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Abstract— Structural representation and technology mapping of 

a Boolean function is an important problem in the design of non-
regenerative digital logic circuits (also called combinational logic 
circuits). Library aware function manipulation offers a solution to 
this problem. Compact multi-level representation of binary networks, 
based on simple circuit structures, such as AND-Inverter Graphs 
(AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR 
Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XOR-
Inverter Graphs, Reduced Boolean Circuits [8] does exist in 
literature. In this work, we discuss a novel and efficient graph 
realization for combinational logic circuits, represented using a 
NAND-NOR-Inverter Graph (NNIG), which is composed of only 
two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. 
The networks are constructed on the basis of irredundant disjunctive 
and conjunctive normal forms, after factoring, comprising terms with 
minimum support. Construction of a NNIG for a non-regenerative 
function in normal form would be straightforward, whereas for the 
complementary phase, it would be developed by considering a virtual 
instance of the function. However, the choice of best NNIG for a 
given function would be based upon literal count, cell count and 
DAG node count of the implementation at the technology 
independent stage. In case of a tie, the final decision would be made 
after extracting the physical design parameters.  

We have considered AIG representation for reduced disjunctive 
normal form and the best of OIG/AOG/AOIG for the minimized 
conjunctive normal forms. This is necessitated due to the nature of 
certain functions, such as Achilles’ heel functions. NNIGs are found 
to exhibit 3.97% lesser node count compared to AIGs and 
OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells 
than AIGs and OIG/AOG/AOIGs for the various samples considered. 
We compare the power efficiency and delay improvement achieved 
by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for 
various case studies. In comparison with functionally equivalent, 
irredundant and compact AIGs, NNIGs report mean savings in power 
and delay of 43.71% and 25.85% respectively, after technology 
mapping with a 0.35 micron TSMC CMOS process. For a 
comparison with OIG/AOG/AOIGs, NNIGs demonstrate average 
savings in power and delay by 47.51% and 24.83%. With respect to 
device count needed for implementation with static CMOS logic 
style, NNIGs utilize 37.85% and 33.95% lesser transistors than their 
AIG and OIG/AOG/AOIG counterparts.    
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I. INTRODUCTION 
N many commercial logic synthesis systems, approaches to  
technology-specific multilevel logic synthesis, global logic 

structure synthesis followed by local optimization and 
technology mapping are found. A Boolean network is often 
the target of global logic structure synthesis, serving as an 
intermediate description between input specification in HDL 
or PLA-like format and the final network in a specific target 
technology. Multilevel minimization algorithms have been 
developed to further reduce the cost of an initially synthesized 
Boolean network. However, the designs they generate after 
initial synthesis by an algebraic approach are far inferior to 
manual designs in some cases, because changes during 
multilevel minimization are usually constrained to a local 
node, although global information is used to propose or 
validate such changes. Hence initial structure synthesis is 
important in finding better designs because improvement by 
multilevel minimization seems to be bounded by the initial 
structure. During multilevel network synthesis, each node of a 
Boolean network is represented by minimal ON- and/or OFF-
covers and in some cases together with factored expressions 
derived from those minimal sum-of-products (SOP), with cost 
measured in terms of the number of cubes, literals or 
supporting variables. The reason for using minimal disjunctive 
normal forms is not that they always lend themselves to the 
best factored forms or provide the best sub-functions, but 
rather that we cannot easily ascertain other forms, which are 
guaranteed to be generally better than minimal SOP forms. 
There are cases where non-minimal expressions may be 
preferred, but there are too many non-minimal expressions to 
explore all of them, and it is difficult, if not impossible, to 
predict which non-minimal form will be desirable at the next 
step of synthesis. Hence, it is prudent to generally use minimal 
disjunctive normal forms. This paper does not propose a new 
algorithm for multilevel logic synthesis, but rather modifies 
the proposed functional decomposition into gates [1], to 
incorporate cells (library cells) which understood in terms of 
gates, still preserves the advantages of the functional 
decomposition. In this context, it becomes clear that this paper 
focuses on a technology driven multilevel logic synthesis 
based on functional decomposition, which utilizes minimum 
disjunctive and conjunctive normal forms. We understand that 
since the initial synthesis is performed with close relation to 
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the actual technology target, the opportunities created by 
modern microelectronic technology can be more effectively 
exploited because of a direct relevance of the synthesis 
procedure to technology implementation, in terms of the 
actual cells used for final implementation. This would carry 
significance for semi-custom, full-custom or standard cell-
based digital IC design approaches, where constraints are 
imposed on the number of serial and parallel transistors 
realizing gates and on the interconnections between the gates.    

