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Positive periodic solutions in a discrete competitive
system with the effect of toxic substances

Changjin Xu, Qianhong Zhang

Abstract—In this paper, a delayed competitive system with the
effect of toxic substances is investigated. With the aid of differential
equations with piecewise constant arguments, a discrete analogue
of continuous non-autonomous delayed competitive system with
the effect of toxic substances is proposed. By using Gaines and
Mawhin’s continuation theorem of coincidence degree theory, a easily
verifiable sufficient condition for the existence of positive solutions
of difference equations is obtained.
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I. INTRODUCTION

It is well known that the dynamical properties of competitive
populations has received great attention from both theoretical
and mathematical biologists due to its universal prevalence
and importance. Many excellent works have been done for
a lot of different continuous or impulsive competitive mod-
els(see[1,5,8,]). In 2009, Song and Chen[9] proposed a delay
two-species competitive system in which two species have
toxic inhibitory effects on each other:

9 — 2(t)[K1(t) — aa(t)x(t) — Bi(t)y(t)
—m®)z@)y — (1)),

B — y(1)[Ka(t) — az(t)y(t) — Ba(t)a(t)
— 2 (t)x(t — 72(t)y(t)],

M

where z(t), y(t) stand for the population densities of two com-
peting species, respectively. K;(t)(i = 1,2) are the intrinsic
growth rates of two competing species; «;(t)(i = 1,2) denote
the coefficients of interspecific competition; K;(t)/c;(t)(i =
1,2) are the environmental carrying capacities of two com-
peting species; y; and <y, stand for, respectively, the rates of
toxic inhibition of the species x by the species y and vice
versa. More details about the model, one can see [9]. By
applying the theory of coincidence degree theory, Song and
Chen[9] established the existence of positive periodic solution
for system (1).

Considering the impulsive effects and periodic perturba-
tions, Liu et al.[7] investigated the following periodic im-
pulsive delay competitive system with the effect of toxic
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substances
b — 3 (t)[K1(t) — an(t)a(t) — Bi(t)y(t)
eyt — (@), t# b,
W =y — ax(y() ~ Ba(B)a(t) o)
— ()t — ()Y (t)],  t# b,

z(ty) = 2(ty) + p,t = t,
y(tr) = (1 +by)y(tr), t =t

with initial condition (z(s),y(s) = &(s) = (é1(s), P2(s)),
for —7 < s < 0,900 > 0,¢ € PC([-7,0],R3),
where 7 = max)<i<o maxyefo {7 (t) } Ki(t), ai(t), Bs(t),
7i(t), 7:(t)(i = 1,2) are continuous w-periodic functions, and
a;(t), B(t),v:(t)(i = 1,2) are positive and 7;(¢)(i = 1,2) are
nonnegative. The intrinsic growth rates K;(¢)(i = 1,2) are
not necessarily positive and may be negative. k € N and N
is the set of positive integers. The jump conditions reflect the
possibility of impulsive effects on the species « and y. p > 0
is the impulsive stocking amount of the species x at ¢ = ty,
which implies that the populations are subjected to impulsive
stocking at a constant rate p. byy(ty) < O represent the
impulsive harvesting amount of the species y at ¢t = ¢y, while
bry(tr) > 0, the perturbations may stand for the impulsive
stocking amount of the species y at t = t;. By applying the
theory of impulsive differential equation and some analysis
techniques, Liu et al.[7] obtained a set of sufficient conditions
for the permanence and partial extinction of system (2).

Many authors argue that discrete time models governed
by difference equations are more appropriate to describe
the dynamics relationship among populations than continuous
ones when the populations have non-overlapping generations.
Moreover, discrete time models can also provide efficient mod-
els of continuous ones for numerical simulations. Therefore,
it is reasonable and interesting to study discrete time systems
governed by difference equations. Recently, a great deal of
research has been devoted to this topics, see[2,3,6,10,12-14].
The principle object of this article is to propose a discrete
analogue system (1) and explore its dynamics.

The remainder of the paper is organized as follows: in Sec-
tion 2, with the help of differential equations with piecewise
constant arguments, we first propose a discrete analogue of
system (1), modelling the dynamics of time non-autonomous
competing system with with the effect of toxic substances
where populations have non-overlapping generations. In Sec-
tion 3, based on the coincidence degree and the related
continuation theorem, a easily verifiable sufficient condition
for the existence of positive solutions of difference equations
is obtained.
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II. DISCRETE ANALOGUE OF SYSTEM (1)

There is several different ways of deriving discrete time
version of dynamical systems corresponding to continuous
time formulations. One of the way of deriving difference
equations modelling the dynamics of populations with non-
overlapping generations that we will used in this following is
based on appropriate modifications of models with overlapping
generations. For more detail about the approach, we refer to
[3,11].

