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Permanence and Almost Periodic Solutions to an
Epidemic Model with Delay and Feedback Control

Chenxi Yang,

Abstract—This paper is concerned with an epidemic model
with delay. By using the comparison theorem of the differential
equation and constructing a suitable Lyapunov functional, Some
sufficient conditions which guarantee the permeance and existence
of a unique globally attractive positive almost periodic solution of
the model are obtain. Finally, an example is employed to illustrate
our result.
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I. INTRODUCTION
T HE nonlinear differential equations

wi(t) = —ai(t)wi(t) + (ei(t) — it Zﬁm
Xilfj(t—Tij(t))7 27172,..., (1)
where a;(t), ¢;(t), Bi;(t), 7:5(t) : R — [0, 00) are continuous

functions for 7,5 = 1,2,...,n, have been used by [1-8] to
describe the dynamics of an epidemic model. For example,
Zhao et al. [9] considered the local exponential convergence
of the solutions for model (1) with initial conditions:

0 <z(s) = pi(s) < &,s € [-7,0].

where

@; € C([-7,0,R}), 7 = max supy(t) >0,

1<i,j<ntcRr
C; = infteR Ei(t),i = 1,2, ey
Moreover, we assume that the delays are constants, then, the
above epidemic model can be described to be of the following
form
#i(t) = —ai()i(t) + (cilt)

) Zﬂij(t)zfj(t -7),
)

It is well- known that system (2) can be applied in the
propagation of Gonorrhea and other epidemics (see [1-4]).
The authors present some new sufficient conditions for all

i=1,2,...,n
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the solutions of system (2) with permitted initial conditions
converging exponentially to zero.

In recent years, there have been extensive results on
the problem of the convergence of the solutions for the
epidemic model (1) with permitted initial conditions, in the
literature. We refer the reader to [1-8] and the references cited
therein. As well known, the exponential convergence is an
important dynamic behavior since it characterizes the rate of
convergence (See [10,11]). In 1993, Gopalsamy and Weng
[12] introduce a models with feedback controls, in which the
control variables satisfy certain differential equation. In the
last decades, much work has been done on the ecosystem with
feedback controls (see [13]-[18] and the references therein).
In particular, Li and Liu [13], Lalli et al. [14], Liu and Xu
[15] and Li [16] have studied delay equations with feedback
controls.

Motivated by above, in this paper, we will study the
following non-autonomous epidemic system with delay and
feedback control

(1) = (i) + (@) ~ :l0) 5 ()
cayt=m) - ) L bt -0). )
(1) = B (1) 1) +Zazk_( il — ),
where a;(t), ¢i(t), 7, Bij (t), bis(t), Bi, cir(t) : R — [0, +00)
are continuous functions for 4,j = 1,2,...,n,8 =

1,2,...,m,k = 1,2,...,p have been used by [1-8] to de-
scribe the dynamics of an epidemic model. Here, we formulate
a frequency-dependent model consisting of n patches. The
spatial arrangement of patches and rates of movement between
patches are defined by a connection matrix. Suppose that
¢;(t) is the number of susceptible people (they don’t develop
the infectious disease, but will if in contact with infected
people) in the ith patch without epidemic. z;(¢) corresponds
to the number of infected people in the ith patch at the time
t. Assume that (;;(t) is the infection rate of the infected
people in the jth patch infecting the susceptible people in
the ith subarea at the time ¢. a;(¢) is the recovery rate of the
infectious people in the ith patch. 7 > 0 is the latent period
of the virus in body, i.e. from the time infected people get
the disease to the time they infect others. Suppose that the
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infected people will not die. Moreover, we do not consider
people’s immunity to this epidemic.

Let R and R™ denote the set of all real numbers and the
n-dimensional real Euclidean space,respectively, R’} denote
the non-negative sonce of R™. Let f be a continuous bounded
function on R and we set

M =sup f(t), f'=inf f(2).
teR teR

Throughout this paper we assume the coefficients of the
almost periodic system (3) satisfy

: L1 nl l [y
min {a’wcwﬂzﬁT a, 1, bis7ﬁi7aik} > 07
M J\[ M oM M
7bis B gy < oo,

] 7 )

where 7,7 =1,2,...,n,s=1,2,.... m,p=1,2,...,p.

The main purpose of this paper is to establish sufficient
conditions for the existence of almost periodic solutions to
system (3) by using the comparison theorem of the differential
equation and constructing a suitable Lyapunov functional.

