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Periodic solutions for a third-order p-Laplacian
functional differential equation

Yanling Zhu and Kai Wang

Abstract—By means of Mawhin’s continuation theorem, we study
a kind of third-order p-Laplacian functional differential equation with
distributed delay in the form:

(
ϕp(x′(t))

)′′
= g

(
t,

∫ 0

−τ

x(t + s) dα(s)

)
+ e(t),

some criteria to guarantee the existence of periodic solutions are
obtained.

Keywords—p–Laplacian, Distributed delay, Periodic solution,
Mawhin’s continuation theorem

I. INTRODUCTION

IN the last several years, the existence of periodic solutions
for p-Laplacian differential equations has been extensively

studied, we refer the readers to [1-5, 7-11] and the references
cited therein. Very recently, Jin and Lu’s [6], and Cheng and
Ren’s [12] have studied the existence of periodic solutions
for fourth-order p-Laplacian Liénard equations as follows,
respectively

(ϕp(u′′(t)))′′ + f(u(t)) + g(t, u(t), u(t− τ(t))) = e(t)

and

(ϕp(x′′(t)))′′ + f(t, x′(t− σ(t))) + g(t, x(t− τ(t))) = e(t).

The criteria they presented for guaranteeing the existence of
periodic solutions are beautiful. However, the delays in [1-2, 6-
12] are all discrete, few people has considered the existence of
periodic solutions for p-Laplacian differential equations with
distributed delay which is more realistic than the discrete
ones in the real world. Moreover, as far as we know the
corresponding problem of the third-order p-Laplacian equation
has not been studied, especially for the third-order p-Laplacian
differential equation with distributed delay.

Simulated by the above reasons, in this paper we investigate
the existence of periodic solutions for a kind of third-order p-
Laplacian equation with distributed delay as follows

(ϕp(x′(t)))′′ = g

(
t,

∫ 0

−τ

x(t+ s) dα(s)
)

+ e(t), (1)

where p > 1 is a constant, ϕp : R→ R,ϕp(x) = |x|p−2x for
x �= 0 and ϕp(0) = 0; g ∈ C(R2, R) with g(t+T, ·) ≡ g(t, ·);
e ∈ C(R,R) with e(t+T ) ≡ e(t) and

∫ T

0
e(t) dt = 0; T > 0

is a given positive constant. α is a bounded variation function
with

∫ 0

−τ
dα(s) = 1 ; τ > 0 is a real-valued number.
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As the way to estimate a priori bounds in [1, 6-12] cannot
be applied directly to study Eq.(1), because the crucial equality
in [1, 6-12] is∫ T

0

(ϕp(x′(t))′x(t)dt =
∫ T

0

|x′(t)|p−1dt

or ∫ T

0

(ϕp(x′′(t))′′x(t)dt =
∫ T

0

|x′′(t)|p−1dt,

which doesn’t hold any more for (ϕp(x′(t))′′. In this paper,
by using some new analysis techniques we estimate the priori
bounds of all periodic solutions of Eq.(1), and obtain new
results to guarantee the existence of periodic solutions for
Eq.(1) by applying Mawhin’s continuation theorem.

II. LEMMAS

In order to use Mawhin’s continuation theorem to study
the existence of periodic solutions for Eq.(1), we rewrite first
Eq.(1) in the following form:{

x′1(t) = ϕq(x2(t)),

x′′2(t) = g(t,
∫ 0

−τ
x1(t+ s) dα(s)) + e(t),

(2)

where 1/p + 1/q = 1. Obviously, the existence of periodic
solutions to Eq.(1) is equivalent to the existence of periodic so-
lutions to Eqs.(2). Thus, the problem of finding a T−periodic
solution for Eq.(1) reduces to finding one for Eqs.(2).

Let CT = {u : u ∈ C(R, R)|u(t + T ) ≡ u(t)} with
the norm |u|∞ = maxt∈[0,T ] |u(t)|, X = Y = {x =
(x1(.), x2(.))� ∈ C(R,R2)|x(t+ T ) ≡ x(t)} with the norm
||x|| = max{|x1|∞, |x2|∞}. Clearly, X and Y are Banach
spaces. Meanwhile, we define two operators L and N in the
following form, respectively

L : D(L) ⊂ CT → CT , Lx =
(
x′1
x′′2

)

and N : CT → CT ,

Nx =

⎛
⎜⎝

ϕq(x2(t))

g

(
t,

∫ 0

−τ
x1(t+ s) dα(s)

)
+ e(t)

⎞
⎟⎠ , (3)

where x =
(
x1

x2

)
.