In the following, we will discrete the system (1). Assume
that the average growth rates in system (1) change at regular
intervals of time, then we can obtain the following modified
system:

() = K ([t]) — en([th=([t]) — B ([D)y([t])
— ([t ([Ey([t] — 7 ([£)), 3)
S v () = Ka([t]) — a2([thy([t]) — Ba([tD)([t])

— 2([t)=([t] = m2([E)y([2]),

where [t] denotes the integer part of ¢,¢ € (0,+00) and ¢ #
0,1,2,---. Equations of type (3) are known as differential
equations with piecewise constant arguments and these equa-
tions occupy a position midway between differential equations
and difference equations. By a solution of (3), we mean a
function Z = (x,y)T, which is defined for ¢ € [0, +-c0) and
have the following properties:
1. Z is continuous on [0, +00).
2. The derivative d’fi—(;’), Ch‘fi—(tt) exist at each point ¢ €
[0,400) with the possible exception of the points ¢ €
{0,1,2,---},where left-sided derivative exist.
3. The equations in (3) are satisfied on each interval [k, k+1)
with £ =0,1,2,---.

We integrate (3) on any interval of the form [k, k+ 1),k =
0,1,2,---, and obtain for k <t < k+1,k=0,1,2,---.

2(t) = (k) exp {[K1 (k) — ar(k)x(k) — 51 (k)y(k)
—n(k)z(k)y(k — 71 (k)] (t — k)}

y(t) = y(k) exp {[K2(k) — a2(k)y(k) — Ba(k)z(k)
—72(k)a(k — 72(k))y(K)] (¢ — k)} .

)
Let t — k + 1, then (4) takes the following form :
z(k +1) = x(k) exp {[K1(k) — o1 (k)x(k) — B1(k)y(k)
—n(k)z(k)y(k —71(k))]},
y(k +1) = y(k) exp {[K2(k) — az(k)y(k) — B2(k)z (k)
—Y2(k)x(k — m2(k))y(k)]} )

which is a discrete time analogue of system (1), where k =
0,1,2,---.

III. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

For convenience and simplicity in the following discussion
,we always use the notations below throughout the paper:

w—1
I,:=1{0,1,2, ... ,w—1}, f:= &Zf(kh f* = min{f(k)},
k=0

M = maxpez{f(k)}, where f(k) is an w—periodic se-
quence of real numbers defined for £ € Z. We always assume

that
(H1) K;, o, Bi,7vi : Z — R (i = 1,2) are w periodic.
(H2) sign{ K1z — Ko }

Sign{d1072 - /32/32} # 0.

In order to explore the existence of positive periodic solu-
tions of (5) and for the reader’s convenience, we shall first
summarize below a few concepts and results without proof,
borrowing from [4].

Let X,Y be normed vector spaces, L : DomL C X — Y
is a linear mapping, N : X — Y is a continuous mapping.
The mapping L will be called a fredholm mapping of index
zero if dimKerL = codimImL < +oco and ImL is closed
in Y. If L is a fredholm mapping of index zero and there
exist continuous projectors P : X — X and @ : Y — Y such
that ImP = KerL,ImL = KerQ = Im(I — @), It follows
that L | DomLNKerP : (I — P)X — ImL is invertible. We
denote the inverse of that map by K p. If {2 is an open bounded
subset of X, the mapping N will be called L—compact on ()
if QN (Q) is bounded and Kp(I —Q)N : Q — X is compact.
Since I'm() is isomorphic to KerL, there exist isomorphisms
J:ImQ — KerL.

= signg Koay — Kianp =

Lemma 3.1. ([4]Continuation Theorem ) Let L be a
Fredholm mapping of index zero and let N be L—compact
on Q. Suppose

(a) For each \ € (0,1
such that x ¢ 0

() QNz # 0 for each = €
deg{JQN,Q(0KerL,0} #0;

Then the equation Lx = Nx has at least one solution lying
in DomL Q.

), every solution x of Lr = ANz is

KerL( 09, and

Lemma 3.2. [3] Let g : Z — R be w periodic, i.e., g(k+w) =
g(k); then for any fixed k1,ko € 1, and any k € Z, one has

w—1

g(k) < g(k1) + Y lg(s+1) — g(s)],
s=0

w—1

g(k) = g(ka) + > lg(s + 1) = g(s)].

s=0

Lemma 3.3. (&(k),g(k)) is an w periodic solution
of (5) with strictly positive components if and only if
(In{z(k)}, In{g(k)}) is an w periodic solution of

2(k + 1) — (k) = i (K),
{ y(k +1) — y(k) = uz(k), (©6)

where
ui(k) = K1(k) — a1(k) exp(z(k)) — B1(k) exp(y(k))
— 71(k) exp(z(k)) exp(y(k — 71(k))),
uz(k) = Ka(k) — aa(k) exp(y(k)) — B2(k) exp(z(k))

— 72(k) exp(z(k — 72(k))) exp(y(k)).
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Lemma 3.4. If condition (H2) holds, then the algebraic
equations

{ Ki—az—fy =0, )

K3 — azy — Bz =0
has a unique positive solution (z*,y*)T € R2.

