
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2556

Abstract— Structural representation and technology mapping of

a Boolean function is an important problem in the design of non-
regenerative digital logic circuits (also called combinational logic
circuits). Library aware function manipulation offers a solution to
this problem. Compact multi-level representation of binary networks,
based on simple circuit structures, such as AND-Inverter Graphs
(AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR
Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XOR-
Inverter Graphs, Reduced Boolean Circuits [8] does exist in
literature. In this work, we discuss a novel and efficient graph
realization for combinational logic circuits, represented using a
NAND-NOR-Inverter Graph (NNIG), which is composed of only
two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells.
The networks are constructed on the basis of irredundant disjunctive
and conjunctive normal forms, after factoring, comprising terms with
minimum support. Construction of a NNIG for a non-regenerative
function in normal form would be straightforward, whereas for the
complementary phase, it would be developed by considering a virtual
instance of the function. However, the choice of best NNIG for a
given function would be based upon literal count, cell count and
DAG node count of the implementation at the technology
independent stage. In case of a tie, the final decision would be made
after extracting the physical design parameters.

We have considered AIG representation for reduced disjunctive
normal form and the best of OIG/AOG/AOIG for the minimized
conjunctive normal forms. This is necessitated due to the nature of
certain functions, such as Achilles’ heel functions. NNIGs are found
to exhibit 3.97% lesser node count compared to AIGs and
OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells
than AIGs and OIG/AOG/AOIGs for the various samples considered.
We compare the power efficiency and delay improvement achieved
by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for
various case studies. In comparison with functionally equivalent,
irredundant and compact AIGs, NNIGs report mean savings in power
and delay of 43.71% and 25.85% respectively, after technology
mapping with a 0.35 micron TSMC CMOS process. For a
comparison with OIG/AOG/AOIGs, NNIGs demonstrate average
savings in power and delay by 47.51% and 24.83%. With respect to
device count needed for implementation with static CMOS logic
style, NNIGs utilize 37.85% and 33.95% lesser transistors than their
AIG and OIG/AOG/AOIG counterparts.

Keywords—AND-Inverter Graph, OR-Inverter Graph, Directed
Acyclic Graph, Low power design, Delay optimization.

Padmanabhan Balasubramanian is with the School of Computer Science,
The University of Manchester, Manchester, MAN M13 9PL UK (phone: +44-
161-275 6294; e-mail: spbalan04@gmail.com, padmanab@cs.man.ac.uk).

Karthik Anantha is with the School of Electrical Sciences, Vellore Institute
of Technology (University and IET, UK Accredited), Vellore, Vellore – 632
014 India (e-mail: karthik.anantha@gmail.com).

I. INTRODUCTION
N many commercial logic synthesis systems, approaches to
technology-specific multilevel logic synthesis, global logic

structure synthesis followed by local optimization and
technology mapping are found. A Boolean network is often
the target of global logic structure synthesis, serving as an
intermediate description between input specification in HDL
or PLA-like format and the final network in a specific target
technology. Multilevel minimization algorithms have been
developed to further reduce the cost of an initially synthesized
Boolean network. However, the designs they generate after
initial synthesis by an algebraic approach are far inferior to
manual designs in some cases, because changes during
multilevel minimization are usually constrained to a local
node, although global information is used to propose or
validate such changes. Hence initial structure synthesis is
important in finding better designs because improvement by
multilevel minimization seems to be bounded by the initial
structure. During multilevel network synthesis, each node of a
Boolean network is represented by minimal ON- and/or OFF-
covers and in some cases together with factored expressions
derived from those minimal sum-of-products (SOP), with cost
measured in terms of the number of cubes, literals or
supporting variables. The reason for using minimal disjunctive
normal forms is not that they always lend themselves to the
best factored forms or provide the best sub-functions, but
rather that we cannot easily ascertain other forms, which are
guaranteed to be generally better than minimal SOP forms.
There are cases where non-minimal expressions may be
preferred, but there are too many non-minimal expressions to
explore all of them, and it is difficult, if not impossible, to
predict which non-minimal form will be desirable at the next
step of synthesis. Hence, it is prudent to generally use minimal
disjunctive normal forms. This paper does not propose a new
algorithm for multilevel logic synthesis, but rather modifies
the proposed functional decomposition into gates [1], to
incorporate cells (library cells) which understood in terms of
gates, still preserves the advantages of the functional
decomposition. In this context, it becomes clear that this paper
focuses on a technology driven multilevel logic synthesis
based on functional decomposition, which utilizes minimum
disjunctive and conjunctive normal forms. We understand that
since the initial synthesis is performed with close relation to

