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Abstract—Enhancement of the performance of a reverse osmosis 
(RO) unit through periodic control is studied. The periodic control 
manipulates the feed pressure and flow rate of the RO unit. To ensure 
the  periodic behavior of the inputs, the manipulated variables (MV) 
are transformed into the form of sinusoidal functions. In this case, the 
amplitude and period of the sinusoidal functions become the 
surrogate MV and are thus regulated via nonlinear model predictive 
control algorithm. The simulation results indicated that the control 
system can generate cyclic inputs necessary to enhance the closed-
loop performance in the sense of increasing the permeate production 
and lowering the salt concentration. The proposed control system can 
attain its objective with arbitrary set point for the controlled outputs. 
Successful results were also obtained in the presence of modeling 
errors.

Keywords—Reverse osmosis, water desalination, periodic 
control, model predictive control.

I. INTRODUCTION

EVERSE osmosis units are commonly used as a filtration 
process in sea and brackish water desalination. The 

membrane-based RO operation suffers from two major 
problems; concentration polarization [1] and membrane 
fouling. These factors adversely influence the RO 
performance by reducing the permeate flux and consequently 
lead to loss of productivity. It is believed that membrane 
fouling causes an irreversible decrease in flux. Practically, 
fouling is overcome by regular shut-down and membrane 
cleaning procedures. Concentration polarization on the other 
hand is characterized by reversible decline in water flux 
through the membrane. Usually, concentration polarization 
can be controlled via two main methods [2]: (i) changes in the 
characteristics of the membrane [2], (ii) modification of flow 
rates and flow regime. The latter is handled by alternating the 
influent of the RO process [3,4]. Examples of such approach 
includes backwashing and periodic operation of the module, 
through forcing some of the process variables [5]. The 
analysis of periodically forced reverse osmosis has received 
considerable attention in the literature  [2, 5-10]. Al-Bastaki 
and Abbas [11] have reviewed other methods used to enhance 
membrane performance.  

Ali et al. [12, 13] studied the performance of an RO tubular 
membrane module under oscillatory feed conditions using a 
validated rigorous dynamic model.  
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It is found that the performance of the RO operation in 
terms of higher permeate production and less salt 
concentration can be obtained by periodic forcing of the feed 
pressure and feed velocity. The previous work was based on a 
validated mathematical model for a tubular membrane unit 
[14]. 

To ensure the RO process operation in a periodic fashion 
for the sake of maximizing the performance, application of a 
suitable control system is required. In the previous work [12, 
13] the periodic forcing was carried out in open-loop mode. In 
this paper we compliment the work of Ali et al [13] by 
incorporating a robust control algorithm such as NLMPC to 
achieve the desired periodic input necessary to optimize the 
process performance. 

The nonlinear model predictive control belongs to the 
family of model predictive controllers (MPC). The MPC 
algorithms differ from the other advanced controllers in that a 
dynamic optimization problem is solved on-line each control 
execution. Review of the nonlinear MPC theory and its 
industrial applications has been reported in the literature [15-
17]. The contribution of this paper falls into enhancing the 
water production and quality of RO processes through 
periodic operation. An NLMPC algorithm that generates the 
necessary periodic operation is proposed and employed. 

II. PROCESS MODEL

The entire investigation is based on a dynamic model of 
tubular membranes that was developed  and validated in an 
earlier study [14]. Both steady state and dynamic behavior 
were validated against a lab-scale experimental unit.  

III. THE ON-LINE NLMPC ALGORITHM

In this work, the structure of the MPC version developed by 
Ali and Zafiriou [15] that utilizes directly the nonlinear model 
for output prediction is used. A usual MPC formulation solves 
the following on-line optimization problem:
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For nonlinear MPC, the predicted output, y over the 
prediction horizon P is obtained by the numerical integration 
of the state space equation: 

            ),,( tuxf
dt
dx

 (3) 

      y=g(x) (4) 

in discrete time fashion from tk  up to tk+P where x and y
represent the states and the output of the model, respectively. f
(.)  is a general nonlinear function of the process states, inputs 
and time while g(.) is either a linear or nonlinear function that 
maps the states into the process measured outputs. The 
symbols || . || denotes the Euclidean norm, k is the sampling 
instant,  and  are diagonal weight matrices and R = [r(tk+1)

 r(tk+P)]
T
 is a vector of the desired output trajectory. U (tk)

= [ u (tk) … u (tk+M-1)] T is a vector of M future changes of 
the manipulated variable vector u that are to be determined by 
the on-line optimization. The control horizon (M) and the 
prediction horizon (P) are used to adjust the speed of the 
response and hence to stabilize the feedback behavior. The 
parameter  is usually used for trade-offs between different 
controlled outputs. The input move suppression parameter, ,
on the other hand, is used to penalize different inputs and thus 
to stabilize the feedback response. The objective function (Eq. 
1) is solved on-line to determine the optimum value of U (tk).
Only the current value of u, which is the first element of U
(tk), is implemented on the plant. At the next sampling instant, 
the whole procedure is repeated. 