The proofs of Lemma 3.3 and Lemma 3.4 are trivial, so we
omitted the details here.

Define
lo ={z={z(k)}: 2(k) € R,k € Z}.
For a = (a1,a2)” € R2?, define |a| = max{|a1],|az|}.
Let [* C Iy denote the subspace of all w periodic sequences
equipped with the usual supremum norm ||.||, i.e.,

|lz]| = maxger, |2(k)|, for any z = {z(k) : k€ Z} € I“. It
is easy to show that [, is a finite-dimensional Banach space.
Let

g—{z—{z(k)}el“’:wiz(k)—O}, (8)
k=0
W={z={z(k)} €l”:2(k)=he R keZ}, (9

then it follows that /§ and [ are both closed linear subspaces
of [ and

=15 +1, diml? = 2.
In the following, we will ready to establish our result.

Theorem 3.1. Let By be defined by (36). Suppose that
(H1)7(H2) and 2K, > d1,2K2 > ﬂl,Kz > ’YQGXP(BQ)
hold, then the system (5) has at least an w periodic solution.

Proof. Let X =Y =1[¥,
(Lz)(k) = z(k+1)—2z(k), (10)
(V=) (k) ( Z;E:; ) (1n
where z € X,k € Z. Then it is trivial to see that L is a
bounded linear operator and
KerL =17, ImL=1§

and
dimKerL = 2 = codimImlL,

then it follows that L is a fredholm mapping of index zero.
Define

w—1 w—1
1 1
Py=— SEZOy(S), yeX, Qz=— SEZOZ(SL zeY.

It is not difficult to show that P and () are continuous
projectors such that

ImP = KerL, ImL = Ker@Q =Im(I — Q).

Furthermore, the generalized inverse (to L) kp : ImL —
KerP () DomL exists and is given by

Kp(:)= 3" 2(s) ~ - 3w - 9)2(s)
s=0 s=0

Obviously, QN and Kp(I — Q)N are continuous. Since X
is a finite-dimensional Banach space, using the Ascoli-Arzela
theorem, it is not difficult to show that Kp(I — Q)N (1) is
compact for any open bounded set 2 C X. Moreover, QN (2)
is bounded. Thus, N is L—compact on © with any open
bounded set 2 C X.

Now we are at the point to search for an appropriate open,
bounded subset € for the application of the continuation theo-
rem. Corresponding to the operator equation Ly = ANy, A €
(0,1), we have

z(k+1) —xz(k) Aug (k), 12)
y(k+1) —y(k) = Aug(k). (13)
Suppose that z(k) = (z(k),y(k))T € X is an arbitrary
solution of system (12) and (13) for a certain A € (0,1),

summing both sides of (12) and (13) from 0 to w — 1 with
respect to k respectively, we obtain

w—1

> [ (k) exp(x (k) + 51 (k) exp(y(k))

k=0
+71(k) exp(z(k)) exp(y(k — 11 (k)))] = K1w,(14)

w—1

> laa(k) exp(y(k)) + B2 (k) exp(a(k))

k=0
+y2(k) exp(z(k — m2(k))) exp(y(k))] = Kaw.(15)

It follows from (12), (13), (14) and (15) that

w—1

> ok +1) = a(k)| < 2Kw, (16)
k=0

w—1 B

D lylk +1) = y(k)| < 2Kpw. a7
k=0

In view of the hypothesis that z = {z(k)} € X, there exist
&, mi € 1, such that

{ x(&1) = minger, {w(k)}, () = maxger, {z(k)},

y(&2) = maxper, {y(k)}, y(n2) = maxper, {y(k)}.
(18)

By (14), we have

w—1
a1 (k) exp(z(k)) < 2Kjw, (19)
k=0
w—1 B
B1(k) exp(y(k)) < 2K;w, (20)
k=0
then we obtain 7
exp(a(k)) < 2oL, @)
aq
2K
exp(y(k)) < ==+ 22)
B
Thus, B
(&) <In {@] ; (23)
aq
2K
y(&) <In {%} . (24)
B
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In the sequel, we consider two cases.
(a) If z(m) > y(n2), then it follows from (14) that