One can see easily that Eqs.(2) can be converted to then
following abstract equation

Lx = Nx.
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Moreover, the definition of L yields

KerL = R2, ImL = {y : y ∈ Y,

∫ T

0

y(s)ds = 0},

thus L is a Fredholm operator with index zero.
Set project operators P and Q in the form:

P : X → KerL, Px =
(
x1(0)
x2(0)

)

and

Q : Y → ImQ ⊂ R2, Qy =
1
T

∫ T

0

y(s) ds,

and denote by L−1
P the inverse of L|KerP∩D(L). Obviously,

KerL = ImQ = R2

and

[L−1
P y](t) =

( ∫ t

0
y1(s) ds∫ T

0
G(t, s) y2(s) ds

)
, (4)

where y(t) =
(
y1(t)
y2(t)

)
and

G(t, s) =

{
s(t−T )

T , 0 ≤ s < t ≤ T,
t(s−T )

T , 0 ≤ t ≤ s ≤ T.

From (3) and (4), we know that N is L−compact on Ω,
where Ω is an arbitrary open bounded subset of X .

Lemma 2.1 (See [4] ) Let X and Y be two Banach spaces,
L : Dom(L) ⊂ X → Y be a Fredholm operator with index
zero, Ω ⊂ Y be an open bounded set, and N : Ω → X be
L− compact on Ω. If all the following conditions hold:

[1] Lx �= λNx, for x ∈ ∂Ω ∩ Dom(L), λ ∈ (0, 1);
[2] Nx /∈ ImL, for x ∈ ∂Ω ∩ KerL;
[3] deg{JQN,Ω∩KerL, 0} �= 0, where J : ImQ→ KerL

is an isomorphism,

then equation Lx = Nx has a solution on Ω
⋂

Dom(L).

III. MAIN RESULTS

Theorem 3.1 Suppose there exist positive constants d1, d2

and r ≥ 0 such that the following conditions hold:

[A1] g(t, x) > 0 for (t, x) ∈ ([0, T ] × R) with x > d1,
and g(t, x) < 0 for (t, x) ∈ ([0, T ] ×R) with x < −d2;

[A2] lim
x→−∞ supt∈R | g(t,x)

xp−1 | ≤ r.

Then Eq.(1) has at least one T−periodic solution, if
r T p+2

2p+1 < 1.

Proof. Consider the operator equation

Lx = λNx, λ ∈ (0, 1).

Set Ω1 = {x : Lx = λN x, λ ∈ (0, 1)}. If x(t) =
(x1(t), x2(t))� ∈ Ω1, then{

x′1(t) = λϕq(x2(t)),

x′′2(t) = λ g(t,
∫ 0

−τ
x1(t+ s) dα(s)) + λ e(t).

(5)

The second equation of (5) and x2(t) = 1
λp−1 ϕp(x′1(t)) imply

(ϕp(x′1(t)))
′′ = λpg

(
t,

∫ 0

−τ

x1(t+ s) dα(s)
)

+λpe(t). (6)

We first claim that there must be a constant t∗ ∈ [0, T ] such
that

|x1(t∗)| ≤ D, (7)

where D = max{d1, d2}.
Integrating both sides of Eq.(6) from 0 to T , we get∫ T

0

g

(
t,

∫ 0

−τ

x1(t+ s) dα(s)
)
dt = 0. (8)

By integral mean value theorem, we know there is a constant
ξ ∈ [0, T ] such that

g

(
ξ,

∫ 0

−τ

x1(ξ + s) dα(s)
)

= 0,

which together with [A1] gives

−d2 ≤
∫ 0

−τ

x1(ξ + s) dα(s) ≤ d1.

If let D = max{d1, d2}, then∣∣∣∣
∫ 0

−τ

x1(ξ + s) dα(s)
∣∣∣∣ ≤ D.

By the properties of Riemann-Stieltjes integral, we know that
there must be a constant η ∈ (−τ, 0) such that |x1(ξ + η)| ≤
D, i.e., there exists a constant t∗ ∈ [0, T ] such that

|x1(t∗)| ≤ D.

