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Periodic oscillations in a delay population model
Changjin Xu, Peiluan Li

Abstract—In this paper, a nonlinear delay population model is
investigated. Choosing the delay as a bifurcation parameter, we
demonstrate that Hopf bifurcation will occur when the delay exceeds
a critical value. Global existence of bifurcating periodic solutions is
established. Numerical simulations supporting the theoretical findings
are included.
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Global Hopf bifurcation.

I. INTRODUCTION

IN 1976, in order to investigate the control of sigle popula-
tions of cells, Nazarenko [1] proposed the nonlinear delay

differential equation

dx(t)
dt

= −px(t) +
qx(t)

r + xm(t − τ)
, t ≥ 0, (1)

where x(t) is the size of the population, p is the death rate
and the feedback is given by the function f(u, u(t − τ)) =

qu(t)
r+um(t−τ) and τ denotes the generation time. p, q, r, τ ∈

(0, +∞) and m ∈ N = {1, 2, 3, · · ·}. Nazarenko[1] proved
that every positive nonoscillatory solution converges to the
unique positive equilibrium (q/p − r)−m and established a
sufficient condition for oscillation of all positive solution
about (q/p − r)−m. Kubiaczyk and Saker [2] considered the
convergence and the oscillation of system (1). Considering that
the periodic changes in the environment, Saker and Agarwal
[3] modified (1) as the following form

dx(t)
dt

= −p(t)x(t) +
q(t)x(t)

r + xm(t − τ)
, (2)

where p(t) and q(t) are positive periodic functions of period
ω and m is a positive integer. Saker and Agarwal [3] obtained
that system (2) has a positive periodic solution x̄(t) with period
ω and established some sufficient conditions for oscillation and
global attractivity of positive solutions by using the Brouwer,s
fixed point theorem. Saker [4] discussed the existence and
global attractivity of periodic solution of the discrete version
of system (2) which takes the form

x(n + 1) = x(n) exp
(
−p(n) +

q(n)
r + xm(n − ω)

)
, (3)

where n = 0, 1, 2, · · · , xp(n) and q(n) are positive periodic
sequences of period ω, m and ω are positive integer and
ω > 1. Song and Peng [5] further investigated the periodic
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solution of the more general non-autonomous periodic models
of population with continuous and discrete time as follows

dx(t)
dt

= −p(t)x(t) +
q(t)x(t)

r + xm(t − τ(t))
(4)

and

x(k + 1) = x(k) exp

{
− p(k) +

q(k)
r + xn(k)

}
, (5)

where k = 0, 1, 2, 3, · · ·. In order to unify continuous and
discrete analysis, Zhang and Wen [6] investigated the periodic
solutions the periodic solution of dynamical equation on the
scales of the form

xΔ(t) = −p(t) +
q(t)

r + enx(t−τ(t))
, (6)

where p(t) and q(t) are positive ω-periodic function on time
scale T . With the aid of coincidence degree theory, Zhang and
Wen [6] obtained the sufficient conditions for the existence of
periodic solutions of system (6).

Based on former work [1-6], we further devote to explore
the dynamical behaviors of system (1), i.e., we will investigate
the natures of Hopf bifurcation of system (1). For simplifica-
tion, we assume that m = 3, then system becomes

dx(t)
dt

= −px(t) +
qx(t)

r + x3(t − τ)
, (7)

where p, q, r positive constants and τ ≥ 0 is a delay.
The initial value is x(t) = ϕ(t),−τ ≤ t ≤ 0, ϕ(t) ∈
([−τ, 0], R+), ϕ(0) > 0.

The purpose of this paper is to investigate the existence
of local and global Hopf bifurcation of model (7). This
paper is organized as follows. In Section 2, the stability
of the equilibrium and the existence of Hopf bifurcation at
the equilibrium are studied. In Section 3, the existence of
global Hopf bifurcation is established. In Section 4, numerical
simulations are carried out to illustrate the validity of the main
results. Some main conclusions are drawn in Section 5.