The remainder of this paper is organized as follows. Section 
2 provides concise background information relevant to the 
paper. Section 3 deals with the properties and practical 
advantages of AIGs. Section 4 deals with the construction and 
description of some of the inherent advantages of NNIGs. 
This section also contains an illustrative example, to 
demonstrate the optimization in design metrics achieved by a 
NNIG in comparison with its functionally equivalent AIG and 
OIG. Simulation results for the other problem cases, including 
the special functions considered, are mentioned in section 5. 
We finally make the concluding remarks in section 6.   

II. PRELIMINARIES 

A. Definition 1 
A single output Boolean function, F(xn-1, xn-2,….,x0) is a 

mapping, f: {0,1}n → {0,1,d}, where ‘d’ denotes a ‘don’t care’ 
condition. If the DC condition does not exist, then it is a 
completely specified function (CSF). Each of the 2n nodes in 
the Boolean space corresponds to a minterm. If a minterm is 
mapped to output 0 (1 or d), then it is called an OFF-set      
(ON-set or DC-set) minterm.   

B. Definition 2 
A binary logic network is a directed acyclic graph (DAG) 

with nodes representing Boolean functions. The sources of the 
graph are referred to as the primary inputs of the network; the 
sinks are the primary outputs. The output of a node may be an 
input to other nodes called its fan-outs. The inputs of a node 
are called its fan-ins.  

III. AND-INVERTER GRAPHS 
AND-Inverter Graph (AIG) is a directed acyclic graph that 

represents a structural implementation of the combinational 
logic functionality of any random Boolean network. As the 
name implies, it is composed of only two-input AND gates 
and inverters. An AIG consists of two-input nodes, 
representing logical conjunction, and edges optionally 
containing markers indicating logical negation. The size (area) 
of the DAG representing an AIG is the number of its nodes 
and its depth (delay) is the number of nodes present in the 
longest path from any of its primary inputs to any of its 
primary outputs. This representation of a logic function is 
rarely structurally efficient for large circuits, but is an efficient 
representation for manipulation of Boolean functions.   

Although concise multi-level representation of binary 
networks, based on simple circuit structures, such as OIG 
(obtained from minimal product-of-sums form or POS), 

NAND graphs, AND-XOR-INV graphs do exist, conversion 
from the network of logic gates to AIGs is fast, easy and 
scalable [1]. It only requires that every gate be expressed in 
terms of AND gates and inverters. This conversion does not 
lead to unpredictable increase in memory use and runtime. 
This makes the AIG an efficient representation in comparison 
with either the binary decision diagram (BDD) or the sum-of-
products (SOP) form. The BDD and DNF may also be viewed 
as circuits, but they involve formal constraints that deprive 
them of scalability. For example, reduced DNFs obtained 
using standard commercial minimizers, such as ESPRESSO 
correspond to circuits with at most two levels, while BDDs 
are canonical, that is, they require that input literals be 
evaluated in the same order on all paths. The abstract data 
graph (here binary network) is usually represented by a data 
structure.  

Circuits composed of simple gates, including AIGs, are an 
old research topic. The interest in AIGs started in the early 
1960’s [7] and continued in the 1970’s when various local 
transformations have been developed. These transformations 
were implemented in several logic synthesis and verification 
systems, such as [4], which reduce circuits to improve area 
and delay during synthesis, or to speed up formal equivalence 
checking. Several important techniques were discovered early 
at IBM [9], such as combining and reusing multiple-input 
logic expressions and sub-expressions, now known as 
structural hashing or strashing [5]. A hash table is used to 
remove redundant components during network construction 
by structure sharing. Recently, there has been a renewed 
interest in AIGs as a functional representation for a variety of 
tasks in synthesis and verification. This is because 
representations popular in the 1990’s (such as BDDs) have 
reached their limits of scalability in many of their applications. 
Another important development was the emergence of much 
more efficient Boolean satisfiability (SAT) solvers. When 
coupled with AIGs as the circuit representation, they lead to 
remarkable speedups in solving a wide variety of Boolean 
problems. 

