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 
Abstract—A formulation of postbuckling analysis of end 

supported rods under self-weight has been presented by the 
variational method. The variational formulation involving the strain 
energy due to bending and the potential energy of the self-weight, are 
expressed in terms of the intrinsic coordinates. The variational 
formulation is accomplished by introducing the Lagrange multiplier 
technique to impose the boundary conditions. The finite element 
method is used to derive a system of nonlinear equations resulting 
from the stationary of the total potential energy and then Newton-
Raphson iterative procedure is applied to solve this system of 
equations. The numerical results demonstrate the postbluckled 
configurations of end supported rods under self-weight. This finite 
element method based on variational formulation expressed in term 
of intrinsic coordinate is highly recommended for postbuckling 
analysis of end-supported rods under self-weight. 
 

Keywords—Variational method, postbuckling, finite element 
method, intrinsic coordinate. 

I. INTRODUCTION 

OSTBUCKLING analysis of rods is a fundamental 
problem in elastic theory of structures. The classical 

theory of elastic rods is presented widely in texts books, such 
as those by Love [1], Timmoshenko and Goodier [2], Antman 
[3], Wang [4] and Bigoni [5] which the buckling load has been 
given in texts books [1]-[5]. For the past several years ago, 
almost all research dealt with buckling loads of 
columns/beams has attracted the attention of many 
investigators such as cantilever columns loaded laterally by a 
tip force [6], heavy columns with various support conditions 
subjected to an axial load and restrained by internal supports 
[7], [8], elastic columns of constant and variable cross-
sections [9], non-prismatic columns under self-weight and tip 
force [10], the axially non-uniform elastically restrained 
beams [11] and the buckling load of columns under self-
weight with various boundary conditions [12].  

Nowadays, postbuckling analysis of rods is considered to be 
a fundamental topic in elastica theory of structures, and an 
interesting practical problem in structural stability. In case of 
methods for solving the postbuckled configuration of 
rods/columns, the most research focused on applying 
numerical solution of shooting method to solve postbuckling 
behavior of beam and rods/columns such as a standing 
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sandwich beam under terminal force and self-weight [13], a 
clamped-simply supported rod under axial force [14], slender 
elastic rod subjected to axial terminal forces restrained by 
hinged with a rotational spring [15], a cantilever column due 
to self-weight [16], slender rods with double-hinged boundary 
condition subjected to axial terminal forces and self-weight 
[17], hinged-fixed beam under uniformly distributed follower 
forces [18] and slender rod with two hinged ends under self-
weight [19]. In addition, the postbuckling behavior of rods/ 
columns under various loading and supporting conditions are 
also analyzed by using the Runge-Kutta and Regula-Falsi 
methods [20], Butcher’s fifth-order Runge-Kutta method [21], 
Sturm-Liouville boundary value problem [22], Differential 
quadrature method [23], Matched asymptotic perturbation 
method [24], A canonical dual finite element method [25]. 

 From the literature in the field of offshore engineering, the 
analysis of buckling and postbuckling of vertical rods have 
been investigated in several studies for example Huang and 
Dareing [26], [27], Lubinski [28], Kokkinis and Bernitsas 
[29], as well as Vaz and Patel [30], [31]. The previous 
research related to offshore engineering application also 
mentioned that self-weight of long submersed rod is main 
factor cause to its buckle.  

Although the model formulation of postbuckling rods/ 
columns has been presented by several scholars, their model 
formulations have not yet used the intrinsic coordinates finite 
elements. Therefore, the purpose of this study is to present 
intrinsic coordinates finite elements based on variational 
method for postbuckling analysis of rods under self-weight 
with various end conditions. The variational formulation 
developed in the present study involves strain energy due to 
bending, and the potential energy of the self-weight. To 
accomplish the formulation, the constraint of the boundary 
condition in a Lagrange multiplier technique is employed. The 
results obtained in this study are compared with those results 
reported by Liu et al. [19]. Moreover, the obtained buckled 
configurations of end supported rods under self-weight can be 
used to predict the postbuckling behavior of rods and other 
engineering structure. 