The organization of this paper is as follows. In next
Section, we make some preparations. In Section three, by
By using the comparison theorem of the differential equation
and constructing a suitable Lyapunov functional, we establish
sufficient conditions for the existence of almost periodic
solutions to system (3). An illustrative example is given in
Section four.

max {CL

II. PRELIMINARIES

Now let us state serval lemmas which will be useful in
the proving of main result of this section.

Lemma 1: R} = {(x1,%2,...,%n, U1, U2, ..., Up)|x; >
0,u; > 0,4 = 1,2,...,n} is positive invariant with respect
to system (3).

Lemma 2: If a > 0,b > 0, and & > (<)z(b — ax®),
where « is positive constant, then

tligloinfm(t) > (g)a, (tliglosupx(t) < <2)3> 4)

Lemma 3: If a > 0,b > 0, and & > (<)b — ax, when
t >0 and z(t) > 0, we have
b
3 Q < —
(th_glo supz(t) < > )

b
> —
lim inf z(¢) , "

t—o0 a

Theorem 1: Let the following condition hold for the
system (3)

(H): —aM +CQZ/B£]-€
j=1

Then
(‘T’b(t)a

M@, > 0.

Z B]\I 770

system (3) is permanent, i.e. any positive
u;(t)) of the system (3) satisfies (wheni = 1,2,...,n)

0<m; < 1tlim infz;(t) < lim supz;(t) < M;.
—00
0<q < tlim infu;(t) < hm supxl( t) < Q.

Proof: Let (x;(t),u;(t))T be a positive solution of (3),
from the first equation of system (3) it follows that

@i(t) < (eilt) — 25” Jzj(t—7) ¥V tE R (6)

Hence, for any 6 < 0, integrating inequality (6) from ¢+ 6 to
t, we obtain

n0) e ([ ats). )

So for any ¢t € R, from (7) and the first equation of system
(3) we further obtain

IN

Z Bij(t)x;(t —7)
Z/Bl] Iz

xexp (— Tci(t)) ®)
Since for any t € R and s € [—7,0],

t+s
/ ci(0)df > —rcM,
t

(ci(t) — a4t

IN

_xz

we have
(Z 51\/[ —rct ]\/I Z 5

Applying lemma 2 to (9) leads to

! Py Bl exp(—rc})
1tlim sup z;(t) < = M;
— o0
Z Bl exp(—rc}’)
(i=1,2,...,n).  (10)

From (10), for small enough positive constant ¢y > 0,

there exist T; > 0 enough large such that
l’l(t) <M;+e VYV t>T;. (11

Then, from the second equation of system (3) and (10),
we obtain for ¢t > T,

p
_57 1 + Z Oéz

k=1

fﬁluz +Za (M; + o).

IN

Ul(t) M + 60)

IA

(12)
Setting g — 0 and applying lemma 2 to (12), it follows that:

P
+ ZOA%M
k=1

wi(t) < —Blug(t)
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Since u;(t) > 0 for all ¢ € R holds, then u;(0) > 0, so using
Lemma 3 to above inequality we have

Z
lim infu;(t) < *=L

t—o0 Bz

form (13), for above small positive constant €; > 0, there
exist ¢ > K; such that

= Qi. (13)

wi(t) <Qi+e V2> K, (14)

From the first equation of system (3) and (11) and (14),
we obtain that for t > K,

) > —aMa

( Zﬁ e a(t) - ()
~ Z BZ_]\J{IefTL
j=1

Setting €; — 0 in above inequality leads to
n " n
(0 [ et Yo -y
i =

xe ZbMQZ Zb’

Zb (Qi + 1) (t).

z;(t) >

—

s=1
xmw], (s)
Then, by applying lemma 3 to (15), if follows that:
n
—a}" + ¢ 21 Bie”
tlim infa;(t) > —
o0 M 77'(,
2 Bije
Jj=1
- 3 pffere - S olla,
v = =
Z 77\'.'1677'[511‘
=1
=m;,i=1,2,...,n, (16)

form (16), for above small positive constant ea > 0, there
exist K;1 > T; and K;19 > T;11 such that
xi(t)zmifq \ t>Ki(i:1,2,...,n). a7

Hence, by applying (14) and (17) to the second equation of
system (3), we have for ¢t > K,

+ZO¢1]€
+Za

U; (t) Z 7ﬂ2

_ 62)

Y,

M
7ﬁi uz

Setting e — 0 in above inequality leads to

u’t(t) 2 7ﬁ2 + Z azk
> —BMu,(t) + Z alym;. (18)
k=1
Then applying Lemma 3 to (18), if follows that:
Z azkml
lim infx;(t) > = =q¢(i=1,2,...,n). (19)

t—o00 BZ]W

Equations (10), (12),(15) and (18) show that under the as-
sumption of the Theorem 1, system (3) is permanent. This
ends the proof of the Theorem 1.