AIGs found successful use in diverse electronic design 
automation (EDA) applications. A well-tuned combination of 
AIGs and Boolean satisfiability made an impact on formal 
verification, including both model checking and equivalence 
checking. In [8], efficient circuit compression techniques were 
developed using AIGs. There is a growing understanding that 
logic and physical synthesis problems can be solved using 
AIGs. Another recent activity [10] shows that the simple and 
uniform structure of AIGs allow rewriting, simulation, 
mapping, placement and verification to share the same data 
structure.  

In addition to combinational logic, AIGs have also been 
applied to sequential logic and sequential transformations. 
Specifically, the method of structural hashing was extended to 
work for AIGs with memory elements (such as D-flip flops 
with an initial state, which, in general, can be unknown) 
resulting in a data structure that is specifically tailored for 
applications related to retiming [3]. A modern logic synthesis 
system, ABC [11], developed by EECS Dept. of the 
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University of California, Berkeley, completely based on AIGs, 
features an AIG package, several AIG-based synthesis and 
equivalence-checking techniques, as well as an experimental 
implementation of sequential synthesis. Although 
optimizations can be implemented using networks composed 
of arbitrary gates, use of AIGs makes them fast and scalable. 

IV. NAND-NOR-INVERTER GRAPHS 
Similar to AIGs, we find that a combinational logic circuit 

can be conveniently represented using NAND-NOR-Inverter 
Graphs (NNIG). A NNIG also corresponds to a DAG 
representation for a non-regenerative logic function. The gate 
analogy pertaining to functional decomposition is now 
replaced by cell analogy, whilst preserving the definition and 
attribute, corresponding to a function. In this case, the 
network would only comprise of two-input NAND, NOR and 
single input inverter cells. NNIGs are also non-canonical 
structures: although a Boolean function can have many 
functionally equivalent NNIG representations corresponding 
to different expressions at the two-level logic, typically two 
structures would be compact representations; one obtained 
from a factored minimum SOP (MSOP) of the function and 
other based on factored minimum POS (MPOS) of the 
function. The internal nodes of a NNIG may have equivalent 
functionality, if the standard expressions from which they are 
created are not factored. This may increase the number of 
NNIG nodes and makes reasoning on the graph structure 
inefficient and time consuming. NNIGs also have the inherent 
capability to incorporate functional reduction similar to AIGs 
[5], such that no functionally identical nodes exist in a 
network, which is required for many applications cited in [5]. 
This is possible by simple algebraic factoring. Such weak 
factorization operations would ensure that no functional 
redundancy exists. However such factoring operations would 
yield best results provided the literals used for decomposition 
are the biggest divisors and result in reduced sub-function 
remainders. Functionally reduced NNIGs, obtained by 
strashing, hence become semi-canonical and would be much 
more robust than BDDs and can be constructed for a wide 
range of practical circuits in reduced polynomial time. 
Simulation of NNIGs can be performed efficiently because 
they comprise a regular structure. NNIGs can also be easily 
and effectively combined with satisfiability-solvers [6] for 
combinational equivalence checking.  

NNIG for a logic function can be constructed starting from 
either an input description in PLA format or directly from the 
circuit netlist level. For example, given a canonical logic 
function description in PLA format, the reduced disjunctive 
normal form can be obtained using industry standard two-
level logic minimizers, such as ESPRESSO [13]. Then the 
reduced disjunctive normal form can be factorized to comprise 
only the primitive two-input gates, which directly correspond 
to library cells. Sharing common logic at this stage, i.e. before 
proceeding with the construction of a NNIG would always 
result in best cost optimization as mentioned above and ensure 
that all the functional redundancies are eliminated. This 
technique would be significant for custom and semi-custom 
designs. The factored form can then be converted into a 

NNIG, by recursive application of De-Morgan’s laws, based 
on several depth-first traversals of the graph structure. This 
technology-independent procedure is clearly library aware and 
hence could directly be correlated to the technology-mapping 
phase. To construct the virtual NNIG (VNNIG) for a given 
function, the starting point would be to consider a virtual 
instance of the function, which is opposite to the normal 
function phase. The minimized disjunctive normal form 
corresponding to this function phase is then used as the 
starting point for the development of a VNNIG for a given 
function. Of course, for this case, the VNNIG would have an 
additional inverter at the terminal output node to compensate 
for the reversal of the function phase.  