Power and Delay Optimized Graph
Representation for Combinational Logic

Circuits
Padmanabhan Balasubramanian, and Karthik Anantha

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2557

the actual technology target, the opportunities created by
modern microelectronic technology can be more effectively
exploited because of a direct relevance of the synthesis
procedure to technology implementation, in terms of the
actual cells used for final implementation. This would carry
significance for semi-custom, full-custom or standard cell-
based digital IC design approaches, where constraints are
imposed on the number of serial and parallel transistors
realizing gates and on the interconnections between the gates.

The remainder of this paper is organized as follows. Section
2 provides concise background information relevant to the
paper. Section 3 deals with the properties and practical
advantages of AIGs. Section 4 deals with the construction and
description of some of the inherent advantages of NNIGs.
This section also contains an illustrative example, to
demonstrate the optimization in design metrics achieved by a
NNIG in comparison with its functionally equivalent AIG and
OIG. Simulation results for the other problem cases, including
the special functions considered, are mentioned in section 5.
We finally make the concluding remarks in section 6.

II. PRELIMINARIES

A. Definition 1
A single output Boolean function, F(xn-1, xn-2,….,x0) is a

mapping, f: {0,1}n → {0,1,d}, where ‘d’ denotes a ‘don’t care’
condition. If the DC condition does not exist, then it is a
completely specified function (CSF). Each of the 2n nodes in
the Boolean space corresponds to a minterm. If a minterm is
mapped to output 0 (1 or d), then it is called an OFF-set
(ON-set or DC-set) minterm.

B. Definition 2
A binary logic network is a directed acyclic graph (DAG)

with nodes representing Boolean functions. The sources of the
graph are referred to as the primary inputs of the network; the
sinks are the primary outputs. The output of a node may be an
input to other nodes called its fan-outs. The inputs of a node
are called its fan-ins.

III. AND-INVERTER GRAPHS
AND-Inverter Graph (AIG) is a directed acyclic graph that

represents a structural implementation of the combinational
logic functionality of any random Boolean network. As the
name implies, it is composed of only two-input AND gates
and inverters. An AIG consists of two-input nodes,
representing logical conjunction, and edges optionally
containing markers indicating logical negation. The size (area)
of the DAG representing an AIG is the number of its nodes
and its depth (delay) is the number of nodes present in the
longest path from any of its primary inputs to any of its
primary outputs. This representation of a logic function is
rarely structurally efficient for large circuits, but is an efficient
representation for manipulation of Boolean functions.

Although concise multi-level representation of binary
networks, based on simple circuit structures, such as OIG
(obtained from minimal product-of-sums form or POS),

NAND graphs, AND-XOR-INV graphs do exist, conversion
from the network of logic gates to AIGs is fast, easy and
scalable [1]. It only requires that every gate be expressed in
terms of AND gates and inverters. This conversion does not
lead to unpredictable increase in memory use and runtime.
This makes the AIG an efficient representation in comparison
with either the binary decision diagram (BDD) or the sum-of-
products (SOP) form. The BDD and DNF may also be viewed
as circuits, but they involve formal constraints that deprive
them of scalability. For example, reduced DNFs obtained
using standard commercial minimizers, such as ESPRESSO
correspond to circuits with at most two levels, while BDDs
are canonical, that is, they require that input literals be
evaluated in the same order on all paths. The abstract data
graph (here binary network) is usually represented by a data
structure.