In order to compensate for modeling errors and eliminate 
steady state offset, a regular feedback is incorporated on the 
output predictions, y(tk+1) through an additive disturbance term 
[15].  

IV. CONTROL OBJECTIVES AND IMPLEMENTATION

The control objective here is to maximize the RO 
performance by operating in cyclic mode via forcing the input 
to be in the form of periodic function. In this case, the 
controlled outputs are the permeate (q) and the salt 
concentration (Cp) while the manipulated variables (MV) are 
the feed pressure (Pf) and the feed flow rate in terms of its 
velocity (uf). Standard NLMPC regulates the manipulated 
variables in optimal fashion according to the control law given 
in Eq. 1. The generated control signals may not be necessarily 
periodic. Therefore, the NLMPC algorithm should be 
modified to generate periodic behavior for the MV. for this 
purpose, the process inputs, are transformed into sinusoidal 
function in discrete time fashion as follows: 

)sin()( 1mfkf APtP
ss

    (6) 

)sin()( 2mfkf Autu
ss

    (7) 

Where Am is the period amplitude, tk is the sampling instant 
and  is the argument of the sin function that includes the 
cycle period p as follows: 

              
p
tk2 (8) 

The cycle period is defined as function of the sampling 
instant (Ts) as follows:  

                       sTp (9) 

The period of the cyclic function will be considered 
identical for both variables. According to Equations (6,7), the 
primary MVs are defined by surrogate three manipulated 
variables, which comprise the amplitude for each input and the 
unified cycle period. Therefore, NLMPC will manipulate the 
feed pressure and flow rate indirectly through regulating their 
input characteristics, i.e. the amplitude and period of 
oscillation. Note that the new formulation can be easily reset 
to the standard formulation by setting  to a constant value of 

/2. 
The controlled outputs embedded in Eq. 1 include the 

permeate production and salt concentration as a point values at 
specific sampling instants. However, because the operation 
will be periodic, the point value will be replaced by the time-
average value of the controlled variables. Furthermore, the 
averaged value is normalized by their corresponding steady 
state values. In standard application, NLMPC will derive the 
normalized averaged value of q and cp to their desired set 
points. It should be noted the entire simulation including the 
numerical integration of the model and the optimization of the 
NLMPC objective function is carried out using MATLAB 
software. 

V. RESULTS AND DISCUSSION

Implementation of the proposed NLMPC algorithm for 
servo problem is shown in Fig. 1. The objective here is to 
maximize the ratio of the average permeate production to its 
steady state value and to minimize the ratio of the average salt 
concentration to its steady state value. Arbitrary set point is 
chosen for both controlled outputs. Specifically, (q/qss)sp is set 
to 1.25 and (Cp/Cpss)sp to 0.95. This means that 25% increase 
in the permeate production and 5% reduction in the salt 
concentration are sought. The set points are considered 
arbitrary because the objective is not to meet the specific set 
points but rather to increase q and decrease Cp by some 
amount. The signal amplitude for feed pressure is bounded by 
±30 bar, and that for feed velocity by ±30 cm/s. The period per 
sampling time ( ) is constrained between 3 and 10. Note that 
3 is the minimum value that allows for complete periodic 
behavior within the given sampling time and simulation 
interval.  A sampling time of 1 sec is used in the simulation. 
The MLPC parameter values are M = 1, P = 1, = [0 0 0] and 

= [1 1]. In the entire simulations, both controlled outputs are 
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given the same weight by setting  to one (or any other equal 
values). Fig. 1 shows the raw values of the permeate 
production and the salt concentration. In addition, the figure 
illustrates the normalized average values for the same outputs. 
The latter is the actual variables used as the controlled output 
in the NLMPC algorithm. The generated periodic inputs are 
also shown in the same figure.  

The simulation outcome illustrated the ability of MPC to 
generate oscillatory response which resulted in a reasonable 
improvement of the process operation. The NLMPC was able 
to achieve the required set points. Hence, the required 
enhancement in the performance is attained. The interesting 
part is that the enhancement was achieved without additional 
increment in the feed conditions. In fact, the ratio of the time-
average value of the feed pressure and the feed velocity to 
their corresponding steady state value is 0.988 and 1.007, 
respectively. This is the main goal after periodic operation. 
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Fig. 1 Closed-loop simulation using NLMPC with Ts = 1 sec and set 
point: (q/qss)sp = 1.25; (Cp/Cpss)sp = 0.95 

