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Abstract—This paper presents the use of phasor bond graphs to 

obtain the steady-state behavior of a synchronous generator. The 
phasor bond graph elements are built using 2D multibonds, which 
represent the real and imaginary part of the phasor. The dynamic 
bond graph model of a salient-pole synchronous generator is showed, 
and verified viz. a sudden short-circuit test. The reduction of the 
dynamic model into a phasor representation is described. The 
previous test is executed on the phasor bond graph model, and its 
steady-state values are compared with the dynamic response. Besides, 
the widely used power (torque)-angle curves are obtained by means 
of the phasor bond graph model, to test the usefulness of this model. 
 
Keywords—Bond graphs, complex power, phasors, synchronous 

generator, short-circuit, open-circuit,power-angle curve.  

I. INTRODUCTION 
HE synchronous machine has been widely studied and 
analyzed for many years. The synchronous generator is 

one of the principal sources of electric energy in the world [1]-
[4]. They are designed to be driven by piston engines, steam 
and gas turbines, as well as hydro and wind turbines. 

The sinusoidal analysis using phasors is an easy way to 
provide insight into the operating point of a synchronous 
machine without the need to solve differential equations. 

At the other hand, the previous work presented on these 
proceedings [5] describes the basis of the phasor 
representation in terms of bond graph methodology. A 
foreknowledge of the material in that paper is suggested. 

The present work is described in four sections. After this 
introduction (Section I), Section II gives a short description of 
the synchronous generator, and how it is typically modeled in 
terms of a port-based approach represented by bond graphs. 
Herein, a sudden short-circuit test is simulated by using the 
obtained bond graph model as 20-sim® input, and compared 
with the response of a block diagram model in Simulink®. In 
Section III, the reduction from a dynamic model to a phasor 
model is presented. The test described in the previous section 
is repeated and compared with the steady-state result of the 
phasor bond graph model. The power-angle and torque-angle 
curves are obtained through the phasor bond graph model. 
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Section IV presents the conclusions.  

II. SYNCHRONOUS GENERATOR 

A. Introduction 
The synchronous machine is an electromechanical energy 

converter with a rotating piece named rotor, sometimes 
addressed to as field, because its winding generates a constant 
magnetic field due to a DC injection, and a fixed part named 
stator or armature. In the windings of this armature, a rotating 
magnetic field is generated either by injecting AC (motor) or 
by turning the rotor carrying a constant field (generator). The 
energy of this field is mainly contained in the air gap of the 
machine, and it rotates with the angular frequency of the 
armature currents, such as in the case of a common three-
phase machine. As the adjective ‘synchronous’ suggests, the 
rotor rotates at the same frequency as the rotating stator 
magnetic field during steady-state operation. 

The synchronous generator has been modeled mainly by 
means of Park’s transformation [6]. This coordinate 
transformation, ( )rP θ , removes the dependency of some 
inductances on the variable rotor position. In other words, the 
stator variables (natural reference frame fabc) are changed to a 
reference frame fixed in the rotor (fdq0). 

There are different Park’s transformations [7], but the 
power continuity assumption that is inherent to a bond graph 
junction structure [8] makes mandatory to use a power 
invariant transformation. Some authors use dq0 reference 
frame, and others prefer qd0 reference frame. The difference 
lies on the fact that the real variables in one frame are the 
negative imaginaries variables in the other frame. Due to this 
fact, sometimes a rotation of π/2 radians is necessary. For this 
paper the considered Park transformation is 
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 (1) 

 
where the rotor angle is r p nN dtθ ω= ∫ , with pN  equal to the 

number of poles-pairs in the rotor. 
We will consider a salient-pole synchronous generator, 

where two fictitious and orthogonal axis are fixed on the rotor, 
the direct axis (d-axis), and the quadrature axis (q-axis). The 
d-axis is chosen in the same direction as the field generated by 
the field winding f. Two damper windings are attached in such 
a way that one is in line with the d-axis (D winding), and the 
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other one (Q winding) is attached to the q-
Assuming that the positive stator curren

of the terminals, and considering that for b
systems the 0-axis in (1) is zero, the volt
synchronous generator [9] may be express

 
;

; 0

0

d
d s d r q d fdt

d
q s q r d qdt

v r i v

v r i

r

ω λ λ

ω λ λ

= − − + =

= − + + =

=
 
The magnetic flux equations are defined
 

( );

( );
d ls d md d f D f lf f

q ls q mq q Q D lD D

Q lQ Q

L i L i i i L i
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L i

λ λ

λ λ

λ

= − + − + + = +

= − + − + =

=

 
where, {iD, iQ}, {λD, λQ}, {rD, rQ}
quadrature dampers currents, magnetic flu
{id, iq},{λd, λq}, {vd, vq} are the stator
fluxes and voltages referred to the rotor re
λ f, r f are the current, voltage, magnetic fl
the field winding; rs is the resistance in the

From (2) and (3), we can deduce the sy
electrical scheme,  

 

Fig. 1 d-axisand q-axis electrical equi
 
The electromechanical torque is given b
 

 e d q q dT i iλ λ= −  
 
It is important to notice that even th

synchronous machine models have been d
working with the one contained in the 
Nevertheless, the names of parameters ha
order to make the equations easy to read. 

B. Synchronous Generator Bond Graph 
Due to its nature of a power conserv

system, the port-based approach usin
especially practical when several physical
modeled within a system simultaneously.

