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 Abstract—The performance of sensor-less controlled induction 

motor drive depends on the accuracy of the estimated speed. 

Conventional estimation techniques being mathematically complex 

require more execution time resulting in poor dynamic response. The 

nonlinear mapping capability and powerful learning algorithms of 

neural network provides a promising alternative for on-line speed 

estimation. The on-line speed estimator requires the NN model to be 

accurate, simpler in design, structurally compact and computationally 

less complex to ensure faster execution and effective control in real 

time implementation. This in turn to a large extent depends on the 

type of Neural Architecture. This paper investigates three types of 

neural architectures for on-line speed estimation and their 

performance is compared in terms of accuracy, structural 

compactness, computational complexity and execution time. The 

suitable neural architecture for on-line speed estimation is identified 

and the promising results obtained are presented. 

 

Keywords—Sensorless IM drives, rotor speed estimators, 

artificial neural network, feed- forward architecture, single neuron 

cascaded architecture. 

I. INTRODUCTION 

NDUCTION motors are applied today, to a wide range of 

applications requiring variable speed. Accurate speed 

measurement is necessary to realize high performance and 

high-precision speed control of an induction motor. The speed 

is obtained by using mechanical sensors as resolver or pulse 

encoders. However, these sensors are usually expensive, 

bulky, and subject to failures under hostile industrial 

environments. Therefore, the cost and size of the drive 

systems are increased. Speed sensorless closed loop control of 

induction motor drives, leads to cheaper and reliable control. 

Therefore sensorless control of induction motor drives has 

become an active area of research. Advances in digital 

technology have made the sensorless control realizable by 

industries for high performance variable speed applications. 

Since the late 1980s, speed-sensorless control methods of 

induction motors using the estimated speed instead of the 

measured speed have been reported. They have estimated 

speed from the instantaneous values of stator voltages and 

currents using induction motor model. Other approaches to 

estimate speed use Rotor Slot Harmonic [1], [2], Extended 

Kalman Filter (EKF), Extended Luenbergern Observer (ELO) 

[3], Saliency Techniques [4], [5] and Model Reference 

Adaptive System (MRAS) [6], [7]. The saliency techniques 

attempt to be parameter independent, but secondary magnetic 
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effects do lead to complications in their implementation. Rotor 

slot harmonic speed estimation will work successfully if the 

rotor is about a minimum speed. The problems related to EKF 

or ELO are the large memory requirement, computational 

intricacy, and the constraint such as treating all inductances to 

be constant in the machine model. MRAS schemes are also 

direct dependent on motor parameters. However, an induction 

motor is highly coupled, non-linear dynamic plant, and its 

parameters vary with time and operating conditions. 

Therefore, it is very difficult to obtain good performance for 

the entire speed range using previous methods. Recently, the 

use of Neural Network (NN) to identify and control nonlinear 

dynamic systems has been proposed because they can 

approximate a wide range of nonlinear functions to any 

desired degree of accuracy [8]-[10]. Moreover, they have the 

advantages of extremely fast parallel computation and 

immunity to noise. A two layer NN was used for the speed 

estimation [11], [12]. Here, the learning techniques of NN 

were used to update the estimation parameter namely speed in 

the equation. This method has used the machine equations and 

hence not robust to variations in motor parameters. Thus, NN 

trained form input/output data based estimator is promising 

alternative for on-line speed estimation in sensorless 

controlled induction motor drives.The major issues in NN 

based speed estimation are; the NN model should be accurate, 

simpler in design, structurally compact and computationally 

less complex to ensure faster execution time in real time 

implementation for effective control. This in turn to a large 

extent depends on the type of neural architecture which is the 

method of interconnection between the neurons. This paper 

investigates three types of neural architectures for on-line 

speed estimation and their performance is compared in terms 

of accuracy, structural compactness, computational 

complexity and execution time. The Neural architectures 

considered for investigations are Single Layer Feed-

Forward (SLFF) Architecture, Multilayer Layer Feed-Forward 

(MLFF) Architecture and Single Neuron Cascaded (SNC) 

Architecture.The neural models for on-line speed estimation 

are obtained using input/output data and Levenberg-Marquardt 

(LM) training algorithm.The paper is organized as follows. 

Section II details the sensor-less IM drives. Section III gives 

the discussion about Feed-Forward architecture, Single 

Neuron Cascaded architecture and presents learning 

algorithms. Section IV describes the NN based speed 

estimation. Comparison of NN models for on-line speed 

estimation is carried out and discussed in section V. Section 

VI concludes the paper. 

II. SPEED SENSORLESS VECTOR CONTROLLED IM DRIVES 

 The speed sensorless vector control presented here is 

indirect field oriented control (rotor flux oriented control). Fig. 

1 shows the overall block diagram of the speed-sensorless 
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drive system of an induction motor using a speed estimator. 

The system consists of a solid state IM drive system, rotor flux 

oriented control, flux and speed estimator. Rotor flux oriented 

control consists of a PI speed controller, a current controller, 

and PWM generator. In sensor-less vector control IM drives 

the torque command is generated as a function of the speed 

error signal. The error in estimated speed will reflect in the 

torque command. Thus an error in speed estimation will lead 

to ineffective control and sometimes instability. So, the design 

of suitable NN model for on-line flux and speed estimation is 

inevitable for high performance drive. 

 

 

Fig. 1 Sensor-less Vector Controlled IM Drives showing the 

Estimators for Flux and Speed 

III. NN ARCHITECTURES & NN LEARNING ALGORITHMS 

The design of neural network to a large extent depends on 

the type of neural architectures and learning algorithms. The 

brief discussion about neural architectures considered for 

investigation and learning algorithms are presented. 

A. Feedforward Architecture-Single and multi-layer 

Feed-forward architecture has an input layer, one or more 

hidden layers and an output layer. The signal flows only in the 

forward direction. Each neuron model in the architecture 

includes a nonlinear activation function. The commonly used 

activation functions such as tan-sigmoid/log-sigmoid is used 

for hidden layers while pure-linear function is used for output 

layer. Feed-Forward architecture with single hidden layer is 

called as “Single Layer Feed-Forward architecture and with 

more than one hidden layer is called as “Multilayer Layer 

Feed-Forward architecture. Extensive work using this 

architecture has established the nonlinear mapping capability 

of Neural Networks.  

B. Cascade Architecture-Single Neuron cascading 

The Cascade architecture consists of an input layer, hidden 

layers and an output layer. The first hidden layer receives only 

external signals as inputs. Other layers (M) receive external 

inputs and outputs from all previous (M-1) layers. It is called 

cascade because the input to a neuron consists of system 

inputs and outputs of all preceding layers/neurons. This is in 

contrast to the feed-forward architecture where inputs to a 

neuron are only from previous layer. Cascading single neuron 

in every hidden layer results the “Single Neuron Cascaded” 

(SNC) architecture which greatly simplifies the design process 

and can be self-organized which aids design automation 

similar to SLFF-NN. 

 

Fig. 2 SNC-NN with multiple inputs/single output 

where, 
p  - Input vector, [1,2,... ]p R=  

mS  
- Number of neurons in the layer ‘m’ where 

[1,2,... ]m M=  and oS = p  

,
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Input weight of neuron ‘i’ of layer ‘m’ for 

external input ‘ R ’. 

,
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Link weight of neuron ‘i’ of layer ‘m’ for input 

from neuron ‘j’ of layer ‘k’. 

mbi  - Bias for neuron ‘i’ of layer ‘m’. 

mf  - 
Activation functions of all neurons in a layer 

‘m’. 

mai  
- Output of neuron ‘i’ of layer ‘m’ 

The Single Neuron Cascaded (SNC) architecture with 

multiple inputs/single output is shown in Fig. 2. Each neuron 

in the architecture includes weights, bias and a nonlinear 

activation function. The weights of interconnections to the 

previous layer are called as “input weights” and the weights of 

interconnections between the layers are called “link weights”. 

The commonly used tan-sigmoid/log-sigmoid activation 

function is used for all hidden layers while pure-linear 

function is used for output layer. Initially, a hidden layer with 

only one neuron between the input and output is trained. To 

create a multilayer structure similar to MLFF-NN, hidden 

layers are added one by one and the whole network trained 

repeatedly using the concept of moving weights so as to obtain 

compact network [13]. This process continues, till the 

performance index is reached. Thus SNC-NN combines the 

advantage of SLFF-NN and MLFF-NN.  

C. NN Learning Algorithms 

There are different types of learning algorithms reported in 

the literature to train neural network [14]-[16]. Directed search 

algorithm use steep descent method. The first order approach 

and its variants are simple and effective. For better accuracy 

the second order approach namely Levenberg-Marquardt 

(LM) algorithm is used [15]. The higher accuracy is obtained 

C 
PWM 

Inverter 

ai

c
i

IM 

Rotor 

Flux 

Oriented 

Controller 

Speed 

Estimator 

Flux 

Estimator 

ψref PWM-a 

PWM-c 

ωr,est

ψ s

dr

ψ s

qr

 

rω

PWM-b 

ω
r,ref

ω
r,est

ψ s

dr

ψ s

qr

Flux and Speed Estimators for Sensor-less Operation 

In
p
u

t 
S

u
p
p

ly
 

Solid State IM Drive System 

 

R
p

2
p

1
p

 
1f∑

2f∑

mf∑

1

1,1w

1

1,Rw

1

1n

2

1,1w

2

1,Rw

1,1

m

w

1,

m

Rw

 2

1n

1

1a

2

1a
 

1

m

a

1

1b

2

1b

2,1

1,1w

,2

1,1

m

w

,1

1,1

m

w

Layer 1 

Layer 2 

Layer m 

1

m

b  

1

m

n



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1697

at the cost of increased complexity of update laws. In this 

paper, NN models are trained off-line using LM algorithm to 

obtain higher accuracy for on-line speed estimation. 

IV. ROTOR SPEED ESTIMATION USING NEURAL NETWORKS 

The chosen three architectures are used to model the on-line 

flux estimator. The systematic design process for SNC-NN is 

to add a hidden layer with single neuron at a time between the 

inputs/outputs till the target MSE is reached where as the 

systematic design procedure for SLFF-NN is to add single 

neuron in a single hidden layer at a time till the target MSE is 

reached. In MLFF-NN, the choice of number of layers and 

number of neurons in each layer is decided by trial and error. 

The design of MLFF-NN is more of an art than a science. 

Therefore, in this paper, MLFF-NN with two hidden layers is 

designed by trial and error method. 

Around 46,525 data sets were obtained through simulation. 

The obtained data set is used as the training data set. The 

inputs to estimator are current and flux, whose components are 

direct and quadrature axis stator currents measured at  

(k-1)
th

 sample { ( 1)s kids − , ( 1)s kiqs − } and fluxes measured at  k
th

 

and (k-1)
th

 sample { ( ), ( 1),  ( ),  ( 1)s s s sk k k kqr qrdr dr − −Ψ Ψ Ψ Ψ }. The 

output is the estimated rotor speed { rω } at k
th

 sample. The 

activation function for hidden and output layers is chosen as 

tan-sigmoid and pure linear function respectively. The inputs 

and outputs of NN based rotor speed estimator is shown in 

Fig. 4. For comparison, all the three NN models are trained 

with the same input/output data using LM algorithm for the 

same target mean square error (MSE) of 1×10
-7

. The obtained 

SNC-NN, MLFF-NN and SLFF-NN model for on-line flux 

estimation are 6-15(h)-1 (h-hidden layer with single neuron), 

6-15-15-1 and 6-75-1 respectively. The three models trained 

with same accuracy are tested for on-line estimation of rotor 

speed.  

 

Fig. 4 The Inputs and Outputs of NN based Speed Estimator 

V. COMPARISON OF NN MODELS FOR ROTOR SPEED 

ESTIMATION 

A. Steady State and Dynamic Performance of NN models 

for On-Line Speed Estimation 

The performance of all the three NN models is compared in 

terms of accuracy. The off-line trained three NN models are 

tested for on-line estimation of rotor speed for various 

operating conditions extensively. The sample results for major 

operating conditions are presented. The operating conditions 

are explained in terms of operating speed and load for 

convenience. The operating conditions are: (1) transient load 

changes, (2) transient speed changes, and (3) very low speed. 

The operating condition-I examines the performance of all 

the three NN models for transient load disturbance. The step 

and ramp change load torque response results are presented at 

rated speed. The motor is initially operated at rated speed 

under 0% loaded condition and 100% step change in load 

torque is applied at 1 s and rejected at 2 s. The rotor speed 

estimated using all the three NN models for step change in 

load torque are shown in the Fig. 5 respectively. The speed 

estimator performance for ramp change in load is presented in 

Fig. 6. The motor is loaded gradually from no load (at 1 s) to 

full load (at 2 s). Similarly the load is gradually decreasing 

from full load (3 s) to no load (4 s). The error curves between 

the actual and the estimated for all the models are shown. 

From the results obtained, it is observed that the load change 

capability of SNC-NN and MLFF-NN model is found to be 

similar and excellent where as the load change capability of 

SLFF-NN model is poor as compared to SNC-NN and MLFF-

NN models.   

The operating condition-II test the performance of NN 

models for change in speed under no load condition. The 

tracking performance of the all three NN model is observed in 

Fig. 7 for a ramp speed command. Rotor speed is gradually 

decreased from 100% to 50% during 1 s to 2 s. Thereafter, the 

speed is maintained constant at 50% up to 3 s. Then rotor 

speed is gradually increased from 50% to 100% during 3 s to 4 

s. The performance of the NN models during the step change 

of rotor speed is shown in Fig. 8. Machine operation starts at t 

= 0 s and a constant reference speed of 100% is considered. A 

step change in the reference speed occurs at 1sec and the new 

reference value is 50%. At t = 2 s, another step change in the 

reference speed occurs, which goes back to 100%. The error 

curves between the actual and the estimated for step and ramp 

response of all the three NN models are shown. The 

performance of NN model at very low speed is shown in Fig. 

9 for operating condition-III. 
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(a) 

 
(b) 

 
(c) 

Fig. 5 Operating Condition-I for Step Change in Load:  

(a) SNC-NN  (b) MLFF-NN (c) SLFF-NN 

 
(a) 

 
(b) 

 
(c) 

Fig. 6 Operating Condition-I for Ramp Change in Load:  

(a) SNC-NN (b) MLFF-NN (c) SLFF-NN 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1699
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(c) 

 

Fig. 7 Operating Condition-II for Step Change in Speed:  

(a) SNC-NN  (b) MLFF-NN (c) SLFF-NN 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 8 Operating Condition-II for Ramp Change in Speed:  

(a) SNC-NN,  (b) MLFF-NN (c) SLFF-NN 
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(a) 

 
(b) 

 
(c) 

 

Fig. 8 Operating Condition-III for Low Speed: (a) SNC-NN 

 (b) MLFF-NN (c) SLFF-NN 

 

From the results obtained, it is observed that both the SNC-

NN and MLFF-NN model exhibit similar and excellent 

dynamic performance for transient speed changes where as 

SLFF-NN model shows poor dynamic performance as 

compared to SNC-NN and MLFF-NN models.  

The test MSE for various operating conditions for all the 

three NN models is evaluated and the maximum test MSE for 

all the three NN models are presented in the Table I. From the 

Table I, it is observed that the test MSE for SNC-NN and 

MLFF-NN is found to be similar and minimum as compared 

to SLFF-NN model. From the above analysis, it is understood 

that SNC-NN and MLFF-NN model have excellent mapping 

capability as they have multilayer structure when compared to 

SLFF-NN model. The SLFF-NN model has poor nonlinear 

mapping capability as it lacks the multilayer structure. 
 

TABLE I 

PERFORMANCE COMPARISON OF NN MODELS FOR FLUX ESTIMATION IN 

TERMS OF ACCURACY 

NN 

Architecture 

NN  

Model 

Test MSE 

Low 

Speed 

Speed 

Change 

Load  

Change 

SNC 6-15(h)-1 0.0023 0.0421 0.0044 

MLFF 6-15-15-1 0.0042 0.2541 0.0052 

SLFF 6-75-1 0.1017 3.2381 0.1078 

 

The structural compactness, computational complexity 

assumes importance in real time implementation to ensure 

faster execution time for effective control. This motivated the 

comparison of NN models in terms of structural compactness, 

computational complexity and execution time.  

B. