.,™
At” min . 1 | 7Atli max |

D.Implementation of the ANN on Network

As it is seen in the Fig. 2, the ANN has three tayeith 23
neurons in the input layer, 19 neurons in the ougoer and 8
neurons in the middle layer.

Back Error Propagation methods have been usetie
training technique. The output neurons are coriste13
neurons as the generators, 3 neurons for the tnamefs with
a variable taps and 3 neurons as the reactive psowces.
The number of input neurons are 23 as the santeasuimber
of the PQ buses. The numbers of the middle neuhanve
been selected due to the different structuresdeste

Input 1 (@] O Output 1
Input 2 O O Output 2
@)

Input 23 (@] O Output 19

Fig. 2 Structure of ANN

In a real power system the operational conditions a

changed with the loads. Therefore, in the trainofgthe
designed ANN, the load has been varied graduadiyn 9% to
120% with the step of the 20%. Also the cohereniatian of
the loads on the buses has been applied to the foam 75%

to 115% with the step of 10%. Then, the input dreddutputs
have been determined. Finally the best model han be
selected for the ANN training.

Training inputs is normalized using the follag relation
[14]:

P :M—l

n ®)
I:>max - Pmin
The outputs are also normalized using this reldtidi
T
T, =—o 6
nTT (6)

max

The results of LP and ANN methods are shown intdides
brought at last pages. Table 1 shows the restilisecinitial
power flow.

IV. RESULTS

The results of LP and ANN methods are shown intabées
brought in the appendix. Table | shows the resaftshe
initial power flow

Table Il has initial information of proposed systeand
includes kindness of shines, load value and voltafgeach
shine. In tables Ill, IV and V the results from BRd ANN are
compared when the load of all PQ shines were reHuce
75%. Also, the results from LP and ANN are compaetl5
load and shown in tables VI, VII and VIII. Thesebles
include, the load value of shine in percent, ihitraltage
before and after optimization, final voltage aftgrtimization
with two proposed methods, tap transformers vahets/een
shines (4,8), (4,9), (6,5), reactive power souree in shines
4,15, 28, system losses value, produced activepwaalue of
shine 1, produced reactive power value of shin® 13 in
three situations before optimization, after optiatian by LP
method and after implementation of ANN.

V.CONCLUSION
In grid with 33 shines, the reduction of loads ¥84/results
in increase of voltages of shines 7, 11, 12, &jdlly. In all
cases, LP method causes to return of voltages|dwable
limit. So proposed method is applicable for shimagre have
faulty limits.

The ANN method is almost defected in shinbuf grid
response are satisfied the constraints well inrogiteations.
For load of 115%, when the shines have not fauttyt$ the
implementation of proposed optimization methodsultein
reduction of losses and improvement of voltageifgao that
the voltages of buses 4 and 6 are reduced.

Therefore, the proposed methods have godrmpesnce
for profile improvement and loss reduction in ndaulty
limits.
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TABLE |
INITIAL INFORMATION OF SYSTEM
Shine  Kindness Production Load Voltage Angle
of shine mMw Mvar MW Mvar (P.U) degree
1 Slack 518.84 104 0 0 1.030 0
2 PV 32681 4.848 80 12.7 1.031 -4.9924
3 PV 402.54 2.739 60 1.9 1.00 -12.758
4 PV 592.05 2.29 90 7.5 1.06 -14.241
5 PV 44526 5.228 92 8.2 1.07 -13.229
6 PV 119.85 1.018 50 2.2 1.01 -8.561
7 PV 310.04 321 110 3.8 1.04 -11.542
8 PV 60.248 1.005 90 1.5 1.01 -13.132
9 PV 56.023 0.95 70 1.3 1.04 -7.054
10 PV 21.636 0.025 15 0.7 1.06 -13.256
11 PQ - - 60 4.7 1.0185 -10.227
12 PQ - 110 15 1.0504 -13.229
13 PQ - - 70 5.7 1.0186 -8.7519
14 PQ 80 10.6 1.0401 -14.811
15 PQ 85 3.8 1.0325 -15.025
16 PQ 56 4.8 1.0502 -14.84
17 PQ 60 4.6 1.0517 -15.269
18 PQ 55 5.8 1.0429 -15.301
19 PQ 85 9 1.0270 -16.03
20 PQ 50 14 1.0201 -12.361
21 PQ - 140 12 1.0541 -15.036
22 PQ 50 15 1.0586 -11.256
23 PQ - - 100 29 1.0242 -9.659
24 PQ - - 80 11 1.0541 -15.236
25 PQ - - 70 24 1.0579 -16.235
26 PQ - - 105 10 1.0600 -12.326
27 PQ 80 21 1.0305 -16.230
28 PQ 70 15 0.9850 -12.123
29 PQ - - 86 4.2 1.0159 -11.325
30 PQ - - 120 9.2 0.9895 -17.0
31 PQ - 170 38 1.0500 -14.231
32 PQ - - 65 10.2 1.0179 -16.025
33 PQ - - 152 36 1.0362 -18.369
TABLE I
INITIAL TAPS OF TRANSFORMERS
Transformer Transformer  Transformer Reactive Reactive
Tap Tap Tap resource losses
T56 T49 T48 T29 T17
0.978 0.969 0.932 0.965 0.986
TABLE Il
SHINES VOLTAGES AT75%LOAD
Shine Kindness Load Initial voltage Final Final
of shine voltage voltage
(LP) (ANN)
1 Slack - 1.05 1.0705 1.0684
2 PV 75 1.045 1.0429 1.0422
3 PV 75 1.01 1.0248 1.0295
4 PV 75 1.07 1.0578 1.0523
5 PV 75 1.09 1.0527 1.065
6 PV 75 1.03 1.0253 1.0282
7 PV 75 1.05 1.0456 1.0360
8 PV 75 1.01 1.0095 1.0112
9 PV 75 1.06 1.0706 1.0685
10 PV 75 1.07 1.0826 1.0896
11 PQ 75 1.0196 1.0282 1.0295
12 PQ 75 1.0566 1.0486 1.0502
13 PQ 75 1.0228 1.0341 1.0336
14 PQ 75 1.0438 1.0598 1.0489
15 PQ 75 1.0428 1.0456 1.0439
16 PQ 75 1.0536 1.0491 1.0455
17 PQ 75 1.0577 1.0468 1.0416
18 PQ 75 1.0529 1.0433 1.0384
19 PQ 75 1.0336 1.0328 1.0302
20 PQ 75 1.0263 1.0256 1.0226

21 PQ 75 1.0563 1.0653 1.0772
22 PQ 75 1.0627 1.0548 1.0394
23 PQ 75 1.0256 1.0403 1.0358
24 PQ 75 1.0620 1.0589 1.0750
25 PQ 75 1.0581 1.0429 1.0430
26 PQ 75 1.0621 1.0750 1.0556
27 PQ 75 1.0332 1.0115 1.0098
28 PQ 75 1.0012 1.0150 1.0356
29 PQ 75 1.0249 1.0506 1.0558
30 PQ 75 1.0094 1.0102 1.0230
31 PQ 75 1.0562 1.0551 1.486
32 PQ 75 1.0251 1.0220 1.0112
33 PQ 75 1.0419 1.0623 1.0426

TABLE IV
ACTIVE AND REACTIVE POWERS OF GENERATORS AT5%LOAD
T17 T29 T48 T49 156

Value 0.986 0.965 0.932 0.969 0.978

LP 0.968 0.949 0.9821 0.9752 0.9861

ANN 0.941 0.956 0.9784 0.981 0.9932

TABLE V
SHINES VOLTAGES AT15%LOAD
Shine Kindness  Load Initial voltage Final Final
of shine voltage voltage
(LP) (ANN)

1 Slack - 1.030 1.0705 1.0826
2 PV 115 1.025 1.0429 1.0644
3 PV 115 0.95 1.0248 1.0337
4 PV 115 1.01 1.0578 1.057
5 PV 115 1.03 1.0527 1.069
6 PV 115 0.94 1.0025 1.0102
7 PV 115 1.00 1.0029 1.0031
8 PV 115 1.01 1.0059 1.0090
9 PV 115 1.01 1.0520 1.0430
10 PV 115 1.02 1.0471 1.0382
11 PQ 115 0.9900 1.0282 1.0314
12 PQ 115 1.0201 1.0486 1.0393
13 PQ 115 0.9856 1.0341 1.0354
14 PQ 115 1.0209 1.0498 1.0321
15 PQ 115 1.0025 1.0456 1.0278
16 PQ 115 1.0108 1.0491 1.0382
17 PQ 115 1.0230 1.0468 1.0389
18 PQ 115 1.0056 1.0433 1.0326
19 PQ 115 0.9859 1.0328 1.0101
20 PQ 115 1.0200 1.0011 1.0045
21 PQ 115 1.0216 1.0102 1.0456
22 PQ 115 1.0365 1.0625 1.0426
23 PQ 115 0.9895 1.0110 1.0210
24 PQ 115 1.0369 1.0528 1.0569
25 PQ 115 1.0319 1.0652 1.0702
26 PQ 115 1.0405 1.0320 1.0452
27 PQ 115 1.0305 1.0602 1.0721
28 PQ 115 0.9590 1.0210 1.0362
29 PQ 115 0.9856 0.9820 0.9952
30 PQ 115 0.9791 1.020 1.0300
31 PQ 115 1.0361 1.0426 1.0523
32 PQ 115 1.0015 1.0112 1.0210
33 PQ 115 1.0056 1.0230 1.0321
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TABLE VI
TAPS OF TRANSFORMERS A15%LOAD
T56 T49 T48 T29 T17
Value 0.978 0.969 0.932 0.965 0.986
Lp 0.9861 0.9752 0.9821 0.9981 0.9885
ANN 1.0105 0.9974 0.9659 0.9865 0.9901
TABLE VII
THE COMPARISON OF EXECUTION TIMES
[ LP [ ANN |
33BUS [ 17.8sec | 6.51sec |
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