Circuits composed of simple gates, including AIGs, are an
old research topic. The interest in AIGs started in the early
1960’s [7] and continued in the 1970’s when various local
transformations have been developed. These transformations
were implemented in several logic synthesis and verification
systems, such as [4], which reduce circuits to improve area
and delay during synthesis, or to speed up formal equivalence
checking. Several important techniques were discovered early
at IBM [9], such as combining and reusing multiple-input
logic expressions and sub-expressions, now known as
structural hashing or strashing [5]. A hash table is used to
remove redundant components during network construction
by structure sharing. Recently, there has been a renewed
interest in AIGs as a functional representation for a variety of
tasks in synthesis and verification. This is because
representations popular in the 1990’s (such as BDDs) have
reached their limits of scalability in many of their applications.
Another important development was the emergence of much
more efficient Boolean satisfiability (SAT) solvers. When
coupled with AIGs as the circuit representation, they lead to
remarkable speedups in solving a wide variety of Boolean
problems.

AIGs found successful use in diverse electronic design
automation (EDA) applications. A well-tuned combination of
AIGs and Boolean satisfiability made an impact on formal
verification, including both model checking and equivalence
checking. In [8], efficient circuit compression techniques were
developed using AIGs. There is a growing understanding that
logic and physical synthesis problems can be solved using
AIGs. Another recent activity [10] shows that the simple and
uniform structure of AIGs allow rewriting, simulation,
mapping, placement and verification to share the same data
structure.

In addition to combinational logic, AIGs have also been
applied to sequential logic and sequential transformations.
Specifically, the method of structural hashing was extended to
work for AIGs with memory elements (such as D-flip flops
with an initial state, which, in general, can be unknown)
resulting in a data structure that is specifically tailored for
applications related to retiming [3]. A modern logic synthesis
system, ABC [11], developed by EECS Dept. of the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2558

University of California, Berkeley, completely based on AIGs,
features an AIG package, several AIG-based synthesis and
equivalence-checking techniques, as well as an experimental
implementation of sequential synthesis. Although
optimizations can be implemented using networks composed
of arbitrary gates, use of AIGs makes them fast and scalable.

IV. NAND-NOR-INVERTER GRAPHS
Similar to AIGs, we find that a combinational logic circuit

can be conveniently represented using NAND-NOR-Inverter
Graphs (NNIG). A NNIG also corresponds to a DAG
representation for a non-regenerative logic function. The gate
analogy pertaining to functional decomposition is now
replaced by cell analogy, whilst preserving the definition and
attribute, corresponding to a function. In this case, the
network would only comprise of two-input NAND, NOR and
single input inverter cells. NNIGs are also non-canonical
structures: although a Boolean function can have many
functionally equivalent NNIG representations corresponding
to different expressions at the two-level logic, typically two
structures would be compact representations; one obtained
from a factored minimum SOP (MSOP) of the function and
other based on factored minimum POS (MPOS) of the
function. The internal nodes of a NNIG may have equivalent
functionality, if the standard expressions from which they are
created are not factored. This may increase the number of
NNIG nodes and makes reasoning on the graph structure
inefficient and time consuming. NNIGs also have the inherent
capability to incorporate functional reduction similar to AIGs
[5], such that no functionally identical nodes exist in a
network, which is required for many applications cited in [5].
This is possible by simple algebraic factoring. Such weak
factorization operations would ensure that no functional
redundancy exists. However such factoring operations would
yield best results provided the literals used for decomposition
are the biggest divisors and result in reduced sub-function
remainders. Functionally reduced NNIGs, obtained by
strashing, hence become semi-canonical and would be much
more robust than BDDs and can be constructed for a wide
range of practical circuits in reduced polynomial time.
Simulation of NNIGs can be performed efficiently because
they comprise a regular structure. NNIGs can also be easily
and effectively combined with satisfiability-solvers [6] for
combinational equivalence checking.

