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Abstract—This paper is concerned with an epidemic model
with delay. By using the comparison theorem of the differential
equation and constructing a suitable Lyapunov functional, Some
sufficient conditions which guarantee the permeance and existence
of a unique globally attractive positive almost periodic solution of
the model are obtain. Finally, an example is employed to illustrate
our result.

I. INTRODUCTION

THE nonlinear differential equations

ẋi(t) = −ai(t)xi(t) + (ci(t)− xi(t))
n∑

j=1

βij(t)

×xj(t− τij(t)), i = 1, 2, . . . , n, (1)

where ai(t), ci(t), βij(t), τij(t) : R → [0,∞) are continuous
functions for i, j = 1, 2, . . . , n, have been used by [1-8] to
describe the dynamics of an epidemic model. For example,
Zhao et al. [9] considered the local exponential convergence
of the solutions for model (1) with initial conditions:

0 ≤ xi(s) = ϕi(s) < c̃i, s ∈ [−τ, 0].

where

ϕi ∈ C([−τ, 0], Rn
+), τ = max

1≤i,j≤n
sup
t∈R

τij(t) > 0,

ci = inft∈R c̃i(t), i = 1, 2, . . . , n.
Moreover, we assume that the delays are constants, then, the
above epidemic model can be described to be of the following
form

ẋi(t) = −ai(t)xi(t) + (ci(t)− xi(t))

n∑
j=1

βij(t)xj(t− τ),

i = 1, 2, . . . , n. (2)

It is well- known that system (2) can be applied in the
propagation of Gonorrhea and other epidemics (see [1-4]).
The authors present some new sufficient conditions for all
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the solutions of system (2) with permitted initial conditions
converging exponentially to zero.

In recent years, there have been extensive results on
the problem of the convergence of the solutions for the
epidemic model (1) with permitted initial conditions, in the
literature. We refer the reader to [1-8] and the references cited
therein. As well known, the exponential convergence is an
important dynamic behavior since it characterizes the rate of
convergence (See [10,11]). In 1993, Gopalsamy and Weng
[12] introduce a models with feedback controls, in which the
control variables satisfy certain differential equation. In the
last decades, much work has been done on the ecosystem with
feedback controls (see [13]-[18] and the references therein).
In particular, Li and Liu [13], Lalli et al. [14], Liu and Xu
[15] and Li [16] have studied delay equations with feedback
controls.

Motivated by above, in this paper, we will study the
following non-autonomous epidemic system with delay and
feedback control⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋi(t) = −ai(t)xi(t) + (ci(t)− xi(t))
n∑

j=1

βij(t)

× xj(t− τ)− xi(t)
m∑
s=1

bis(t)ui(t− σ),

u̇i(t) = −βi(t)ui(t) +
p∑

k=1

αik(t)xi(t− η),

(3)

where ai(t), ci(t), τ, βij(t), bis(t), βi, αik(t) : R → [0,+∞)
are continuous functions for i, j = 1, 2, . . . , n, s =
1, 2, . . . ,m, k = 1, 2, . . . , p have been used by [1-8] to de-
scribe the dynamics of an epidemic model. Here, we formulate
a frequency-dependent model consisting of n patches. The
spatial arrangement of patches and rates of movement between
patches are defined by a connection matrix. Suppose that
ci(t) is the number of susceptible people (they don’t develop
the infectious disease, but will if in contact with infected
people) in the ith patch without epidemic. xi(t) corresponds
to the number of infected people in the ith patch at the time
t. Assume that βij(t) is the infection rate of the infected
people in the jth patch infecting the susceptible people in
the ith subarea at the time t. ai(t) is the recovery rate of the
infectious people in the ith patch. τ ≥ 0 is the latent period
of the virus in body, i.e. from the time infected people get
the disease to the time they infect others. Suppose that the
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infected people will not die. Moreover, we do not consider
people’s immunity to this epidemic.

Let R and Rn denote the set of all real numbers and the
n-dimensional real Euclidean space,respectively, Rn

+ denote
the non-negative sonce of Rn. Let f be a continuous bounded
function on R and we set

fM = sup
t∈R

f(t), f l = inf
t∈R

f(t).

Throughout this paper we assume the coefficients of the
almost periodic system (3) satisfy

min
{
ali, c

l
i, β

l
ij , τ, σ, η, b

l
is, β

l
i, α

l
ik

}
> 0,

max
{
aMi , cMi , βM

ij , b
M
is , β

M
i , αM

ik

}
< +∞,

where i, j = 1, 2, . . . , n, s = 1, 2, . . . ,m, p = 1, 2, . . . , p.
The main purpose of this paper is to establish sufficient

conditions for the existence of almost periodic solutions to
system (3) by using the comparison theorem of the differential
equation and constructing a suitable Lyapunov functional.

The organization of this paper is as follows. In next
Section, we make some preparations. In Section three, by
By using the comparison theorem of the differential equation
and constructing a suitable Lyapunov functional, we establish
sufficient conditions for the existence of almost periodic
solutions to system (3). An illustrative example is given in
Section four.

II. PRELIMINARIES

Now let us state serval lemmas which will be useful in
the proving of main result of this section.

Lemma 1: Rn
+ = {(x1, x2, . . . , xn, u1, u2, . . . , un)|xi >

0, ui > 0, i = 1, 2, . . . , n} is positive invariant with respect
to system (3).

Lemma 2: If a > 0, b > 0, and ẋ ≥ (≤)x(b − axα),
where α is positive constant, then

lim
t→∞ inf x(t) ≥

(
b

a

) 1
α

,

(
lim
t→∞ supx(t) ≤

(
b

a

) 1
α
)
. (4)

Lemma 3: If a > 0, b > 0, and ẋ ≥ (≤)b − ax, when
t ≥ 0 and x(t) ≥ 0, we have

lim
t→∞ inf x(t) ≥ b

a
,

(
lim
t→∞ supx(t) ≤ b

a

)
. (5)

Theorem 1: Let the following condition hold for the
system (3)

(H) : −aMi + cli

n∑
j=1

βl
ije

−τcMi −
n∑

j=1

βM
ij e

−τcli − bMi Qi > 0.

Then system (3) is permanent, i.e. any positive
(xi(t), ui(t)) of the system (3) satisfies (when i = 1, 2, . . . , n)

0 < mi ≤ lim
t→∞ inf xi(t) ≤ lim

t→∞ supxi(t) ≤ Mi.

0 < qi ≤ lim
t→∞ inf ui(t) ≤ lim

t→∞ supxi(t) ≤ Qi.

Proof: Let (xi(t), ui(t))
T be a positive solution of (3),

from the first equation of system (3) it follows that

ẋi(t) ≤ (ci(t)− xi(t))

n∑
j=1

βij(t)xj(t− τ) ∀ t ∈ R. (6)

Hence, for any θ < 0, integrating inequality (6) from t+ θ to
t, we obtain

xi(t+ θ) ≥ xi(t) exp

(∫ t+θ

t

ci(s)ds

)
. (7)

So for any t ∈ R, from (7) and the first equation of system
(3) we further obtain

ẋi(t) ≤ (ci(t)− xi(t))
n∑

j=1

βij(t)xj(t− τ)

≤ (cMi − xi(t))
n∑

j=1

βij(t)xi(t)

× exp
(− τci(t)

)
(8)

Since for any t ∈ R and s ∈ [−τ, 0],∫ t+s

t

ci(θ)dθ ≥ −τcMi ,

we have

ẋi(t) ≤
( n∑

j=1

βM
ij e

−τclicMi −
n∑

j=1

βl
ije

−τcMi

×xi(t)

)
xi(t). (9)

Applying lemma 2 to (9) leads to

lim
t→∞ supxi(t) ≤

cMi
n∑

j=1

βM
ij exp(−τcli)

n∑
j=1

βl
ij exp(−τcMi )

:= Mi

(i = 1, 2, . . . , n). (10)

From (10), for small enough positive constant ε0 > 0,
there exist Ti > 0 enough large such that

xi(t) ≤ Mi + ε0 ∀ t ≥ Ti. (11)

Then, from the second equation of system (3) and (10),
we obtain for t ≥ Ti,

u̇i(t) ≤ −βi(t)ui(t) +

p∑
k=1

αM
ik (t)(Mi + ε0)

≤ −βl
iui(t) +

p∑
k=1

αM
ik (Mi + ε0). (12)

Setting ε0 → 0 and applying lemma 2 to (12), it follows that:

u̇i(t) ≤ −βl
iui(t) +

p∑
k=1

αM
ikMi.
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Since ui(t) > 0 for all t ∈ R holds, then ui(0) > 0, so using
Lemma 3 to above inequality we have

lim
t→∞ inf ui(t) ≤

p∑
k=1

αM
ikMi

βl
i

:= Qi. (13)

form (13), for above small positive constant ε1 > 0, there
exist t > Ki such that

ui(t) ≤ Qi + ε1 ∀ t ≥ Ki. (14)

From the first equation of system (3) and (11) and (14),
we obtain that for t ≥ Ki,

ẋi(t) ≥ −aMi xi(t) +

(
cli

n∑
j=1

βl
ije

−τcMi xi(t)− xi(t)

×
n∑

j=1

βM
ij e

−τclixi(t)−
m∑
s=1

bMis (Qi + ε1)xi(t).

Setting ε1 → 0 in above inequality leads to

ẋi(t) ≥ xi(t)

[
− aMi + cli

n∑
j=1

βl
ije

−τcMi −
n∑

j=1

βM
ij

×e−τcli −
m∑
s=1

bMis Qi −
n∑

j=1

βM
ij e

−τcli

×xi(t)

]
, (15)

Then, by applying lemma 3 to (15), if follows that:

lim
t→∞ inf xi(t) ≥

−aMi + cli
n∑

j=1

βl
ije

−τcMi

n∑
j=1

βM
ij e

−τcl
i

+

−
n∑

j=1

βM
ij e

−τcli −
m∑
s=1

bMis Qi

n∑
j=1

βM
ij e

−τcl
i

:= mi, i = 1, 2, . . . , n, (16)

form (16), for above small positive constant ε2 > 0, there
exist Ki+1 > Ti and Ki+2 > Ti+1 such that

xi(t) ≥ mi − ε2 ∀ t > Ki(i = 1, 2, . . . , n). (17)

Hence, by applying (14) and (17) to the second equation of
system (3), we have for t ≥ Ki

ui(t) ≥ −βi(t)ui(t) +

p∑
k=1

αik(t)(mi − ε2)

≥ −βM
i ui(t) +

p∑
k=1

αl
ik(mi − ε2).

Setting ε2 → 0 in above inequality leads to

ui(t) ≥ −βi(t)ui(t) +

p∑
k=1

αik(t)mi

≥ −βM
i ui(t) +

p∑
k=1

αl
ikmi. (18)

Then applying Lemma 3 to (18), if follows that:

lim
t→∞ inf xi(t) ≥

p∑
k=1

αl
ikmi

βM
i

:= qi(i = 1, 2, . . . , n). (19)

Equations (10), (12),(15) and (18) show that under the as-
sumption of the Theorem 1, system (3) is permanent. This
ends the proof of the Theorem 1.
Next we will prove for t ≥ 0, the above conclusions holds.

We denote by (S) the set of all solutions zi(t) =
(xi(t), ui(t))

T of system (3) on R satisfying mi ≤ xi(t) ≤
Mi, qi ≤ ui(t) ≤ Qi(i = 1, 2, . . . , n) for all t ∈ R.

Theorem 2: (S) �= ∅.
Proof: From properties of almost periodic function, there

exists a sequence {tn}, tn → ∞ as n → ∞, such that

ai(t+ tn) → ai(t), bis(t+ tn) → bis(t),

ci(t+ tn) → ci(t), βij(t+ tn) → βij(t),

αik(t+ tn) → αik(t), βi(t+ tn) → βi(t),

i, j = 1, 2, . . . , n, s = 1, 2, . . . ,m, k = 1, 2, . . . , p,

as n → ∞ uniformly on R. Let zi(t) be a solution of (1)
satisfying mi ≤ xi(t) ≤ Mi, qi ≤ ui(t) ≤ Qi(i = 1, 2) for all
t ∈ R. Clearly, the sequence zi(t+ tn) is uniformly bounded
and equicontinuous on each bounded subset of R. Therefore
by Ascoli’s theorem we know that there exits a subsequence
zi(t+ tk) which converges to a continuous function Pi(t) =
(pi(t), gi(t))

T (i = 1, 2, . . . , n) as k → ∞ uniformly on each
bounded subset of R. Let T̄ ∈ R be given. We may assume
that tk + T1 ≥ T for all n. For all t ≥ 0, we have

xi(t+ tk + T̄ )− xi(tk + T̄ )

=

∫ t+T̄

T̄

[
− ai(s+ tk)xi(s+ tk)

+(ci(s+ tk)− xi(s+ tk))

×
n∑

j=1

βij(s+ tk)xj(s+ tk − τ)

×xi(s+ tk)−
m∑
s=1

bis(s+ tk)

×ui(s+ tk − σ)

]
ds,
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ui(t+ tk + T̄ )− ui(tk + T̄ )

=

∫ t+T̄

T̄

[ p∑
k=1

αik(s+ tk)ui(s+ tk − η)

−βi(s+ tk)ui(s+ tk)

]
ds.

Applying Lebesgue’ dominated convergence theorem, and
letting n → ∞ in above equalities, we obtain

pi(t+ T̄ )− pi(T̄ ) =

∫ t+T̄

T̄

[
− ai(s)pi(s) + (ci(s)

−pi(s))
n∑

j=1

βij(s)pj(s− τ)

−
m∑
s=1

bis(s)× pi(s)gi(s− σ)

]
ds,

gi(t+ T̄ )− gi(T̄ ) =

∫ t+T̄

T̄

[−βi(s)gi(s) +

p∑
k=1

αik(s)

×pi(s− η)]ds,

for all t ≥ 0. Since T̄ ∈ R is arbitratily given, Pi(t) =
(pi(t), gi(t))

T is a solution of system (3) of R. It is clear that
mi ≤ pi(t) ≤ Mi(i = 1, 2), qi ≤ gi(t) ≤ Qi, for all t ∈ R.
Thus Pi(t) ∈ (S).

This completes the proof.

III. EXISTENCE OF A UNIQUE ALMOST PERIODIC
SOLUTION

Now, we give the definition of the almost periodic
function.

Definition 1: A function f(t, x), where f is an m-vector,
t is a real scalar and x is an n-vector, is said to be almost
periodic in t uniformly with respect to x ∈ X ⊂ Rn, if f(t, x)
is continuous in t ∈ R and x ∈ X , and if for any ε > 0, it is
possible to find a constnat l(ε) > 0 such that in any interval
of length l(ε) there exists a τ such that the inequality

‖f(t+ τ, x)− f(t, x)‖ =
m∑
i=1

|fi(t+ τ, x)− fi(t, x)| < ε

is satisfied for all t ∈ R, x ∈ X. The number τ called an
ε-translation number of f(t, x).

Definition 2: A function f : R → R is said to be
asymptotically almost periodic function if there exists an
almost-periodic function q(t) and a continuous function r(t)
such that

f(t) = q(t) + r(t), t ∈ R and r(t) → 0 as t → ∞.

We refer to [19,20] for the relevant definitions and the
properties of almost periodic functions. In the followings,
by constructing an suitable Lyapunov functional, we get the

sufficient conditions for the existence of the globally attractive
solution for systems (3).

Theorem 3: In addition to the conditions for Theorem 1,
assume that (H) hold,

then for any two positive solutions zi(t) =
(xi(t), ui(t))

T and z∗i (t) = (x∗
i (t), u

∗
i (t))

T of system
(3), we have

lim
t→∞ |zi(t)− z∗i (t)| = 0 (20)

Proof: Let zi(t) = (xi(t), ui(t))
T and z∗i (t) =

(x∗
i (t), u

∗
i (t))

T be any two positive solutions of system (3).
From conditions (H), it follows that there exits an enough
small ϕ > 0 such that

A(ϕ) = −aMi − dMi (Qi + ε) + cli exp(−τrMi ) > ϕ, (21)

It follows (6), (9),(14), (16) and (19) that for above ε > 0,
there exists T > 0 such that

mi − ε ≤ xi(t) ≤ Mi(t) + ε, qi − ε ≤ ui(t) ≤ Qi(t)

+ε, i = 1, 2. (22)

Let

V1(t) = | lnxi(t)− lnx∗
i (t)|. (23)

Calculating the upper right derivatives of V1(t) along the
solution of (3), by using (22) it follows that

D+V1(t) = sgn(xi(t)− x∗
i (t))[(lnxi(t))

′ − (lnx∗
i (t))

′]

= sgn(xi(t)− x∗
i (t))

[
−

n∑
j=1

βij(t)(xj(t− τ)

−x∗
j (t− τ))− dixi(t)ui(t− τ)

+di(t)x
∗
i (t)u

∗
i (t− τ)

]

≤ sgn(xi(t)− x∗
i (t))

[
−

n∑
j=1

βij(t)|(xj(t− τ)

−x∗
j (t− τ))|+ di(t)x

∗
i (t)|(u∗

i (t− τ)

−ui(t− τ))|+ di(t)ui(t− τ)|x∗
i (t)− xi(t)|

]

= −
n∑

j=1

βij(t)|(xj(t− τ)− x∗
j (t− τ))|

−di(t)x
∗
i (t)|(u∗

i (t− τ)− ui(t− τ))|
−di(t)ui(t− τ)|xi(t)− x∗

i (t)|.

Let

V2(t) = | lnui(t)− lnu∗
i (t)|.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

5

Calculating the upper right derivatives of V2(t) along the
solution of (3), by using (22) it follows that

D+V2(t) = sgn(ui(t)− u∗
i (t))[(lnui(t))

′ − (lnu∗
i (t))

′]

= sgn(ui(t)− u∗
i (t))αi(t)

[
xi(t− τ)

ui(t)

−x∗
i (t− τ)

u∗
i (t)

]

= −αi(t)xi(t− τ)

ui(t)u∗
i (t)

|ui(t)− u∗
i (t)|+

αi(t)

u∗
i (t)

×|xi(t− τ)− x∗
i (t− τ)|.

Now let us define

V (t) = V1(t) + V2(t). (24)

Therefore, for t > T , it follows from above analysis that

D+V (t) ≤ −
n∑

j=1

βij(t)|(xj(t− τ)− x∗
j (t− τ))|

−di(t)x
∗
i (t)|(u∗

i (t− τ)− ui(t− τ))|
−di(t)ui(t− τ)|xi(t)− x∗

i (t)|
−αi(t)xi(t− τ)

ui(t)u∗
i (t)

|ui(t)− u∗
i (t)|

+
αi(t)

u∗
i (t)

|xi(t− τ)− x∗
i (t− τ)|

≤ −
n∑

j=1

βl
ij |(xj(t− τ)− x∗

j (t− τ))|

−dli(mi − ε)|(u∗
i (t− τ)− ui(t− τ))|

−dli(qi − ε)|xi(t)− x∗
i (t)| −

αl
i(mi − ε)

(Qi − ε)2
|ui(t)

−u∗
i (t)|+

αM
i

(qi − ε)
|xi(t− τ)− x∗

i (t− τ)|
≤ −βl

ii|(xi(t− τ)− x∗
i (t− τ))| − dli(mi − ε)

×|(u∗
i (t− τ)− ui(t− τ))| − dli(qi − ε)|xi(t)

−x∗
i (t)| −

αl
i(mi − ε)

(Qi − ε)2
|ui(t)− u∗

i (t)|

+
αM
i

(qi − ε)
|xi(t− τ)− x∗

i (t− τ)|

= −
(
βl
ii −

αM
i

qi − ε

)
|(xj(t− τ)− x∗

j (t− τ))|
−dli(mi − ε)|(u∗

i (t− τ)− ui(t− τ))

×| − dli(qi − ε)|xi(t)− x∗
i (t)| −

αl
i(mi − ε)

(Qi − ε)2

×|ui(t)− u∗
i (t)|.

From (20), we know that there must be a positive constant ε

such that

D+V (t)

≤ −ε|(xi(t− τ)− x∗
i (t− τ))| − ε|(u∗

i (t− τ)

−ui(t− τ))| − ε|xi(t)− x∗
i (t)| − ε|ui(t)− u∗

i (t)|.
Integration the above inequality on internal [T, t], it follows
that for t > T

V (t) + ε

∫ t

T

|xi(s)− x∗
i (s)|ds+ ε

∫ t

T

|xi(s− τ)

−x∗
i (s− τ)|ds+ ε

∫ t

T

|ui(s)− u∗
i (s)|ds

+ε

∫ t

T

|ui(s− τ)− u∗
i (s− τ)|ds ≤ V (T ) < +∞.

Threrfore,

lim
t→∞ sup

∫ t

T

|xi(s)− x∗
i (s)|ds ≤

V (T )

ε
< +∞,

lim
t→∞ sup

∫ t

T

|ui(s)− u∗
i (s)|ds ≤

V (T )

ε
< +∞.

From the above inequalities, one could easily deduce that

lim
t→+∞ |xi(t)− x∗

i (t)| = 0, lim
t→+∞ |ui(t)− u∗

i (t)| = 0.

The completes the proof.
Theorem 4: Suppose all conditions of Theorem 1 hold,

then there exits a unique almost periodic solution of system
(3).

Proof: From Theorem 1, there exits a bounded positive
solution

zi(t) = (wi(t), vi(t))
T , t ≥ 0.

Suppose that zi(t) = (wi(t), vi(t))
T is a solution of (3),

then there exits a sequence {t′k}, {t
′
k} → ∞ as k → ∞, such

that (wi(t + t
′
k), vi(t + t

′
k))

T is a solution of the following
system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋi(t) = −ai(t+ t
′
k)xi(t) + (ci(t+ t

′
k)− xi(t))

×
n∑

j=1

βij(t+ t
′
k)xj(t− τ)

−bi(t+ t
′
k)xi(t)ui(t− τ),

u̇i(t) = −βi(t+ t
′
k)ui(t) + αi(t+ t

′
k)xi(t− τ).

(25)

From above discussion and Theorem 1, we have that not
only {zi(t + t

′
k)}(i = 1, 2, . . . , n) but also {żi(t + t

′
k)}(i =

1, 2, . . . , n) are uniformly bounded, thus {zi(t + t
′
k)}(i =

1, 2, . . . , n) are uniformly bounded and equi-continuous. By
Ascoli’s theorem there exists a uniformly convergent subse-
quence {zi(t+ tk)} ⊆ {zi(t+ t

′
k)}(i = 1, 2, . . . , n) such that

for any ε > 0, there exists a k(ε) > 0 with the property that
if m, k > k(ε) then

|zi(t+ tm)− zi(t+ tk)| < ε (i = 1, 2, . . . , n). (26)
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It shows that {zi(t+ t
′
k)}(i = 1, 2, . . . , n) are systmptotically

almost periodic solutions, then {zi(t + t
′
k)}(i = 1, 2, . . . , n)

are the sum of an almost periodic function qi(t + tk)(i =
1, 2, , . . . , n) and a continuous function Pi(t + tk)(i =
1, 2, . . . , n) defined on R, such that

zi(t+ tk) = Pi(t+ tk) + qij(t+ tk) ∀ t ∈ R,

j = 1, 2, (27)

where

lim
k→∞

Pi(t+ tk) = 0, lim
k→∞

qij(t+ tk) = qij(t),

qij(t) is an almost periodic function. It means that
limk→∞ zi(t+ tk) = qij(t), (i = 1, 2, . . . , n, j = 1, 2).

On the other hand

lim
k→+∞

żi(t+ tk)

= lim
k→+∞

lim
h→0

zi(t+ tk + h)− zi(t+ tk)

h

= lim
h→0

lim
k→+∞

zi(t+ tk + h)− zi(t+ tk)

h

= lim
h→0

qi(t+ h)− qi(t)

h
. (28)

So the limit q1i(t), q2i(t)(i = 1, 2, . . . , n) exist.
Now we will prove that (q1i(t), q2i(t))

T is an almost
periodic solution of system (3). From properties of almost
periodic function, there exists a sequence {tn}, tn → ∞ as
n → ∞, such that

ai(t+ tn) → ai(t), bi(t+ tn) → bi(t),

ci(t+ tn) → ci(t), βij(t+ tn) → βij(t),

αi(t+ tn) → αi(t), βi(t+ tn) → βi(t), i = 1, 2, . . . , n,

as n → ∞ uniformly on R. It is easy to show that zi(t+tn) →
zi(t) as n → +∞(i = 1, 2, . . . , n), then we have

q̇1i(t) = lim
n→+∞ u̇i(t+ tn)

= lim
n→+∞

[
− ai(t+ tn)ui(t) + (ci(t+ tn)

−ui(t))
n∑

j=1

βij(t+ tn)uj(t− τ)

]

−bi(t+ tn)ui(t)vi(t+ tn − τ)

= q1i(t)

[
− ai(t)q1i(t) + (ci(t)− q1i(t))

n∑
j=1

βij(t)

×q1j(t− τ)− bi(t)q1i(t)q2i(t− τ)

]
,

q̇2i(t) = lim
n→+∞ v̇i(t+ tn)

= lim
n→+∞[−βi(t+ tn)ui(t) + αi(t+ tn)vi(t− τ)]

= −βi(t)q2i(t) + αi(t)q1i(t− τ).

This prove that (q1i(t), q2i(t))
T satisfied system (3) and

(q1i(t), q2i(t))
T is a positive periodic solution, by Theorem

3, it follows that there exits a unique positive almost periodic
solution of system (3). The proof is completed.

IV. AN EXAMPLE

Now, we will give an example to show the feasibility of
Theorem 3.

Example 1: Consider the following epidemic model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = − 19+sin t
1000 x1(t) + (20− x1(t))

[
sin2(

√
3t)

1000

×x1(t− 1
41 ) +

sin2(
√
3t)

1000 x2(t− 1
41 )

]

− cos2(t)+1
1000 x1(t)u1(t− 1

41 ),

ẋ2(t) = − 1+cos t
1000 x2(t) + (10− x2(t))

[
cos2(

√
3t)

1000

×x1(t− 1
41 ) +

cos2(
√
3t)

1000 x2(t− 1
41 )

]

− cos2(t)+1
1000 x2(t)u2(t− 1

41 ),
u̇1(t) = −(1 + cos2(t))u1(t) + (1 + sin2(t))

×x1(t− 1
41 ),

u̇1(t) = −(2 + sin2(t))u1(t) + (2 + cos2(t))
×x1(t− 1

41 ),

(29)

In this case, we have

MM
1 =

cM1
2∑

j=1

βM
1j exp(−τcl1)

2∑
j=1

βl
1j exp(−τcM1 )

= 20,

MM
2 =

cM2
2∑

j=1

βM
2j exp(−τcl2)

2∑
j=1

βl
2j exp(−τcM2 )

= 19,

Q1 =
αM
1 M1

βl
1

=
2

5
, Q2 =

αM
2 M1

βl
2

=
19

1000
,

aM1 =
1

50
, aM2 =

1

500
, bM1 = bM2 =

1

500
.

From above, we have

−aM1 + cl1

2∑
j=1

βl
1j exp(−τcM1 )−

2∑
j=1

βM
1j exp(−τcl1)

−bM1 Q1 ≈ 0.00104817 > 0,

−aM2 + cl2

2∑
j=1

βl
2j exp(−τcM2 )−

2∑
j=1

βM
2j exp(−τcl2)

−bM2 Q2 ≈ 0.0100184 > 0.

Hence, all conditions of Theorem 3 are satisfied. By Theorem
3, system (29) has at one positive almost ω-periodic solutions.
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