This proves (7).
Furthermore, it follows from (7) that

|x1(t)| ≤ D +
∫ t

t∗
|x′1(s)| ds for t ∈ [t∗, t∗ + T ]

and

|x1(t− T )| ≤ D +
∫ t∗

t−T

|x′1(s)| ds for t ∈ [t∗, t∗ + T ],

i.e.,

|x1|∞ = max
t∈[t∗,t∗+T ]

|x1(t)|

≤D +
1
2

(∫ t

t∗
|x′1(s)|ds+

∫ t∗

t−T

|x′1(s)|ds
)

≤D +
1
2

∫ T

0

|x′1(s)|ds

≤D +
T

2
|x′1|∞.

(9)

Note that r T p+2

2p+1 < 1 yields there is a small constant ε > 0
such that

(r + ε)
T p+2

2p+1
< 1. (10)

For the sake of convenience, we let X(t, α) =
∫ 0

−τ
x1(t +

s) dα(s). For the above ε, from [A2] and the properties of
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bounded variation function, we know that there must be a
constant ρ > d2 such that

|g(t,X(t, α))| ≤(r + ε) |X(t, α)|p−1

≤(r + ε) |x1|p−1
∞ for X(t, α) < −ρ. (11)

Set 
1 = {t ∈ [0, T ]|X(t, α) > ρ}, 
2 = {t ∈ [0, T ]| −d2 ≤
X(t, α) ≤ ρ}, 
3 = {t ∈ [0, T ]|X(t, α) < −d2}. We get
from (8) and (11) that(∫

	1

+
∫
	2

+
∫
	3

)
g(t,X(t, α)) dt = 0,

i.e., ∫
	1

|g(t,X(t, α))| dt

= −
(∫

	2

+
∫
	3

)
g(t,X(t, α)) dt

≤
(∫

	2

+
∫
	3

)
|g(t,X(t, α))| dt

≤ (
(r + ε)|x1|p−1

∞ + gd

)
T.

(12)

where gd = maxt∈	2 |X(t, α)|.
From x′2(0) = x′2(T ), we know that there exists a constant

ξ1 ∈ [0, T ] such that x′′2(ξ1) = 0. It follows from the second
equation of (5), (9) and (12) that

|x′′2(t)|

≤|x′′2(ξ1)| + 1
2

∫ T

0

|g(t,X(t, α)) + e(t)|dt

≤1
2

∫ T

0

|g(t,X(t, α))|dt+
T

2
|e|∞

≤(r + ε)T |x1|p−1
∞ +

T

2
|e|∞ + gdT

≤(r + ε)T
(
D +

T

2
|x′1|∞

)p−1

+Meg,

(13)

where Meg = T
2 |e|∞ + gdT .

The first equation of (5) yields

|x′1|∞ ≤ |x2|q−1
∞ . (14)

Substitution of (14) into (13) gives

|x′′2(t)| ≤(r + ε)T
(
D +

T

2
|x2|q−1

∞

)p−1

+Meg. (15)

By the classical elementary inequality, there is a constant δ >
0, which is only dependent on n, such that

(1 + x)n ≤ 1 + (1 + n)x for x ∈ (0, δ]. (16)

If |x2|∞ = 0, then (14) and (9) imply

|x1|∞ ≤ D.

If 2D

T |x2|q−1
∞

≥ δ, then

|x2|∞ ≤
(

2D
Tδ

)1/(q−1)

:= M1,

which together with (14) and (9) yields

|x1|∞ ≤ D +
D

δ
:= M2.

Otherwise, 2D

T |x2|q−1
∞

< δ, it follows from (15) and (16) that

|x′′2(t)|

≤(r + ε)
T p

2p−1
|x2|∞

(
1 +

2D
T |x2|q−1∞

)p−1

+Meg

≤(r + ε)
T p

2p−1
|x2|∞

(
1 +

2pD
T |x2|q−1∞

)
+Meg

≤(r + ε)
T p

2p−1
|x2|∞ + (r + ε)

pDT p−1

2p−2
|x2|2−q

∞ +Meg.

(17)
On the other hand, x1(0) = x1(T ) imply that there exists

ξ2 ∈ [0, T ] such that x′1(ξ2) = 0, which together with the first
equation of (5) gives

x2(ξ2) = ϕp(x′1(ξ2)) = ϕp(0) = 0.