NNIG for a logic function can be constructed starting from
either an input description in PLA format or directly from the
circuit netlist level. For example, given a canonical logic
function description in PLA format, the reduced disjunctive
normal form can be obtained using industry standard two-
level logic minimizers, such as ESPRESSO [13]. Then the
reduced disjunctive normal form can be factorized to comprise
only the primitive two-input gates, which directly correspond
to library cells. Sharing common logic at this stage, i.e. before
proceeding with the construction of a NNIG would always
result in best cost optimization as mentioned above and ensure
that all the functional redundancies are eliminated. This
technique would be significant for custom and semi-custom
designs. The factored form can then be converted into a

NNIG, by recursive application of De-Morgan’s laws, based
on several depth-first traversals of the graph structure. This
technology-independent procedure is clearly library aware and
hence could directly be correlated to the technology-mapping
phase. To construct the virtual NNIG (VNNIG) for a given
function, the starting point would be to consider a virtual
instance of the function, which is opposite to the normal
function phase. The minimized disjunctive normal form
corresponding to this function phase is then used as the
starting point for the development of a VNNIG for a given
function. Of course, for this case, the VNNIG would have an
additional inverter at the terminal output node to compensate
for the reversal of the function phase.

Hence, it becomes sufficiently clear from the above
discussion that if the compact AIG representation of a
Boolean function would be created based on the real instance
of the function then the OIG for that function would be based
on the virtual instance and vice-versa. This approach is
deemed necessary as it facilitates a reduction in the number of
operators (also called DAG nodes) required for creating a
logic structure graphically representing an OIG.

A. Illustrative Example
Consider the ON-set of a 5-variable function given by,

Z(A,B,C,D,E) = {6,10,12,13,14,15,22,26,28,29,30,31} (1)

The corresponding optimized structures for AIG and OIG

structures derived from minimum and irredundant SOP and
POS forms of the function are represented by Figures 1 and 2,
respectively, in terms of the primitive gates as shown below.
For this example, an AIG was created from the virtual
instance of the function as it was found to be compact; the
OIG from the virtual instance of the function comprising
maxterms. The inverter at the output compensates for the
complementation of the function polarity. NNIG structure
shown in Fig. 3 was created from the MPOS of the virtual
function instance and NNIG shown in Fig. 4 was created from
the MSOP of the real function instance, after algebraic
factorization operations on the corresponding minimum
expressions. We will associate a two-valued parameter for
each graph structure (n, c), where ‘n’ and ‘c’ stand for the
number of DAG nodes and cells constituting the graphs

respectively. Henceforth, the symbols , , and

 shall stand for AND, NAND, OR and NOR operators
respectively. The flipped edges correspond to NOT.

Fig. 1 Typical AIG structure based on real instance of the function

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2559

Fig. 2 Typical OIG structure based on the virtual function instance

Fig. 3 NNIG-POS derived from virtual MPOS of the function

Fig. 4 NNIG-SOP created from MSOP of the real function instance

The structures are hence described by AIG(6,11),

OIG(6,12) (inputs B and C have flipped edges twice), NNIG-
POS(5,7) and NNIG-SOP(5,5). The cell count is the sum of
the number of graph nodes and flipped edges in the BDAG.
Here, for this example, the NNIG-POS is identified as the
VNNIG as it is obtained by considering the virtual instance of
the function and the bubble (flipped edge in case of a DAG)
associated with the AND gate connected to the output
compensates for the inversion of the function polarity. In other
words, NNIG-POS is constructed by a virtual POS of the
function and not the POS corresponding to the real function
phase, since the number of literals for MPOS for the real
function instance would be 10, instead of 8 for the virtual
instance. Also the node count and cell count for the real
instance would 9 and 16 respectively, whereas for the virtual
instance they would be 6 and 12 respectively. Indeed, the POS
expression can be factored by applying distributive axiom. For

the SOP: the literal cost for the real and virtual function
phases are 8 and 10. The node count and cell count for the real
phase would be 6 and 11; for the complementary phase it
would be 9 and 16 respectively. NNIG-SOP is found to be the
best structure for this example, decided on the basis of node
count, cell count and literal cost at the graph level. For
validation purpose, the different logic structures were
implemented using static CMOS logic style, based on a 0.35
micron TSMC CMOS process technology. The device count
for AIG, OIG, NNIG-SOP and NNIG-POS structures are 46,
48, 24 and 20 transistors respectively. Minimum size nMOS
and pMOS transistors were used for simulation purpose and
no tapering of the gates had been done. An input pattern
which exhibits spatio-temporal correlations has been used to
determine the power consumption and delay parameter of the
circuits implemented. The different logic structures are
governed by the design metrics, as follows: AIG(2.5969nW,
1.13ns), OIG(3.5465nW, 1.002ns), NNIG-POS(1.1833nW,
0.715ns) and NNIG-SOP(0.8572nW, 0.689ns).