Hence, it becomes sufficiently clear from the above 
discussion that if the compact AIG representation of a 
Boolean function would be created based on the real instance 
of the function then the OIG for that function would be based 
on the virtual instance and vice-versa. This approach is 
deemed necessary as it facilitates a reduction in the number of 
operators (also called DAG nodes) required for creating a 
logic structure graphically representing an OIG. 

A. Illustrative Example 
Consider the ON-set of a 5-variable function given by, 
  

Z(A,B,C,D,E) = {6,10,12,13,14,15,22,26,28,29,30,31}     (1) 
 
The corresponding optimized structures for AIG and OIG 

structures derived from minimum and irredundant SOP and 
POS forms of the function are represented by Figures 1 and 2, 
respectively, in terms of the primitive gates as shown below.  
For this example, an AIG was created from the virtual 
instance of the function as it was found to be compact; the 
OIG from the virtual instance of the function comprising 
maxterms. The inverter at the output compensates for the 
complementation of the function polarity. NNIG structure 
shown in Fig. 3 was created from the MPOS of the virtual 
function instance and NNIG shown in Fig. 4 was created from 
the MSOP of the real function instance, after algebraic 
factorization operations on the corresponding minimum 
expressions. We will associate a two-valued parameter for 
each graph structure (n, c), where ‘n’ and ‘c’ stand for the 
number of DAG nodes and cells constituting the graphs 

respectively. Henceforth, the symbols , ,  and 

 shall stand for AND, NAND, OR and NOR operators 
respectively. The flipped edges correspond to NOT.   
 

 
Fig. 1 Typical AIG structure based on real instance of the function 
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Fig. 2 Typical OIG structure based on the virtual function instance 

 

 
Fig. 3 NNIG-POS derived from virtual MPOS of the function 

 

 
Fig. 4 NNIG-SOP created from MSOP of the real function instance 

 
The structures are hence described by AIG(6,11), 

OIG(6,12) (inputs B and C have flipped edges twice), NNIG-
POS(5,7) and NNIG-SOP(5,5). The cell count is the sum of 
the number of graph nodes and flipped edges in the BDAG. 
Here, for this example, the NNIG-POS is identified as the 
VNNIG as it is obtained by considering the virtual instance of 
the function and the bubble (flipped edge in case of a DAG) 
associated with the AND gate connected to the output 
compensates for the inversion of the function polarity. In other 
words, NNIG-POS is constructed by a virtual POS of the 
function and not the POS corresponding to the real function 
phase, since the number of literals for MPOS for the real 
function instance would be 10, instead of 8 for the virtual 
instance. Also the node count and cell count for the real 
instance would 9 and 16 respectively, whereas for the virtual 
instance they would be 6 and 12 respectively. Indeed, the POS 
expression can be factored by applying distributive axiom. For 

the SOP: the literal cost for the real and virtual function 
phases are 8 and 10. The node count and cell count for the real 
phase would be 6 and 11; for the complementary phase it 
would be 9 and 16 respectively. NNIG-SOP is found to be the 
best structure for this example, decided on the basis of node 
count, cell count and literal cost at the graph level. For 
validation purpose, the different logic structures were 
implemented using static CMOS logic style, based on a 0.35 
micron TSMC CMOS process technology.  The device count 
for AIG, OIG, NNIG-SOP and NNIG-POS structures are 46, 
48, 24 and 20 transistors respectively. Minimum size nMOS 
and pMOS transistors were used for simulation purpose and 
no tapering of the gates had been done. An input pattern 
which exhibits spatio-temporal correlations has been used to 
determine the power consumption and delay parameter of the 
circuits implemented. The different logic structures are 
governed by the design metrics, as follows: AIG(2.5969nW, 
1.13ns), OIG(3.5465nW, 1.002ns), NNIG-POS(1.1833nW, 
0.715ns) and NNIG-SOP(0.8572nW, 0.689ns).  