II. VARIATIONAL FORMULATION  

According to the elastica theory, the exact curvature is used 
to obtain postbuckling behavior of end supported rods. The 
model formulation is developed by elastica theory based on 
the assumption that the deflection of rods can be large, but 
strain is small. Then, torsional and shear rigidities are 
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neglected. An energy functional of rods expressed in the 
intrinsic coordinates ( , s) can be written as: 
 

2

0 0 0

1
[1 cos ]

2 s

L L s

EI ds dsdsw                     (1) 

 
The first term in (1) is the strain energy due to bending and 

the second term is the potential energy of the self-weight 
( )sw . In the constrained boundary condition of the end 

supported rods, a Lagrange multiplier technique [32] is 
introduced; thus, the constrained boundary condition can be 
given as: 
 

0

( ) sin 0
L

g y L ds                              (2) 

 
where ( )y L  is the lateral displacement of the end supported 

rods at position L. The multiplier   is added to the system in 
accordance with the Lagrange multiplier technique. The 
modified total potential energy function of the system can be 
expressed as: 
 

2

0 0 0 0

1
* [1 cos ] ( sin )]

2

L L s L

sEI ds dsds y dsw              (3) 

 
The rotation angle ( ) and the Lagrange multipliers ( )  in 

the variational formulation in (3) are determined 
simultaneously using finite element method and Newton-
Raphson iteration. The boundary conditions in this study (Fig. 
1) are as follows: 

Simply supported;  
 

(0) 0y  , ( ) 0y L  , (0) 0M  , ( ) 0M L              (4) 

 
Clamped-pinned; 

 

(0) 0y  , ( ) 0y L  , (0) 0  , ( ) 0M L              (5) 

 
Clamped-clamped; 

 

(0) 0y  , ( ) 0y L  , (0) 0  , ( ) 0L               (6) 

III. FINITE ELEMENT METHOD 

The total arc-length of rods is divided into a number of thk  
elements in the finite element procedure. The rotation function 

( )s  within the thk  element can be approximated by using 

Lagrange interpolation functions as: 
 

  ( )s q  N                               (7) 

 

where  N  is the shape function components consisting of:   
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Fig. 1 Deformed configurations of end supported rods under self-
weight: (a) simply supported, (b) clamped-pinned, (c) clamped-

clamped 
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The vector  q  denotes the local degrees of freedom 

representing the value of ( )s  and l  is the element length of 

a rod for each discretized thk  element. 
Gaussian quadrature integration for a line element is 

performed for single integration, 
0

( )
L

f s ds , in (3). This 

integral can be transformed to an integration having limits 

1    and 1   by substitution (1 )
2
Ls   , becomes: 
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The double integration, 
0 0

( )
L s

f s dsds  , in (3), can be 

changed in the form of 
0 0

( )
L s

f t dtds  . The Gaussian quadrature 

integration formula can be applied to any arbitrary interval [0, 

s] with transformation  1
2
st   , yields: 
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Then, the double integration 
0 0

( )
L s

f t dtds   can be given as: 
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where the Gauss points i  and j  are the value of 

coordinates at a specific point in the line element, and the 
iW  

and 
jW  are the weight appropriate to i  and j , respectively. 

Following the virtual work-energy principle, the 
equilibrium equations are obtained by taking the variation of 
the modified total potential energy in (3). The energy 
functional of the thk  element can be expressed in terms of its 
local degrees of freedom as:  
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Since iq  and   are arbitrary, 
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in (12) 

are approximation to the solution. Taylor’s series expansion 
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*k
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 and 
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 by truncating the second-order terms, 

yields 
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where      1i in n n
q q q


   , 1n n n     , and n = 

number of iterations. Then, (13) and (14) can be arranged into 
a matrix form as: 
 

   
 

   1
T

1
0

NL NN N ii

N

q

 




    
      

      

K K R

RK
       (15) 

 
The integer value N is the number of nodal rotations of the 

rod system. 
The matrix  NLK  is obtained as an assemblage of the local 

stiffness matrices 
2 *k

i jq q

 
 
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 from all elements, and the vector 

 K  represents the assembling of the element vectors 

2 *k

iq




 
 
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. The vector  iR  is the assemblage of element 

vectors 
*k

iq




 and the parameter R  is the value of 
*k





, 

respectively. 
In order to find the solution of system in (15), the Newton-

Raphson iterative procedure is employed to obtain the 
numerical solutions. The numerical procedure can be 
summarized in the following as: 
1. Specify the initial values  q = 0 and  = 0. 