V. SIMULATION MECHANISM AND RESULTS
Various non-regenerative Boolean functions have been

considered for simulation studies to determine and validate the
efficiency of our proposal and are listed in Table 1. Figures 5
and 6 describe the power dissipation and critical delay
parameter obtained for the different graph structures,
simulated under identical conditions, based on an industry
standard BSIM3 device model, with a supply voltage of 3.3V
and an input frequency of 100MHz.

TABLE I

LOGIC FUNCTION SPECIFICATION
Logic

Function
ID

ON-set specification of the

Boolean function
LF1 {1,3,4,5,6,7,9,12,13,15}
LF2 {0,1,3,4,5,7,12,13,15}
LF3 {0,2,4,5,6,7,8,9,12,13}
LF4 {0,1,2,3,4,5,6,7,8,9,10,11,12,14,24,25,26,27,30}
LF5 {0,1,2,3,4,5,7,8,9,10,11,12,13,15,25,26,27,29}
LF6 {6,14,22,23,24,25,26,27,28,29,30,31}
LF7 {0,1,2,3,4,5,7,8,16,17,18,19,20,24,25,26,27,28,29,31}
LF8 {0,1,2,3,4,5,7,8,9,11,12,13,15,24,25,27,28,29,31}
LF9 {0,4,6,14,16,18,20,22,23,30}
LF10 {4,5,6,7,10,11,14,15,23,31}
LF11 {5,7,13,15,17,19,25,27,28,29,30,31}
LF12 {0,1,2,3,4,6,8,9,10,11,12,14,16,18,21,22,23,24,26}
LF13 {0,1,3,4,5,7,8,9,11,16,17,19,20,21,23,24,25,27}
LF14 {6,10,12,13,14,15,22,26,28,29,30,31}
LF15 {0,2,4,6,8,12,16,20,24,28,32,33,34,35}
LF16 {0122222,2201222,2222012,2222220}
LF17 {102222222,220122222,222210222,222222012,222222220}
LF18 {11222222,22002222,22221122,22222200}
LF19 {00122222,22210222,22222011}
LF20 {00122222,22210222,22222011}
LF21 (abc+def+ghi+jkl)
LF22 (abc+def+ghi+jkl+mno)
LF23 (abc+def+ghi+jkl+mno+pqr)
LF24 (abc+def+ghi+jkl+mno+pqr+stu)
LF25 (abc+def+ghi+jkl+mno+pqr+stu+vwx)
LF26 (abc+def+ghi+jkl+mno+pqr+stu+vwx+yza1)
LF27 (a’b’c’+d’e’f’+g’h’i’+j’k’l’)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2560

LF28 (a’b’c’+d’e’f’+g’h’i’+j’k’l’+m’n’o’)
LF29 (a’b’c’+d’e’f’+g’h’i’+j’k’l’+m’n’o’+p’q’r’)
LF30 (a’b’c’+d’e’f’+g’h’i’+j’k’l’+m’n’o’+p’q’r’+s’t’u’)
LF31 (a’bc+d’ef+g’hi+j’kl)
LF32 (a’bc+d’ef+g’hi+j’kl+m’no)
LF33 (a’bc+d’ef+g’hi+j’kl+m’no+p’qr)
LF34 (a’bc+d’ef+g’hi+j’kl+m’no+p’qr+s’tu)
LF35 (a’bc+d’ef+g’hi+j’kl+m’no+p’qr+s’tu+v’wx)

0 5 10 15 20

LF1

LF3

LF5

LF7

LF9

LF11

LF13

LF15

LF17

LF19

LF21

LF23

LF25

LF27

LF29

LF31

LF33

LF35

Lo
gi

c
Fu

nc
tio

n
ID

Power dissipation (nW)