V. SIMULATION MECHANISM AND RESULTS 
Various non-regenerative Boolean functions have been 

considered for simulation studies to determine and validate the 
efficiency of our proposal and are listed in Table 1. Figures 5 
and 6 describe the power dissipation and critical delay 
parameter obtained for the different graph structures, 
simulated under identical conditions, based on an industry 
standard BSIM3 device model, with a supply voltage of 3.3V 
and an input frequency of 100MHz.  

 
TABLE I  

LOGIC FUNCTION SPECIFICATION 
Logic  

Function  
ID 

 
ON-set specification of the 

Boolean function 
LF1 {1,3,4,5,6,7,9,12,13,15} 
LF2 {0,1,3,4,5,7,12,13,15} 
LF3 {0,2,4,5,6,7,8,9,12,13} 
LF4 {0,1,2,3,4,5,6,7,8,9,10,11,12,14,24,25,26,27,30} 
LF5 {0,1,2,3,4,5,7,8,9,10,11,12,13,15,25,26,27,29} 
LF6 {6,14,22,23,24,25,26,27,28,29,30,31} 
LF7 {0,1,2,3,4,5,7,8,16,17,18,19,20,24,25,26,27,28,29,31} 
LF8 {0,1,2,3,4,5,7,8,9,11,12,13,15,24,25,27,28,29,31} 
LF9 {0,4,6,14,16,18,20,22,23,30} 
LF10 {4,5,6,7,10,11,14,15,23,31} 
LF11 {5,7,13,15,17,19,25,27,28,29,30,31} 
LF12 {0,1,2,3,4,6,8,9,10,11,12,14,16,18,21,22,23,24,26} 
LF13 {0,1,3,4,5,7,8,9,11,16,17,19,20,21,23,24,25,27} 
LF14 {6,10,12,13,14,15,22,26,28,29,30,31} 
LF15 {0,2,4,6,8,12,16,20,24,28,32,33,34,35} 
LF16 {0122222,2201222,2222012,2222220} 
LF17 {102222222,220122222,222210222,222222012,222222220} 
LF18 {11222222,22002222,22221122,22222200} 
LF19 {00122222,22210222,22222011} 
LF20 {00122222,22210222,22222011} 
LF21 (abc+def+ghi+jkl) 
LF22 (abc+def+ghi+jkl+mno) 
LF23 (abc+def+ghi+jkl+mno+pqr) 
LF24 (abc+def+ghi+jkl+mno+pqr+stu) 
LF25 (abc+def+ghi+jkl+mno+pqr+stu+vwx) 
LF26 (abc+def+ghi+jkl+mno+pqr+stu+vwx+yza1) 
LF27 (a’b’c’+d’e’f’+g’h’i’+j’k’l’) 
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LF28 (a’b’c’+d’e’f’+g’h’i’+j’k’l’+m’n’o’) 
LF29 (a’b’c’+d’e’f’+g’h’i’+j’k’l’+m’n’o’+p’q’r’) 
LF30 (a’b’c’+d’e’f’+g’h’i’+j’k’l’+m’n’o’+p’q’r’+s’t’u’) 
LF31 (a’bc+d’ef+g’hi+j’kl) 
LF32 (a’bc+d’ef+g’hi+j’kl+m’no) 
LF33 (a’bc+d’ef+g’hi+j’kl+m’no+p’qr) 
LF34 (a’bc+d’ef+g’hi+j’kl+m’no+p’qr+s’tu) 
LF35 (a’bc+d’ef+g’hi+j’kl+m’no+p’qr+s’tu+v’wx) 
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Fig. 5 Power consumption of various logic structures 
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Fig. 6 Delay comparison of different graph structures 