2. Determine the matrix  NLK , the vector  K , the vector 

 iR  and the parameter R . 

3. Apply the boundary conditions and solve for 

. iq and   
4. Add the  iq  to  iq  and   to  , which give the new 

values of  iq  and  . 

5. Repeat steps 2 through 5 until  iq  and   are 

converged.  
The resulting solutions are the rotation angle ( ) at each 

node and  .  

IV. RESULTS AND DISCUSSION 

As found in the literature review, research studies on 
postbuckling behavior of a rod under self-weight are mostly 
concerned with simply supported rods. Therefore, the 

comparison numerical solution for postbuckling load ( sw ) of 

the simply supported rods under self-weight obtained in this 
work and previous researches are presented first, as shown in 
Table I. For Table  I, the value of the shortening ( / )u u L  and 
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the maximum lateral displacement max( / )y L  between the 

results of the finite element method (FEM) and other research 
studies undertaken by Liu et al. [19], in which the problem has 
been solved numerically by the shooting method (SM) are 
compared. The obtained numerical results show that FEM and 
SM from previous work [19] are in very good agreement for 

lower value of sw . However, small difference with a less than 

5 percentage point were obtained in case of the shortening 

( / )u u L  for higher value of sw . The increased difference 

arises from the fact that the difference formulation technique 
is used. Moreover, the buckled configurations are obtained 
from FEM results are shown in Figs. 2-4. The buckled 
configurations of simply supported rod in Fig. 2 show the 
relationship between the axial displacements and lateral 
displacements which similar to the behavior of a double-
hinged rod under self-weight, as presented in the work of Liu 
et al. [19]. In addition, Figs. 3 and 4 also display the 
postbuckle configurations of clamped-pinned and clamped-
clamped rod under self-weight. In offshore engineering 
applications, the buckling of rods often occurs for long 
submersed rods used as drilling bars or oil sucker rods and 
marine risers in offshore oil/gas exploitation. The self-weight 
of the rod becomes the main factor to cause the buckling. The 
postbuckling behavior of rods is typically analyzed on the 
deformed rod after buckling and losing its stability. The 
presented analysis method can be used to predict the 
postbuckling behavior of rods and will be beneficial for the 
design of other engineering structures.  
 

19sw 

20sw 

21sw 

22sw 

23sw 

 

Fig. 2 Postbuckling configurations of a simply supported rod under 
self-weight 

54sw 

57sw 

60sw 

65sw 

70sw 

 

Fig. 3 Postbuckling configurations of a clamped-pinned rod under 
self-weight 
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Fig. 4 Postbuckling configurations of a clamped-clamped rod under 
self-weight 
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TABLE I 
COMPARISON OF NUMERICAL RESULTS FOR POSTBUCKLING LOAD OF SIMPLY-

SUPPORTED RODS UNDER SELF-WEIGHT 

sw  /u u L  
max /y L

FEM SM Difference FEM SM Difference 

19 0.0549 0.0550 0.1821 0.1460 0.1459 0.0685 

20 0.1767 0.1770 0.1698 0.2505 0.2510 0.1996 

21 0.2951 0.2980 0.9827 0.3082 0.3097 0.4867 

22 0.4202 0.4320 2.8082 0.3456 0.3493 1.0706 

23 0.6284 0.5990 4.6785 0.3648 0.3653 0.1370 

Note: FEM = finite element method; SM = shooting method [19] 

V. CONCLUSIONS 

A variational method for postbuckling analysis of end 
supported rods under self-weight is presented. The strain 
energy due to bending and the potential energy of the self-
weight are the complement of a variational formulation. 
Lagrange multiplier technique is included by identified the 
Lagrange multiplier as the reaction at the end support. FEM 
with Newton-Raphson iteration procedure are used for 
numerical solution. The variational method presented here is 
highly recommended to analyze the postbuckling behavior of 
end supported rods under self-weight.  
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