From the above equalities we have

|x2(t)| ≤|x2(ξ2)| + 1
2

(∫ t

ξ2

|x′2(s)|ds+
∫ ξ2

t−T

|x′2(s)|ds
)

≤1
2

∫ T

0

|x′2(s)| ds

≤T
4

∫ T

0

|x′′2(s)| ds

≤T
2

4
|x′′2 |∞,

it follows from (17) that

|x2(t)| ≤(r + ε)
T p+2

2p+1
|x2|∞ + (r + ε)

pDT p−1

2p−2
|x2|2−q

∞

+
T 3

4

(
gd +

1
2
|e|∞

)
,

which together with (10) implies that there is a positive
constant M3 such that

|x2|∞ ≤M3. (18)

Combination of (18), (14) and (9) yields that there must be a
positive constant M4 such that

|x1|∞ ≤M4.

Let M0 = max{M1, M2,M3, M4} + 1, Ω = {x =
(x1, x2)� : ||x|| < M0} and Ω2 = {x : x ∈ ∂Ω ∩ KerL},
then

QNx =
1
T

∫ T

0

⎛
⎝ ϕq(x2(t))

g
(
t,

∫ 0

−τ
x1(t+ s) dα(s)

)
⎞
⎠ dt.

If x ∈ Ω2, then x2 = 0, x1 = M0 or −M0. Thus, from [A1]
we can get easily

QNx �= 0,

i.e.,
Nx /∈ ImL for x ∈ Ω.
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So conditions [1] and [2] of Lemma 2.1 are satisfied. In order
to show that condition [3] of Lemma 2.1 is also satisfied, we
define an isomorphism J in the following form:

J : ImQ→ KerL, J

(
x1

x2

)
=

(
x2

x1

)
.

Let

H(μ, x) = μx+ (1 − μ)JQNx for (μ, x) ∈ [0, 1] × Ω,

then

H(μ, x) =

(
μx1 + (1−μ)

T

∫ T

0
g(t,

∫ 0

−τ
x1(t+ s) dα(s)) dt

μ x2 + (1 − μ)|x2|q−2x2

)
,

it follows from condition [A1] that

xH(μ, x) > 0.

Hence
deg{JQN, Ω ∩ KerL, 0} = deg{H(0, x), Ω ∩ KerL, 0}

= deg{H(1, x), Ω ∩ KerL, 0}
= deg{I, Ω ∩ KerL, 0}
�=0.

Thus, condition [3] of Lemma 2.1 is satisfied. So by applying
Lemma 2.1, we conclude that equation Lx = Nx has a
solution x(t) = (x1(t), x2(t))� on Ω∩D(L). So Eq.(1) has a
T−periodic solution x1(t). The proof of Theorem 3.1 is now
finished.

Corollary 3.1 Suppose there exist positive constants d1, d2

and r ≥ 0 such that the following conditions hold:
[B1] g(t, x) < 0 for (t, x) ∈ ([0, T ] × R) with x > d1,

and g(t, x) > 0 for (t, x) ∈ ([0, T ] ×R) with x < −d2;
[B2] lim

x→+∞ supt∈R

∣∣∣ g(t,x)
xp−1

∣∣∣ ≤ r.

Then Eq.(1) has at least one T−periodic solution, if r T p+2

2p+1 <
1.

As an application, we consider the following equation

(ϕ4(x′(t)))′′ = g

(
t,

∫ 0

−τ

x(t+ s) dα(s)
)

+ cos 2πt, (19)

where g
(
t,

∫ 0

−τ
x(t+ s) dα(s)

)
= (2 + eβ(x(t)) −

sin 2πt)β(x(t)) (β(x(t)) − 1) (β(x(t)) + 2) with β(x(t)) =∫ 0

−1
x(t+ s) ds.

Corresponding to Eq.(1), we have p = 4, T = 1, g(t, x) =
(2 + ex − sinπt)x (x− 1)(x+ 2), α(s) = s, e(t) = cos 2πt.

If choose d1 = 1, d2 = 2 and r = 3, then

lim
x→−∞ sup

t∈R

∣∣∣∣g(t, x)xp−1

∣∣∣∣ ≤ r and
r T p+2

2p+1
=

3
32

< 1.

So by applying Theorem 3.1 we know that Eq.(19) has at least
one 1-periodic solution.
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