 
In the above table, logic functions LF1-LF15 include both 

arbitrary cases as well as some lower order benchmarks upto 6 
inputs. Logic functions LF21-LF35 represent special 
functions. Logic functions 16-20 follow a ternary 
representation and include functions with upto 9 inputs. AIG, 
OIG and NNIGs are created for these. A product term of the 
above functions (LF16-LF20) is represented in the ternary 
notation of ‘0’, ‘1’ and ‘2’, where ‘0’ and ‘1’ denote a 
variable appearing in the complementary and true form, while 
‘2’ indicates the absence of a variable. 
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Problem cases identified as LF21-LF26 represents unate 
and positive Achilles’ heel functions, whose input file is 
specified by (i,c), where ‘i’ stands for the number of input 
variables and ‘c’ stands for the number of input cubes. For 
these functions, ‘c’ is 3 and ‘i’ varies from 12 to 27; AIG, 
AOG and NNIGs are used for circuit realizations. Logic 
functions LF27-LF30 represent unate and negative Achilles’ 
heel functions (since all input variables appear in 
complementary form), whose input file has the same 
connotation as above. However, the number of input variables 
considered varied from 12 to 21. Functions LF31-LF35 
denotes unate Achilles’ heel functions with horn terms [14]. 
The input file bears the same specification and the number of 
inputs considered was from 12 until 24. For problems LF27-
LF35; AIG, AOIG and NNIGs were constructed. This is 
because OIGs tend to be very expensive in terms of delay for 
such functions, even though they are created from the virtual 
instance of the respective functions. Hence the other structures 
have been considered. Construction of OIG from the real 
function phase for Achilles’ heel functions will certainly be a 
disadvantage, as they would have much greater number of 
input cubes. For e.g. a 30 variable function would have 59049 
cubes in its OFF-set.    

With respect to all the problem cases listed in Table 1, it is 
evident that functions exhibiting special properties have been 
considered for simulation purposes. The experimental results 
obtained report mean savings in power for NNIG over AIG 
and OIG/AOG/AOIG structures by 43.71% and 47.51% 
respectively. In terms of delay, the corresponding average 
improvement in delay for NNIG logic structures over 
functionally equivalent AIG and OIG/AOG/AOIG was found 
to be 25.85% and 24.83%. The simulation results were 
obtained using input patterns, which exhibit spatio-temporal 
correlation. The above savings in the critical design 
parameters have been calculated by comparing the compact 
and best multi-level NNIG structure for a given Boolean 
function with those corresponding to optimal and functionally 
equivalent AIGs and OIG/AOG/AOIGs respectively.   

VI. CONCLUSIONS 
    This paper discusses a systematic procedure for the 

construction of power and delay optimized binary logic 
structures viz. NAND-NOR-Inverter Graphs for 
combinational logic circuits. AIGs and OIGs usually rely on 
the MSOP and MPOS of a function respectively for their 
construction, and exhibit canonicity due to various 
representations possible, directly resulting from different but 
logically equivalent expressions; the construction of NNIGs 
would be straightforward. This has been made possible by 
defining decision metrics at the technology-independent phase 
itself, which is not a regular feature in the creation of AIGs 
and OIG/AOG/AOIGs.  

We essentially obtain four reduced disjunctive and 
conjunctive normal forms of a logic function, resulting from 
considering both the output function polarities. Weak 
factorization operations are then performed to reduce the 
literal count. We also apply distributive laws of Boolean 

algebra to this end. Then we arrive at a decision based on the 
initial literal count of the factored forms corresponding to 
either of the function phases. We then create a graph structure 
using 2-input logic gate primitives, in tune with the DAG 
specification of an arbitrary Boolean network. We now 
recursively employ De-Morgan’s theorems [12] in order to 
translate the gate-level specification of the function in terms of 
cell analogy. The estimation of node count and cell count at 
this stage helps us to finalize two structures, one 
corresponding to the factored MSOP and the other 
corresponding to the factored MPOS format of the function. 
Indeed, the cell count is a new decision parameter introduced 
in this paper and would be the sum of the number of DAG 
nodes and flipped edges in the DAG. This approach helps to 
reduce the time required to arrive at an optimal data structure 
as the canonicity is greatly reduced and the optimal solutions 
can be obtained in less polynomial time from fewer choices 
(ideally two). 

The results obtained so far, indicate that NNIG logic data 
structures are potential candidates for enabling low power, 
delay and even area optimized compact multi-level 
combinatorial logic designs and they promise good scalability. 
It remains to be seen as to how the NNIGs would make a 
profound practical impact in reducing the time required for 
solving Boolean satisfiability, functional verification and 
formal equivalence checking problems and this provides 
scope for further research in this direction. 
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