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Abstract—In this paper, periodic force operation of a wastewater 
treatment process has been studied for the improved process 
performance. A previously developed dynamic model for the process 
is used to conduct the performance analysis. The static version of the 
model was utilized first to determine the optimal productivity 
conditions for the process. Then, feed flow rate in terms of dilution 
rate i.e. (D) is transformed into sinusoidal function.  Nonlinear model 
predictive control algorithm is utilized to regulate the amplitude and 
period of the sinusoidal function. The parameters of the feed cyclic 
functions are determined which resulted in improved productivity 
than the optimal productivity under steady state conditions. The 
improvement in productivity is found to be marginal and is 
satisfactory in substrate conversion compared to that of the optimal 
condition and to the steady state condition, which corresponds to the 
average value of the periodic function. Successful results were also 
obtained in the presence of modeling errors and external 
disturbances. 

Keywords—Dilution rate, nonlinear model predictive control, 
sinusoidal function, wastewater treatment.

I. INTRODUCTION

large number of technologies are present to treat different 
kinds of waste in the water to appropriate level, but 

conventional techniques which are being used in the 
industrialized countries are not only expensive to build but 
also require high cost for operation and maintenance. That is 
why a lot of research is being carried out to develop cost 
effective treatment technologies which can be appropriate in 
rural, semi urban, isolated communities and a variety of 
industrial simulation [1]. Generally wastewater treatment 
plants (WWTP) are combinations of complex nonlinear 
systems, subject to large disturbances in which different 
physical (such as settling) and biological phenomena are 
taking place. A number of control strategies have been 
proposed in the literature for wastewater treatment plants but 
their comparison and evaluation are not easy. This is 
somewhat due to the variability of the influent, to the physical 
and biochemical phenomena and to the large range of time 
constants (from few minutes to several days) inherent in the 
activated sludge process [2]. Recent work on WWTP involves 
using genetic algorithms to minimize effluent concentration 
and operating cost [3]. Menzi and Steiner [4] reported their 
effort with controlling nitrogen-eliminating WWTP using a 
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model based multivariable control based on model predictive 
control concept and H  theory. An Internal Model Control 
(IMC) was also examined for the control of the effluent 
concentrations of a bioreactor used for ethanol production 
from glucose [5]. The model predictive control (MPC) 
algorithms are different from the other advanced classes of 
controllers in a way that a dynamic problem is solved on-line 
each control execution [6]. Due to some distinguished features 
such as constraint handling and superiority for processes 
having a large number of manipulated and controlled 
variables, it became the most widely used control system in 
chemical industries [7-8]. Ali and Ali [9] utilized NLMPC to 
control the molecular weight distribution of polyethylene 
product. Due to the predictive nature and dynamic 
optimization of NLMPC, the controller was able to recognize 
the need to operate the process in a periodic fashion in order to 
achieve the desired objectives. Ali et al studied the periodic 
operation of a reverse osmosis desalination process using non-
linear model predictive control, resulted in enhanced process 
operation [10]. O’ Brien et al applied MPC for the activated 
sludge in Lancaster, North England in real time and ended up 
with the results that up to 25% cost for aeration has been 
reduced using MPC over the previous existing control system. 
These findings are valid for low BOD load [11]. Due to 
success of MPC on improving the performance of chemical 
processes as mentioned above, the technique will be adopted 
for WWTP. The objective is not to make the output follow 
periodic trajectories but to force the process to operate in 
periodic fashion to improve the overall performance. 

II. PROCESS MODEL

A. Reactor without Recycle 
We will take the case of the bioreactor shown in Fig. 1, but 

without recycle and clarifier. The dynamic model for this 
process is taken from Zhao and Skogestad [12] using the 
following assumptions: 

Reactor influent contains no biomass. 
The reactor is operated under aerobic condition which 
means the quantity of oxygen to carry out the reaction is 
adequate. 
The kinetic model does not comprise cell maintenance 
and cell death. 

The dynamic equations are given as follows: 

             (1) 
                      (2) 
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where the specific growth rate ( r) also known as Monod 
reaction rate is defined as follows: 

                                      (3) 

The nominal plant steady state operating condition is given in 
Table I. 

TABLE I
STEADY STATE OPERATING POINT

D  (l/h) Si (g/l) X (g/l) S  (g/l) µ (l/h) K (g/l) Y (g/g) 
0.17 1.0 0.38 0.05 0.55 0.09 0.3 

B. Reactor with Recycle 
Now we consider the bioreactor with recycle as shown in 

Fig. 1.  
The dynamic model for the complete process is taken from 

Sundstrom etal.[13] with the following assumptions: 
There is no reaction in the settler so that the substrate 
concentration in the recycle flow is equal to that in the 
reactor effluent.  
The dynamic of clarifier is neglected.  

The surface area of the clarifier is so large such that the   
biomass concentration leaving the settler is zero. 

The assumptions used for no recycle case are also applied in 
this case. However, cell maintenance is corrected here. The 
resulted differential equations are given as follows: 

(4) 

                                     (5) 

                                    (6) 
The endogenous decay constant, kd is taken equal to 0.005 

l/h in this study.  

Fig. 1 Schematic diagram of activated sludge process 

III. OPTIMAL PLANT OPERATING CONDITIONS 

Using this type of model encounters specific phenomena 
related to the process conditions; with very low feed rate, the 
cell will die out of starvation because no enough nutrition is 
provided rapidly to maintain the cell metabolism and, when 
the feed is too high, the residence time decreases to a level that 
there will be no sufficient time for the cell (biomass) to grow 
resulting in any reaction, i.e., no conversion of the substrate. 
This is known as `washout’. This occurs only when no cell 
recycle is used. In that case, avoiding washout impose an 
upper bound on the feed flow rate as follows [12]: 

               (7) 
where 
= kd/μ and  .

The reaction is autocatalytic so recycle can improve the 
conversion by increase in cell concentration but it may 
deteriorate performance. This is because recycle dilute the 
substrate and lowers the residence time. According to 
Sundstrom et al. [12], if D > Dc, the fractional conversion of 

input substrate increases monotonically with both increasing 
recycle ratio (U) and recycled cell concentration (XrFor this  
case, Sundstrom et. al. [12] illustrated that conversion 
increases with recycle ratio only if Xr exceeds certain critical 
value (Xrc) which is given as follows: 

                     (8) 

where  and  are defined as before, =μ/D and =Xr/KY. 
For our case Xrc is found to be 0.2286 g/l and Dc to be 0.56
l/hr. Thus, based on the above situations, one can obtain the 
optimum operating condition of the reactor that maximize the 
substrate conversion and avoid washout by solving the 
following optimization problem: 

                            (9) 
subject to: 
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The maximum conversion occurs at high throughput so the 
second term is added in the objective function to ensure 
maximum conversion. The optimum conditions are by solving 
(9) in table II using MATLAB software and listed in table II.  
It is more interesting to demonstrate the effect of varying U
and Xr on the substrate conversion while fixing D at its 
optimal value listed in table II. The result is shown in Fig. 2. 

The curves in the fig. 2 are obtained by finding the steady state 
values for equations 4 and 5 for fixed D and various values of 
U and Xr. It was observed that Xrmust be kept above certain 
value of 0.2286 to ensure higher substrate conversion. It was 
also found that increasing U beyond 1.0 gives only marginal 
increase in the conversion. Thus, during closed-loop 
simulation U will be limited between 0 and 1.0. These
observations were similar to those found by Sundstrom et al.
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Fig. 2 Conversion of substrate; dotted curve: Xr = 10, dashed curve: Xr = 5, dash-and-dot curve Xr = 1, 
solid curve: Xr = 0.2286, dash-and-double dots curve: Xr = 0.1 

TABLE II 
OPTIMUM OPERATING POINT

X(g/l) S(g/l) D(l/h) Xr(g/l) U 
0.315 0.283 0.4 6.6172 1.0 

IV. THE CONTROL OBJECTIVE AND IMPLEMENTATION

There is limited number of control objectives in biological 
reactors. Traditionally, the control outputs for the process are 
dissolved oxygen concentration in the aerator, biomass and 
substrate concentrations in the reactor effluent and the liquid 
level in the settler. The only controlled variable in our case is 
the productivity of the process i.e. Pr=D(Sf  S); we have two 
variables in one single controlled variable so it is difficult to 
control such a process. The steady state analysis revealed the 
maximum productivity is 0.296 g/h which occurs at 
D=0.39l/h. Conceptually, this maximum cannot be exceeded 
at steady state. Therefore, we seek operating the process in 
periodic fashion such that the average value of the 
productivity would exceed the maximum value. The idea is to 
make advantage of the variable feed rate which is very 
common in waste treatment processes. In addition, periodic 
stepping of the feed creates sudden transition from one steady 
state to another. Therefore, these sudden changes may result in 
variable values for the productivity leading to an average 
value beyond the expected maximum.  The common 
disturbances to the system are feed flow rate, and inlet 
substrate and biomass concentrations. The only manipulated 
variable is the dilution rate, D. In this paper the objective is to 
operate the process cyclically above the optimum value of 
productivity in case of steady state plant operation at 
maximum point. 