Next we will prove for ¢ > 0, the above conclusions holds.

We denote by (S) the set of all solutions z;(t) =
(z;(t),u;(t))T of system (3) on R satisfying m; < z;(t) <
M, q; <ui(t) <Qi(i=1,2,...,n) forall t € R.

Theorem 2: (S) # 0.

Proof: From properties of almost periodic function, there
exists a sequence {t,},t, — 00 as n — oo, such that

ai(t + tn) — az( ), bls(t + tn) — bis(t),
ci(t+tn) = ci(t), Bij(t+1tn) = Bij (1),
aik(t +tn) — Oém(t) 5 (t +t, ) — ﬂi(t),
,i=12...,n, s=12,....m, k=1,2,....p,
as n — oo uniformly on R. Let z;(t) be a solution of (1)
satisfying m; < z;(t) < M;, q¢; < u;(t) < Q;(i = 1,2) for all
t € R. Clearly, the sequence z;(t + t,,) is uniformly bounded
and equicontinuous on each bounded subset of R. Therefore
by Ascoli’s theorem we know that there exits a subsequence
2;(t + tx) which converges to a continuous function P;(t) =
(pi(t),9:(4))T(i =1,2,...,n) as k — oo uniformly on each
bounded subset of R. Let T € R be given. We may assume
that ¢, + 77 > T for all n. For all t > 0, we have

it +tp +T) —ai(tp +T)

/HT { —a;(s+tg)zi(s+tg)

+(ci(s +tg) —zi(s + tr))

n
X Zﬁij(s +tk)xj(s+tk — T)
=1

Z is 5+tk

Xu;(s+ty — }

XT; s—|—tk
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wi(t+t +T) —ui(ty + T)

— ﬁt+T [iaik(s + ty)ui(s + tx — 1)

T k=1
—Bi(s + tg)ui(s + tk)] ds.

Applying Lebesgue’ dominated convergence theorem, and
letting n — oo in above equalities, we obtain

/MT[m<mx>+m@>

pit+T)—pi(T) =

T
n

Zﬁw 5)p;(s —7)

- Z bis(s) x pi(s)gi(s — O'):| ds,

s=1

/THT[—B 5)g

xpi(s — n)lds,

0. Since T € R is arbitratily given, P;(t) =
is a solution of system (3) of R. It is clear that
m; < pi(t) < M;i(i =1,2),¢; < gi(t) < Qy, for all t € R.
Thus P;(t) € (5).
This completes the proof. |

_pz

s)+ Z ik (s)
k=1

for all ¢

>
(pi(t), gi(t)"
)

III. EXISTENCE OF A UNIQUE ALMOST PERIODIC
SOLUTION

Now, we give the definition of the almost periodic
function.

Definition 1: A function f(t,x), where f is an m-vector,
t is a real scalar and z is an n-vector, is said to be almost
periodic in ¢ uniformly with respect to x € X C R", if f(¢,x)
is continuous in ¢t € R and z € X, and if for any € > 0, it is
possible to find a constnat /(e) > 0 such that in any interval
of length I(e) there exists a 7 such that the inequality

m
- f(tvx)H = Z |f2(t + 7, JZ) - fl(t,’t)| <€
i=1
is satisfied for all ¢ € R,z € X. The number 7 called an
e-translation number of f(¢,x).

Definition 2: A function f : R — R is said to be
asymptotically almost periodic function if there exists an
almost-periodic function ¢(¢) and a continuous function r(t)
such that

f(t) = q(t) + (),

We refer to [19,20] for the relevant definitions and the
properties of almost periodic functions. In the followings,
by constructing an suitable Lyapunov functional, we get the

| f(t+T,2)

teR and r(t) =0 as t — oo.

sufficient conditions for the existence of the globally attractive
solution for systems (3).

Theorem 3: In addition to the conditions for Theorem 1,
assume that (H) hold,

then for any two positive
(zi(t),ui(t))" and z(t) =
(3), we have

solutions z;(t) =
(zr(#),us ()T of system

ki)

Jim [z(t) — = (0] =0 0)

Proof: Let z(t) = (z;(t),u;(t))T and 2;(t) =
(x3(t),u; (¢))T be any two positive solutions of system (3).
From conditions (H), it follows that there exits an enough
small ¢ > 0 such that

Alp) =

It follows (6), (9),(14), (16) and (19) that for above ¢ > 0,
there exists 7" > 0 such that

—a! = d}(Qi +e) + chexp(—rr") > o, @D)

m; —e < a;(t) < M;(t) + ¢,
te, i=1,2.

¢ — e < ui(t) < Qi(t)
(22)

Let
Vi(t) = [Inz;(t) —

Inz} ()] (23)

Calculating the upper right derivatives of Vj(t) along the
solution of (3), by using (22) it follows that

DV = senlat) ~ 21 (0)(na(0) - (i (1)’
= sgn(z;(t) { 25” (z;(t —7)
—x;(t—T)) —d;z;(t)u Z(15—7')
+aunﬂw@ufrﬂ
< stedo) - ()| - EZ@J (a5t =)
5t )+ D N - 7)
st = 1)+ di(t)uslt — e (1) — (0
_ _i@j (a5t — 1) — 23t — 1)
O ¢~ 7) — (e~ )
(Ot — faat) — 23 (0]
Let

Va(t) = | Inwu; () — Inw)(t)].
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Calculating the upper right derivatives of Va(t) along the
solution of (3), by using (22) it follows that

DUa(t) = sen(u(®) — u ) w(®) — (i (©)]
= sau) ~ i (D)) 2
L)
S0 01+
x|z (t —7) —xf({t — 1)
Now let us define
V(t) = Vi(t) + Va(t). (24)

Therefore, for t > T, it follows from above analysis that

DWW S -3 As(Ollai—7) =i =)

z(t)fﬂ( [(ui (t = 7) = ui(t = 7))
—d;(t)ui(t — 7)|zi(t) — =7 (t)]
_O‘z(t)xz(t_ )u o
e )~ o)
a;(t) )
+u;¢<(t)|m’b(t T)ixi(tiT”
< *Zﬂfjl(fvj(t*ﬂ*ﬂf}‘-(t*ﬂ)l
—di(mi — )| (uf (t —7) —u(t — 7))
—d(q; — )lai(t) — _ ai(mi —¢) s
d;i(q; — €)lwi(t) — =7 (t)] RE |ui (t)
—u; (t)| + @ :E)\fvi(t—T) —z;(t—7)|
< —Billwi(t —7) — 2 (t = 7)) = di(mi —e)

It (¢ = 7) = e = 7)| = s — )
at(m; — e
i (0] - G ) — i o)
+(qil_8)\xi(t77')fxf(t77')|
_ (g o )\(m-(t—T)—x’f(t—T))\
= ( 2 ¢ — € J J
~di(ms — )|l (6= ) ~ walt = 7))
| = s = (6~ a0 - S

x|ui(t) — uf (0)]

From (20), we know that there must be a positive constant ¢

such that

DTV (t)

—e|(zi(t — 1) — 2} (t — 7)) —el(ui (t — 7)

—ui(t — 7)) — elzi(t) — 27 ()] — elui(t) — ui ().

Integration the above inequality on internal [T',¢], it follows
that for t > T

t)—i—&/T \mi(s)—xf(sﬂds—&—s/T |zi(s — )

—z7(s—7)|ds + 6/’[ lu;(s) — uf(s)|ds

IN

¢
—|—8/ lui(s —7) —uj(s —7)|ds < V(T) < +o0.
T

Threrfore,
V(T
hm sup/ |zi(s) — x(s)]ds < i ) 00,
V(T
lim sup/ lui(s) — ui(s)|ds < 1) < +o0.
t—o0 T 15

From the above inequalities, one could easily deduce that

Jimzi(t) — 27 ()] =0, limJui(t) —ui(¢)] = 0.
The completes the proof. |

Theorem 4: Suppose all conditions of Theorem 1 hold,
then there exits a unique almost periodic solution of system
3).

Proof: From Theorem 1, there exits a bounded positive
solution

(wi(t), vi(t))", t>0.

Zi (t) =

Suppose that z;(t) = (wl(t) vl(t))T is a solution of (3),
then there exits a sequence {tk} {t,.} = oo as k — oo, such
that (w; (t + tk) v (t + tk)) is a solution of the following

system:
ii(t) = —al(t+t Vzi(t) + (ci(t + 1)) — x4(t))
X Z ,B”(t—i—t Yz (t—7) 25)
—bl(t—i—tly)zz( Yui(t — 1), )