NNIG

OIG/AOG/AOIG

AIG

Fig. 5 Power consumption of various logic structures

0 0.5 1 1.5 2

LF1

LF3

LF5

LF7

LF9

LF11

LF13

LF15

LF17

LF19

LF21

LF23

LF25

LF27

LF29

LF31

LF33

LF35

Lo
gi

c
Fu

nc
tio

n
ID

Critical delay (ns)

NNIG

OIG/AOG/AOIG

AIG

Fig. 6 Delay comparison of different graph structures

In the above table, logic functions LF1-LF15 include both

arbitrary cases as well as some lower order benchmarks upto 6
inputs. Logic functions LF21-LF35 represent special
functions. Logic functions 16-20 follow a ternary
representation and include functions with upto 9 inputs. AIG,
OIG and NNIGs are created for these. A product term of the
above functions (LF16-LF20) is represented in the ternary
notation of ‘0’, ‘1’ and ‘2’, where ‘0’ and ‘1’ denote a
variable appearing in the complementary and true form, while
‘2’ indicates the absence of a variable.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2561

Problem cases identified as LF21-LF26 represents unate
and positive Achilles’ heel functions, whose input file is
specified by (i,c), where ‘i’ stands for the number of input
variables and ‘c’ stands for the number of input cubes. For
these functions, ‘c’ is 3 and ‘i’ varies from 12 to 27; AIG,
AOG and NNIGs are used for circuit realizations. Logic
functions LF27-LF30 represent unate and negative Achilles’
heel functions (since all input variables appear in
complementary form), whose input file has the same
connotation as above. However, the number of input variables
considered varied from 12 to 21. Functions LF31-LF35
denotes unate Achilles’ heel functions with horn terms [14].
The input file bears the same specification and the number of
inputs considered was from 12 until 24. For problems LF27-
LF35; AIG, AOIG and NNIGs were constructed. This is
because OIGs tend to be very expensive in terms of delay for
such functions, even though they are created from the virtual
instance of the respective functions. Hence the other structures
have been considered. Construction of OIG from the real
function phase for Achilles’ heel functions will certainly be a
disadvantage, as they would have much greater number of
input cubes. For e.g. a 30 variable function would have 59049
cubes in its OFF-set.

With respect to all the problem cases listed in Table 1, it is
evident that functions exhibiting special properties have been
considered for simulation purposes. The experimental results
obtained report mean savings in power for NNIG over AIG
and OIG/AOG/AOIG structures by 43.71% and 47.51%
respectively. In terms of delay, the corresponding average
improvement in delay for NNIG logic structures over
functionally equivalent AIG and OIG/AOG/AOIG was found
to be 25.85% and 24.83%. The simulation results were
obtained using input patterns, which exhibit spatio-temporal
correlation. The above savings in the critical design
parameters have been calculated by comparing the compact
and best multi-level NNIG structure for a given Boolean
function with those corresponding to optimal and functionally
equivalent AIGs and OIG/AOG/AOIGs respectively.

VI. CONCLUSIONS
 This paper discusses a systematic procedure for the

construction of power and delay optimized binary logic
structures viz. NAND-NOR-Inverter Graphs for
combinational logic circuits. AIGs and OIGs usually rely on
the MSOP and MPOS of a function respectively for their
construction, and exhibit canonicity due to various
representations possible, directly resulting from different but
logically equivalent expressions; the construction of NNIGs
would be straightforward. This has been made possible by
defining decision metrics at the technology-independent phase
itself, which is not a regular feature in the creation of AIGs
and OIG/AOG/AOIGs.

We essentially obtain four reduced disjunctive and
conjunctive normal forms of a logic function, resulting from
considering both the output function polarities. Weak
factorization operations are then performed to reduce the
literal count. We also apply distributive laws of Boolean

algebra to this end. Then we arrive at a decision based on the
initial literal count of the factored forms corresponding to
either of the function phases. We then create a graph structure
using 2-input logic gate primitives, in tune with the DAG
specification of an arbitrary Boolean network. We now
recursively employ De-Morgan’s theorems [12] in order to
translate the gate-level specification of the function in terms of
cell analogy. The estimation of node count and cell count at
this stage helps us to finalize two structures, one
corresponding to the factored MSOP and the other
corresponding to the factored MPOS format of the function.
Indeed, the cell count is a new decision parameter introduced
in this paper and would be the sum of the number of DAG
nodes and flipped edges in the DAG. This approach helps to
reduce the time required to arrive at an optimal data structure
as the canonicity is greatly reduced and the optimal solutions
can be obtained in less polynomial time from fewer choices
(ideally two).

The results obtained so far, indicate that NNIG logic data
structures are potential candidates for enabling low power,
delay and even area optimized compact multi-level
combinatorial logic designs and they promise good scalability.
It remains to be seen as to how the NNIGs would make a
profound practical impact in reducing the time required for
solving Boolean satisfiability, functional verification and
formal equivalence checking problems and this provides
scope for further research in this direction.

REFERENCES
[1] A. Mishchenko, and R.K. Brayton, “Scalable logic synthesis using a

simple circuit structure,” Proc. of International Workshop on Logic
Synthesis, 2006, pp. 15-22.

[2] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-Aware AIG
rewriting A fresh look at combinational logic synthesis,” 43rd ACM/IEEE
Design Automation Conference, 2006, pp. 532-535.

[3] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan, “Integrating logic
synthesis, technology mapping, and retiming,” ERL Technical Report,
EECS Dept., UC Berkeley, April 2006.

[4] A. Mishchenko, and R.K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” Proc. of International Workshop on Logic
Synthesis, 2006, pp. 15-22.

[5] A. Mishchenko, S. Chatterjee, R. Jiang, and R.K. Brayton, “FRAIGs: A
unifying representation for logic synthesis and verification,” ERL
Technical Report, UCB, March 2005.

[6] N. Een, and N. Sorensson, “An extensible SAT-solver,” 6th International
Conference on Theory and Applications of Satisfiability Testing, 2003,
pp. 502-518.

[7] L. Hellerman, “A catalog of 3-variable OR-Inverter and AND-Inverter
logical circuits,” IEEE Transactions on Electr. Comput. vol. 12, pp. 198-
223, 1963.

[8] P. Bjesse, and A. Boralv, “DAG-aware circuit compression for formal
 verification,” International Conference on Computer Aided Design,
 pp. 42-49, 2004.
[9] G.L. Smith et al., ”Boolean comparison of hardware and flowcharts,”
 IBM Jour. of Research and Development, vol. 26(1), 1982, pp.106-116.
[10] A. Mishchenko, et al., “Using simulation and satisfiability to compute

flexibilities in Boolean networks,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 25(5), May 2006, pp. 743-755.

[11] A. Mishchenko, Available: www.eecs.berkeley.edu/~alanmi/abc
[12] M. Morris Mano, Digital Design. New Jersey: Prentice Hall, 2002.
[13] P.C. McGeer, J.V. Sanghavi, R.K. Brayton, and A.L. Sangiovanni-

Vincentelli, “ESPRESSO-SIGNATURE: a new exact minizer for logic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2562

functions,” IEEE Trans. on VLSI Systems, vol. 1(4), pp. 432-440,
December 1993.

[14] Peter L. Hammer, and Alexander Kogan, “Horn functions and their
DNFs,” Information Processing Letters, vol. 44(1), pp.23-29,
November 1992.

Padmanabhan Balasubramanian received his B.E degree in Electronics and
Communication Engineering discipline from University of Madras, TN, India
in 1998 and his M.Tech in VLSI System from National Institute of
Technology, Tiruchirappalli, TN, India in 2005. He was earlier Lecturer in the
School of Electrical Sciences at Vellore Institute of Technology (University
and IET, UK Accredited), Vellore, TN, India. He is working towards his PhD
in the School of Computer Science at The University of Manchester,
Lancashire, UK. His research interests are in logic synthesis for low power,
asynchronous design; CMOS based design and timing optimization issues.

Karthik Anantha received his B.Tech in Electronics and Communication
Engineering from Jawaharlal Nehru Technological University, AP, India in
2005. He is currently pursuing his final year M.Tech in VLSI Design from
Vellore Institute of Technology (University and IET, UK Accredited),
Vellore, TN, India. His areas of interest include logic synthesis,
reconfigurable architecture, software programming and computer graphics.