V. NON-LINEAR MPC ALGORITHM

In this work, the structure of the MPC version developed by 
Ali and Zafiriou [6] that utilizes directly the nonlinear model 
for output prediction is used. A usual MPC formulation solves 
the following on-line optimization problem: 

                                      (10) 

subject to 

                                 (11) 

For nonlinear MPC, the predicted output, y over the 
prediction horizon P is obtained by the numerical integration 
of: 

                              (12) 
                                     (13) 

from tk  up to tk+P where x and y represent the states and the 
output of the model, respectively. The symbols || . || denotes 
the Euclidean norm, k is the sampling instant, and  are 
diagonal weight matrices and R = [r(k+1)  r(k+P)]T is a 
vector of the desired output trajectory. U (tk) = [ u (tk) … u
(tk+M-1)] Tis a vector of M future changes of the manipulated 
variable vector u that are to be determined by the on-line 
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optimization. The control horizon (M) and the prediction 
horizon (P) are used to adjust the speed of the response and 
hence to stabilize the feedback behavior. The parameters 
and  are weights on outputs and inputs. The objective 
function (Eq. 10) is solved on-line to determine the optimum 
value of U (tk). Only the current value of u, which is the first 
element of U (tk), is implemented on the plant. At the next 
sampling instant, the whole procedure is repeated. In order to 
compensate for modeling errors and eliminate steady state 
offset, a regular feedback is incorporated on the output 
predictions, y(tk+1) through an additive disturbance term. 
Therefore, the output prediction is corrected by adding to it the 
disturbance estimates. The latter is set equal to the difference 
between plant and model outputs at present time k as follows: 

                        (14) 

The disturbance estimate, d is assumed constant over the 
prediction horizon due to the lack of explicit means for 
predicting the disturbance. The simulation results will be 
presented by transforming dilution rate D into sinusoidal 
function as follows for NLMPC in discrete time fashion 

                    (15) 

where Am is the period amplitude, tk is the sampling instant 
and  is the argument of the sin function that includes the 
cycle period p as follows: 

                             (16) 

The, NLMPC will manipulate the feed flow rate in terms of 
D indirectly through regulating its input characteristics, i.e. the 
amplitude and period of oscillation. The controlled output 
embedded in (10) includes time average value of productivity. 
This output is defined as ratio to its corresponding steady state 
value as follows 

                         (17) 

In discrete time formulation, the numerical integration can 
be approximated by summation over the predefined simulation 
time. For future prediction, the model equations can be 
numerically integrated over the future p horizon from t = 0 to 
t= tk+P to estimate the average value for the controlled outputs 
at tk+P.

VI. RESULTS AND DISCUSSION 

The objective in this study is to maximize ratio of average 
value of productivity to the steady state value of productivity 
at the maximum point. The comparison between the two cases 
(non- periodic and periodic) feed conditions is necessary to 
clearly demonstrate the effectiveness of periodic operation. So 
first of all proposed NLMPC algorithm will be implemented 
for the case when no periodicity is introduced in the dilution 
rate.  Implementation of the proposed NLMPC algorithm for 
servo problem is shown in Fig. 3 where the set point is fixed at 

10% increase over the maximum productivity value. The 
steady state starting value for D is taken arbitrarily as 0.3 l/h, 
at which the corresponding value of productivity is 0.2636 g/h. 
The upper and lower limits on D are set to ± 0.3 l/h. A 
sampling time of 0.5 h is used in the simulation. The NLMPC 
parameter values are M = 1, P = 1, = [0] and = [1]. The 
closed loop response of the process is shown in the Fig. 3.   It 
is clear from the Fig. 3 that controller even could operate the 
process to get productivity greater than1 but could not reach to 
our objective which is 10% increase over the maximum. The 
increase in productivity is a result of, the ability of MPC to 
handle constraints on inputs, as in our case controller was 
allowed to operate in the range of input values which is D i.e. 
±0.3 l/h. As clear from Fig. 3 that the controller forced the 
input greater than 0.3 l/h and as a result the ratio of average 
value of D to its steady state initial value is 1.61 which 
indicates that to get higher productivity than optimal 61% 
more feed rate is required which means high pumping cost. 