(a1 + B1) exp(x(m)) + 71 exp(2z(m)) > K,

which leads to

@ B @ T B+ 4nK

z(n1) > In o . (25)
It follows from (23),(25) and Lemma 3.2 that
w—1
2(k) < &)+ la(s+1) —a(s)l
s=0
< {ﬁ} +2Ryw = By, (26)
aq
w—1
w(k) > ()= Y |x(s+1) —a(s)|
s=0
2 =
> (a1 + 1) + \/(a1 +61) +A7 K,
N 27
—2K w := Bs. 27
By (26) and (27), we derive
llggx{m(k‘)} < max{|Bi],|Bz|} := Bs. (28)

From (15), we obtain that

iz exp(y(n2)) + B2 exp(Bs) + 72 exp(Bs) exp(y(n2)) > K.
Then

Ky — eXP(BS)}
>In | ——— . 29
y(n2) 2 In {072 + 72 exp(Bs) 9
Thus by (24), (29) and Lemma 3.2, we get
w—1
y(k) < y(&)+ > luls+1) —y(s)]
s=0
S In {ﬁ] + 2]?2(4} = B4, (30)
B
w—1
y(k) > y(m) =Y ly(s+1) —y(s)l
s=0
> In {M] — 2Ksw = Bs. 31)

Qg + Y2 eXp(Bg)
It follows from (30) and (31) that

max{y(k)} < max{|Bu, |Bsl} = Bs. ()

ke
(b) If z(n1) < y(n2), then it follows from (14) that

(a1 + B1) exp(y(n2)) + 71 exp(2y(n2)) > K,

2 _
(1 +B81)+ o+ 01 +4n K,

27

which leads to

y(n2) > In (33)

By (24),(33) and Lemma 3.2, we have

w—1
y(k) < &)+ Y ly(s+1) —y(s)]
s=0
S In {ﬁ:l + 2[?2(4) = B77 (34)
B
w—1
y(k) > ym) =Y ly(s+1) —y(s)l
s=0
—(r+ /1) + o+ ﬂlz + 4’}71K1
> In -
27
—2Kow := Bs. (35)
It follows from (34) and (35) that
max{y(k)} < max{|Br|,|Bs|} := By, (36)

From (15), we obtain that

aiy exp(By) + B2 exp(a(m1)) + V2 exp(By)(x(m1)) > Ko.

Then 5 B B
o) 2 n| G2 ROPA]),
B2 + 72 exp(By)
By (23),(37) and Lemma 3.2, we obtain

w—1

2(&) + Y lals +1) —a(s)l

s=0

2K .
< In {—1] + 2Ksw := By,

z(k) <

(38)

aq

k) > )~ 3 Ja(s +1) - a(s)

{ffz — Y2 exp(By)
B2 + Y2 exp(By)
It follows from (38) and (39) that

irgx{r(k)} < max{|Biol, |B11|} := Bi2.

:| — QKQCJ = B11~ (39)

(40)

Obviously, B;(i = 1,2, ---,12) are independent of A € (0, 1).
Take M = max{Bs, Bg, By, B12} + By, where By is taken
sufficiently large such that max{|In{z*}|, |In{y*}|} < Bo,
where (z*,y*)T is the unique positive solution of (61).
Now we have proved that any solution z = {z(k)} =
{(z(k),y(k))*} of (12) and (13) in X satisfies ||z|| < M,k €
Z.

Let Q = {z = {2(k)} € X : ||z|| < M}, then
it is easy to see that () is an open, bounded set in X
and verifies requirement (a) of Lemma 3.1. When y €
0N KerL,z = {(z,y)T} is a constant vector in R? with
|2l = max{lal, |yl } = M. Then

_ ( K1 —dayexp(x) — 1 exp(y) — 71 exp(x) exp(y)
@Ny = < Ky — azexp(y) — B2 exp(x) — 72 exp(z) exp(y) )
£0.

Now let us consider homotopic ¢(y1,y2, 1) = pQNy + (1 —
w)Gy, p € [0,1], where

G — ( Ky — ay exp(z) — By exp(y) )
y Ky — azexp(y) — fzexp(z) ) °
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Letting J be the identity mapping and by direct calculation,
we get

deg {JQN(m, y)" 00 kerL; 0}
{QN(x,y)T; aQﬂkerL; 0}

= deg {qb(x, y,1); 00 ﬂ kerL; 0}
{

o(x,y,0); 00 ﬂ kerL; 0}

s (o) ewtn )

fBa exp()
= sign{ (a1 da — B102) exp(z* + y*)} # 0.

By now, we have proved that ) verifies all requirements of
Lemma 3.1, then it follows that Lz = Nz has at least one
solution in DomL N Q, that is to say, (6) has at least one
w periodic solution in DomL N Q, say z* = {z*(k)} =
{(@* (k) y* (k)T). Let @*(k) = expla(W)}g* (k) —
exp{y*(k)} then by Lemma 3.3 we know that z* =
{z*(k)} = {z*(k),y*(k))T} is an w periodic solution of
system (5) with strictly positive components. The proof is
complete.

= deg

deg
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