As mentioned earlier, the set points are arbitrary. Therefore, 
the simulation is repeated with different set of set poit values. 
Specifically, set 1: (q/qss)sp = 1.25 and (Cp/Cpss)sp  = 0.95; set 
2: (q/qss)sp = 1.25 and (Cp/Cpss)sp  = 0.8; set 3: (q/qss)sp = 1.43 
and (Cp/Cpss)sp  = 0.8. Using the same NLMPC parameters as 
before, revealed that the new set points can be achieved except 
the second set. The new result is obtained as depicted in Fig. 2. 
The corresponding response of the manipulated variables for 
the three sets of set points is shown in Fig. 3. It is obvious that 
NLMPC tries to force the process into satisfying the set point 
for Cp. however, this is at the expense of losing the track of q.
From the control objective point view, the feedback response 
is not reasonable. However, from the RO performance point of 
view, the operation is acceptable because it leads to further 
increase in the permeate production. It should be noted that the 
feasible set point for both q/qss and Cp/Cpss is not known a 
prior. furthermore, it may not be achievable because of the 
process physical limitation. Therefore, it might be interesting 
to implement the feedback controller without specifying set 
points. In this case, the controller will try to drive the process 

into the best feasible extreme conditions for both q and Cp.
This idea is handled in another research work.  

The period of the sinusoidal function for the input variables 
depends on the sampling time. Therefore, similar simulation 
tests were carried out to study the effect of the sampling time 
on the controller performance. Comparison of the feedback 
response at different sampling times is shown in Fig. 4 and the 
corresponding response for the MV is illustrated in Fig. 5. The 
same simulation and NLMPC parameters used before is 
implemented here. The control objective is also the same 
except (Cp/Cpss)sp is to 0.9 to cover different scenarios. It is 
clear from Figure 4 that acceptable controller and process 
performance can still be obtained. It should be noted though 
that small sampling instants is not desirable in real time 
practice. On the other hand, when the sampling time is 
increased, the performance degrades as demonstrated in Fig. 4. 
In Fact, out investigation revealed that performance 
deteriorate starting from a sampling time of 5 sec. The reason 
for performance degradation is that when the period becomes 
equal to half or greater than the process settling time, the 
periodic operation losses its effect. The idea is to rapidly 
alternate the process variables between different operating 
conditions before they reach their steady state conditions.    
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Fig. 2 Closed-loop simulation with Ts = 1 sec at different values for 
the set point

The previous simulation illustrated successful results for 
improving the process performance when perfect process 
model is used to represent the plant dynamics. The control 
objective is repeated in the presence of parametric errors in the 
model. Specifically, -20% errors are introduced in the value of 
the salt permeability and hydraulic permeability (Bj, Lp) and 
+20% errors are introduced in the water diffusivity (Ds). The 
closed-loop response under these circumstances is depicted in 
Fig. 6. In this case, the set point for the ratio of average q to 
initial steady state value is 1.25 and that for Cp is 0.95. The 
figure shows the row value of the process outputs for both the 
plant and the model to highlight the mismatch due to 
uncertainty. The simulation results indicate that the modified 
NLMPC can still track fixed set point for the controlled 
variables. Moreover, the transient response for the 
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manipulated variables and the controlled outputs differ than 
that shown in Figure due to the effect of the model-plant 
mismatch. Nevertheless, the consequence proves the 
effectiveness of the feedback features of NLMPC to reject the 
influence of the model uncertainty.   
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Fig. 3 Closed-loop response of the manipulated variables 
corresponding to the simulation in Fig. 2; solid: set 1, dotted: set 2, 

dashed: set 3 
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Fig. 4 Closed-loop simulation with set point: (q/qss)sp = 1.25; 
(Cp/Cpss)sp = 0.9 using different values for the sampling time 

VI. CONCLUSIONS

The performance of a tubular RO process under forced 
periodic inputs is studied. Feedback control system is utilized 
to force the input into periodic behavior. In fact, nonlinear 
model predictive control (NLMPC) is implemented for this 
purpose.  NLMPC regulates the feed pressure and flow rate 
indirectly through manipulating their transformation 
parameters. The transformation parameters are the amplitude 
and period of the sinusoidal function that resemble the 
periodic behavior of the feed pressure and flow rate. The 
feedback simulation indicated the effectiveness of NLMPC to 
generate periodic input functions that managed to enhance the 
time-averaged value of the permeate production and salt 

concentration. Different set point values and sampling time 
were also examined to study their effect on the overall 
performance. The promising outcome is maintained even in 
the presence of model uncertainty.     
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Fig. 5 Closed-loop response of the manipulated variables 
corresponding to the simulation in Fig.  4; solid: Ts=0.25 sec, dotted: 

Ts=2 sec, dashed: Ts=10 sec. 
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Fig. 6  Process closed-loop response in the existence of modeling 
errors of  Bj = –20%,  Lp = –20%, Ds = +20% using NLMPC with Ts

= 1 sec and set point: (q/qss)sp = 1.25; (Cp/Cpss)sp = 0.95
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