From above discussion and Theorem 1, we have that not
only {z(t+1t,)}(i =1,2,...,n) but also {2;(t +t,)}(i =
1,2,...,n) are uniformly bounded, thus {z;(t + t;)}(i =
1,2,...,n) are uniformly bounded and equi-continuous. By
Ascoli’s theorem there exists a uniformly convergent subse-
quence {z;(t+1t3)} C {zi(t+1,)}(i = 1,2,...,n) such that
for any € > 0, there exists a k(¢) > 0 with the property that
if m,k > k(e) then

l2i(t+tm) — 2zt +tp)| < (i=1,2,...,n).  (26)
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It shows that {z;(t+1,)}(i = 1,2,. ) are systmptotically
almost periodic solutions, then {zl(t —|— t)} i =1,2,...,n)
are the sum of an almost periodic function ¢;(t + t;)(i =

1,2,,...,n) and a continuous function P;(t + tx)(i =
1,2,...,n) defined on R, such that
zi(t +tp) = Pi(t +tx) + qi;(t + 1) V tER,
j=1L2, (@27
where
lim Pz(t + tk) =0, lim q,;j(t + tk) = qij(t),
k—o0 k—o0
¢i;(t) is an almost periodic function. It means that
limy o0 2 (t + t) = ¢35(t), 1 =1,2,...,n, j=1,2).
On the other hand
lm  2;(t + tx)
k—+o0
—  lim lim zi(t+ 1t +h) — z(t+ tg)
k—+o0 h—0 h
i(t+1 h)—zi(t+t
= lim lim zilt 4 te £ h) = zilt+t)
h—0k—+oco h
gt +h) —at)
= lim ——————~=., 2
0 h 28

So the limit gy;(¢), g2:(¢)(i = 1,2, ..., n) exist.

Now we will prove that (qh(t)7q2L(t)) is an almost
periodic solution of system (3). From properties of almost
periodic function, there exists a sequence {t,},t, — oo as
n — 00, such that

(17(1‘, +tn) — ai(t)7 b?(t +t") — bl(t)7
cilt+tn) = ci(t), Bi(t+1tn) — Bi; (1),
Ozi(t-i-tn) — Oéi(t), ﬁl(t-f—t") — ﬂz(t)7 7= 1,2, Lo,

as n — oo uniformly on R. It is easy to show that z; (t+¢,) —
zi(t) asm — +oo(i = 1,2,...,n), then we have

qu(t) = lm a4t +1tn)
) Y- B0+ s (0 =)
—bl(t +jt")ui (t)’UZ (t + tn — )
= qu(t) { —a; () qui(t) + (ci(t) — qui(t Z Bi; (1)
iyt —7) — but)ars (B)aas(t — r>] ,
Goi(t) = ngg-loo 0;(t + tp)

= nglfoo[f/)’i(t +tn)ui () + a;(t + t)vi(t —

= —Bi(t)q2i(t) + i(t)qui(t — 7).

7l

This prove that (qi;(t),qo;(t))T satisfied system (3) and
(q1:(t), gos(t))T is a positive periodic solution, by Theorem
3, it follows that there exits a unique positive almost periodic
solution of system (3). The proof is completed. |

IV. AN EXAMPLE

Now, we will give an example to show the feasibility of
Theorem 3.

Example 1: Consider the following epidemic model:

. sin?
Blt) =~ 251 (0) + (20 — (1) | 2
Xy (t = ) + i (t - ﬁ)}
COS2
— o O (Bun (¢ — ),
COS2
da(t) = —Hgestus(t) + (10 — 2(t)) {#\{)&)
1 cos?(v/3t) 1 )
xa1(t = g7) + “1o00 22(t = H)}
g (Hualt — ).
U1 (t) = —(1 4 cos?(£))u (t) + (1 + sin®(¢))
XTl(t 11 5
Uy (t) = —(2 + sin®(£))uq (t) + (2 + cos(t))
XII( 1)7

In this case, we have

af Z Bij exp(—7c})

MM = 23_1 = 20,
> Bl exp(=Tc)
j=1
M 2 M l
e ) 52j exp(—Tcy)
My == =19,
ng ﬁéj exp(—7cd)
Q _ a{”]yh _ 4 Q _ OzéMMl 19
! ! 5 2T B 1000
oM — 1y _ 1 pM M i
7500 2 s000 T 2 7500

From above, we have
2
—a}t + ¢, Z BIJ exp(—7cl)
j=1
M@, ~ o 00104817 > 0,

Z [)’1] exp( 7’01)

j=1

—adl + ¢, Z 527 exp(—7cil)
j=1
—bMQy ~ 0.0100184 > 0.

2527 eXp TC2)

Hence, all conditions of Theorem 3 are satisfied. By Theorem
3, system (29) has at one positive almost w-periodic solutions.
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