II. STABILITY OF THE EQUILIBRIUM AND LOCAL HOPF

BIFURCATIONS

Considering the biological interpretations of population, in
this paper, we only investigate the positive equilibrium point
of system (7). If the condition q > pr holds, then system (7)
has a unique positive equilibrium

x∗ = 3

√
q − pr

p
.
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Let x̄(t) = x(t)−x∗, Substituting this into (7) and still denote
x̄(t) by x(t), then (7) takes the form

dx(t)
dt

= a1x(t − τ) + a2x(t)x(t − τ)

+a3x(t)x2(t − τ) + a4x
3(t − τ), (8)

where

a1 = −
3q(x∗

1)3

[r + (x∗)3]2
, a2 = −

3q(x∗

1)2

[r + (x∗)3]2
,

a3 = −
3q(x∗

1)
2[r + (x∗)3] − 3(x∗)2

[r + (x∗)3]4
,

a4 =
12(x∗)2[(12qr − 6)(x∗)4 + 6r(q − 1)x∗ + 6q(x∗)7]

[r + (x∗)3]7

−
6q[r2 + 2r(x∗)3 + (x∗)6]

[r + (x∗)3]7

−
[6r(x∗)2 + 6x∗][6qx∗ − 24(x∗)3 − 6r]

[r + (x∗)3]7
.

Then the linearization of system (8) around the equilibrium
(0,0) is

dx(t)
dt

= a1x(t − τ). (9)

The associated characteristic equation of (9) is given by

λ − a1e
−λτ = 0, (10)

Let λ = iω0, τ = τ0, and substituting this into (9). Separating
the real and imaginary parts, we have

a1 cosω0τ = 0, a1 sinω0τ = −ω0. (11)

Since a1 < 0, then we can obtain

ω0 = −a1, τ = τk =
1
ω0

[
kπ +

π

2

]
, k = 0, 1, 2, · · · . (12)

When τ = 0, (10) becomes

λ = a1 < 0. (13)

In view of above analysis, we have

Lemma 2.1. If q > pr holds, then system (7) admits a pair of
purely imaginary roots ±iω0 when τ = τk, k = 0, 1, 2, · · · .

Let λ(τ) = α(τ) + iω(τ) be the root of Eq.(2.3) near
τ = τk satisfying α(τk) = 0, ω(τk) = ω0. Due to functional
differential equation theory, for every τk, k = 0, 1, 2, · · · , there
exists a ε > 0 such that λ(τ) is continuously differentiable in
τ for |τ − τk| < ε. Substituting λ(τ) into the left hand side of
(10) and taking the derivative of λ with respect to τ , we get

[
dλ

dτ

]−1

= −
1

a1λe−λτ
−

τ

λ
.

It follows together with (2.4) that

Re

[
dλ

dτ

] ∣∣∣−1

τ=τk

= −Re

{
1

a1λe−λτ

}

τ=τk

= −
sinω0τk

ω0
= 1 > 0.

Thus

sign

{
Re

[
dλ

dτ

] ∣∣∣
τ=τk

}
= sign

{
Re

[
dλ

dτ

] ∣∣∣−1

τ=τk

}
> 0.

According to the results of Kuang [7] and Hale [8], we have

Theorem 2.1. If q > pr holds, the positive equilibrium x∗ of
system (7) is asymptotically stable for τ ∈ [0, τ0) and unstable
for τ ≥ τ0. System (7) underdoes a Hopf bifurcation at the
positive equilibrium x∗ when τ = τk, k = 0, 1, 2, · · · .

III. GLOBAL EXISTENCE OF THE HOPF BIFURCATIONS

In this section, we mainly focus on the global existence of
periodic solutions bifurcating from the positive equilibrium.
Throughout this section, we closely use the notation as those
in Wu [9] and define
X = C([−τ, 0], R),
Σ = Cl{(x, τ, p) : x is p−periodic solution of system (7)} ∈
X × R+ × R+,
N = {(x̂, τ, p) : p(r + x̂3) − q = 0},
Δ = λ − a1e

−λτ .

Let C(N∗, τk, 2π
ω0

) denote the connected component of
(N∗, τk, 2π

ω0
) in Σ.

Lemma 3.1. If p > q, then all the periodic solution of system
(7) are uniformly bounded and system (7) has no nontrivial
τ -periodic solutions.

Proof. It follows from (7) that

dx(t)
dt

≤ x(t)(−p + q) < 0

which leads to x(t) < ϕ(0). Thus all the periodic solution of
system (7) are uniformly bounded. The nontrivial τ -periodic
solutions of system (7) is also the nonconstant periodic solu-
tion of the following ordinary differential equation

dx(t)
dt

= −px(t) +
qx(t)

r + x3(t)
, (14)

It follows from (3.1) that

dx(t)
dt

= x(t)(−p +
q

r + x3(t)
) ≤ x(t)(−p + q) < 0.

Then we can conclude that system (14) has no nonconstant
periodic solution. This complete the proof.

Theorem 3.1. If q > pr and p > q, then periodic solutions of
system (7) still exist when τ > τk.

Proof. First of all, define

F (xt, τ, p) = −px(t) +
qx(t)

r + x3(t − τ)
.

It is easy to check that (A1) − (A3) in Wu [9] are satisfied.
Let (x̂0, α0, p) = (N∗, τk, 2π

ω0
) and it is easy to verify that

(N∗, τk, 2π
ω0

) is the only isolated center. There exist ε > 0, δ >

0 and a smooth function λ : (τk − δ, τk + δ) → C such that

Δ(λ(τ)) = 0, |λ(τ) − iω0| < ε
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for any τ ∈ [τk − δ, τk + δ], and

λ(τk) = iω0,
dRe(λ(τ))

dτ
> 0.

Define pj = 2π
ω0

and Ωε,pj
= {0, p) : 0 < u < ε, |p−pj| < ε}.

Clearly, if |τ − τj | ≤ δ and (u, p) ∈ ∂Ωε, then ΔN∗,τ,p)(u +
2π/p) = 0 if and only if τ = τk, u = 0, p = pj . Thus the
assumptions (A4) in Wu [9] holds. Let

H±(N∗, τk, 2π/ω0)(u, p) = Δ(N∗,τk±δ,p)(u + i2π/p),

then we can calculate the crossing number as follows

γ(N∗, τk, 2π/ω0) = degB(H−(N∗, τk, 2π/ω0), Ωε,pj
)

− degB(H+(N∗, τk, 2π/ω0), Ωε,pj
) = −1.

By Lemma 3.1, the projection of C(N∗, τk, 2π/ω0) onto the
x-space is bounded. When k > 0, we have 0 < 2π/ω0 < τk.
Thus the projection of C(N∗, τk, 2π/ω0) onto the p-space is
bounded. The projection of C(N∗, τk, 2π/ω0) onto the τ -space
must be positive and has no upperbound. As a result, system
(7) still has nontrivial periodic solutions when τ > τk .

IV. NUMERICAL EXAMPLES

In this section, we use the formulae obtained in Section 2
and Section 3 to verify the existence of local and global Hopf
bifurcation. We consider the following special case of system
(7)

dx(t)
dt

= −0.4x(t) +
0.2x(t)

0.2 + x3(t − τ)
. (15)

It is easy to see that the conditions q > pr and p > q

hold, then system (15) has a unique positive equilibrium
x∗ ≈ 0.6694. By direct computation by means of Matlab 7.0,
we get ω0 ≈ 0.7272, τ0 ≈ 2.16. Thus the positive equilibrium
x∗ is stable when τ < τ0 which is illustrated by the computer
simulations (see Figs.1-2). When τ passes through the critical
value τ0 ≈ 2.16, the positive equilibrium x∗ loses its stability
and a Hopf bifurcation occurs, i.e., a family of periodic
solutions bifurcate from the positive equilibrium x∗ which are
depicted in Figs.3-4. When τ is sufficiently large, periodic
solutions still exist as shown in Figs.5-6.
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Figs.1-2 Dynamic behavior of system (15): times series of
x. A Matlab simulation of the asymptotically stable positive
equilibrium x∗ ≈ 0.6694 to system (15) with τ = 2 < τ0 ≈
2.16. The initial value is 0.8.
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Figs.3-4 Dynamic behavior of system (15): times series of x.
A Matlab simulation of a Hopf bifurcation from the positive
equilibrium x∗ ≈ 0.6694 to system (15) with τ = 2.2 > τ0 ≈
2.16. The initial value is 0.8.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

813

0 200 400 600 800 1000 1200 1400 1600
0

500

1000

1500

2000

2500

3000

3500

t

x(
t)

Fig.5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x(t)

x(
t−

15
)

Fig.6

Figs.5-6 Dynamic behavior of system (15): times series of x.
A Matlab simulation of a Hopf bifurcation from the positive
equilibrium x∗ ≈ 0.6694 to system (15) with τ = 15 > τ0 ≈
2.16. The initial value is 0.8.

V. CONCLUSIONS

In this paper, we have investigated the dynamical behaviors of
a nonlinear delay population model. It is shown that under a
certain condition, there exists a critical value τ0 of the delay
τ for the stability of the population system. If τ ∈ [0, τ0), the
positive equilibrium of the population system is asymptotically
stable which means that the size of the population will keep in
a steady state. When the delay τ passes through some critical
values τ = τk, k = 0, 1, 2, · · ·, the positive equilibrium of the
population system loses its stability and a Hopf bifurcation
will occur. Moreover, the existence of global Hopf bifurcation
are established.
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