Therefore, the principal advantage o
models over their equivalent circuit coun
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are the direct and 
uxes, and resistances; 
r currents, magnetic 
eference frame; i f, v f, 
flux and resistance in 
e stator winding. 
ynchronous generator 

 
ivalent circuit 

by 

       (4) 

hough a number of 
developed, we will be 

IEEE standards [9]. 
ave been changed in 

Model  
ving description of a 
ng bond graphs is 
l domains have to be 

of these port-based 
nterparts is that they 

can be directly interconnecte
physical domains in an unifie

In addition, the port-base
object-oriented approach to m
realizations of an object by 
with another bond graph sy
dynamic details. 

Notice the voltage-depe
electrical circuit. These volt
electromotive forces (emf) in
movement, are in fact one sid
gyrator MGY. The MGY is 
element representing a dom
other words, the gyrator is 
power exchange. 

The advantage of bond gr
this point; the electrical circu
the mechanical and the electri
(4), where the torque is a fun
therefore, the second side 
previous statements explain
junctions associated with the 
1-junction associated with ang

At the other hand, the mag
modeled by means of I-fields
constitutive relationship b
currents, defined in (3). 

In order to represent a
velocity, a flow source (Sf :
domain. 

Then, the equivalent circui
converted into the bond graph

 

Fig. 2 Bond graph mod

C. Sudden Short-Circuit Te
We will use the paramete

described by Barakat et al. 
simulation results provided by
the results of our bond graph 

The bond graph model o
order to represent the open-
will add one switched power 
phase. For more details, inc

ed with (sub)models from other 
d graphical modeling language. 
ed approach is in principle an 
modeling. This permits different 
directly replacing a portion of it 

ystem with a different degree of 

endent sources shown in the 
tage sources, which express the 
nduced in the stator by the rotor 
de of a 2-port element modulated 
a power continuous bond graph 

main transformation [8], [11]. In 
modeling the electromechanical 

raph modeling takes relevance at 
uit does not show a link between 
ical domain. This link is given by 
nction of two electrical variables; 
of the MGY is complete. The 

n the two MGY linking the 1-
d- and q- stator currents and the 

gular velocity, ωr. 
gnetic phenomena in each axis are 
s [11]. Each field incorporates the 
between magnetic fluxes and 

a constant mechanical angular 
ωn) is added to the mechanical 

t given in Fig. 1 [10], [11] can be 
h model in Fig. 2. 

 
el of synchronous generator 

est 
ers of the synchronous generator 

[12], and we will compare the 
y these authors in Simulink® with 
model in 20-sim®.  

on Fig. 2 needs modification in 
-circuit test. To achieve this, we 
junction (SPJ) [13], [14], X1, per 

cluding the SIDOPS code of the 
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SPJ’s, the reader is referred to [13], [14]. 
 

Fig. 3 Sudden short-circuit test in b
 
The bond graph model shown in Fig. 3

flow sourcesSf : 0, which represent the ope
machine. One RL set circuit is added to ea
very small parameter values, we are able
circuit test. 

At the other hand, two R : Rext element
the output of d- and q-axis. The value of 
compared to the rest of resistors, norma
[12]. This was done with the purpose of
resistance between the ground and the wir

Fig. 4 shows the behavior of the voltag
when the generator is working in ope
seconds, a short-circuit test is done, and 
the circuit is open again. Besides, the curr
shown in Fig. 5. 

We can observe that the responses give
on 20-sim®are equal to the ones given by
therefore, our model is verified. 

III. FROM A DYNAMIC MODEL TO

The model in Fig. 3 is represented in
using the d- and q-axis circuits in one m
(Fig. 6). 

 

Fig. 4 Stator voltage at phas
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reference frame. 
In steady-state the synchronous veloc

following the reference frame theory [1], w
 

3 cos( (0) (0)) { 3

3 sin( (0) (0)) {
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where F  represents the RMS value of eith
or magnetic flux.θ r (0) is the initial positi
θ e (0) is the initial angle of the electrical fr

As we are working with a balanced
necessary to represent one phase. The re
shifted by 120° . We can define the phasor
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important to note that the rotor reference
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state behavior of the synchronous generato
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In order to get the voltage equations 

machine in phasor representation [7], [16
(7) in (10), thus 
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where 1

3
rj
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�

. The term qE
internal emf of the synchronous generator,
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Fig. 8 Phasor bond graph
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n Fig. 9. 
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Fig. 9 Sudden short-circuit test in phas
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Fig. 10 Comparison between voltage at phase
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Fig. 11 Comparison between current at phase
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thus, we obtain the phasor dia
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where aE
�

 is the internal emf 
we have all equations refer
machine, we can obtain the to
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In order to obtain the power-angle c

phasor bond graph model given by (18)
nominal voltage at the terminal, and we 
angle, vπ θ π− ≤ ≤ ; besides ' 0rθ = .The 
model is depicted in Fig. 13. 
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 Fig. 16 Torque-angle curve 

 
Notice that in fact the torque and power are scaled each 

other; nevertheless, they have the same shape. The slightly 
difference is due to the stator resistance, rs, was neglected 
from the power equation. 

IV. CONCLUSION 
The dynamic bond graph model of the synchronous 

generator was verified by comparing the sudden short-circuit 
responses in 20-sim® with Simulink®. 

The necessary steps to reduce a dynamic synchronous 
generator bond graph model to its phasor bond graph model 
were shown. The RMS values of stator voltage and current 
from the phasor bond graph model were compared with the 
steady-state value of the dynamic model. 

In the case of the synchronous generators, the phasor bond 
graph model has shown an effective way to get torque and 
power curves, as well as the different angles of voltages, and 
currents. 
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