The servo problem is tested again using the periodic 
control. The period per sampling time ( ) is constrained 
between 3 and 10. Note that 3 is the minimum value that 
allows for complete periodic behaviour within the given 
sampling time and simulation interval.  A sampling time of 0.5 
h is used in the simulation. The NLMPC parameter values are 
M = 1, P = 2, = [0 0] and = [1]. The starting value of D is 
0.3 l/h, as the same which used in case of non-periodic study. 
The simulation outcome is shown in Fig. 4 which illustrated 
the ability of MPC to generate oscillatory response which 
resulted in a reasonable improvement of the process operation. 
For example 10% increase in the productivity over the 
maximum steady state value is observed. The interesting part 
is that the enhancement was achieved without additional 
increment in the feed conditions. In fact, the ratio of the time-
average value of the dilution rate D to its corresponding steady 
state value is 0.86. This is the main goal after periodic 
operation, i.e. with less input e.g. 14% less than the steady 
state, 10% increase in the productivity is made possible in case 
of periodic operation.  

Fig. 3 Process closed response for non-periodic case P=1, M=1 
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Fig. 4 Closed loop response for 10% increase in Pr for periodic case 

Fig. 5 Closed loop response for -25% error in Y, 10% error μ and -
10% step change in K for periodic case 

The simulation is carried out in case of perfect model. Now 
the control objective is repeated in the presence of parametric 
errors in the model. As environmental conditions have 
significant influence on the quality of wastewater and so as on 
the modelling parameters. Temperature, PH, etc. due to 
uncertain environmental conditions can disturb modelling 
parameters. Specifically, 25% step change in Y which is yield 
coefficient, 10% step change in maximum growth constant μ 
and 10% step change in saturation constant K will be 
introduced in the model for simulation study. The closed-loop 
response under these circumstances is depicted in Fig. 5. 

The simulation time and NLMPC parameters values are the 
same which are used in case of periodic case as before.
Despite the effect of the model-plant mismatch, NLMPC was 
able to move the process operation to an arbitrary point 
towards 10% increase in productivity.  However, the obtained 
process response does not exactly match that resulted from 
utilizing perfect model. It is equally important to examine the 
effectiveness of the regulatory performance of the NLMPC for 
the WWT process. The feed load conditions are not always 
same in case of WWT process so now we will take the case 
when 10% step change in the substrate concentration is 

introduced in the influent. The NLMPC parameters are same 
as before for the periodic case, simulation is run for 200 h of 
plant operation. The simulation result is shown in Fig. 6. The 
controller performance was satisfactory in the presence of 
external disturbance. Although, the process output have some 
uneven behavior but still follow the desired trajectory, and 
operate the process towards 10% increase in productivity. 

Fig. 6 Closed loop response in the presence of 10% step change in 
substrate for periodic case 

VII. CONCLUSION

The operation of a waste water treatment process under 
forced periodic inputs in order to improve its performance is 
investigated. A previously developed model for wastewater 
treatment plant, consisting of a bioreactor with recycle and a 
clarifier, is used for steady state and dynamic analysis of the 
process. The steady state model is used to determine the 
optimal operating conditions of the plant that maximize the 
substrate conversion and avoid washout situations. The 
dynamic model is used to investigate the performance of 
standard Non-linear Model Predictive Control algorithm for 
the single control objective of the process i.e. enhanced 
process productivity. The periodic forcing is imposed via 
feedback control. NLMPC regulates the dilution rate indirectly 
through manipulating its transformation parameters. The 
feedback simulation indicated the effectiveness of NLMPC to 
generate periodic input functions that helped in enhancing the 
time-averaged value of the productivity. Improvement of up to 
10% increase in the process productivity is observed. The 
promising outcome is maintained even in the presence of 
model uncertainty and in the sudden injection of input 
disturbance. 
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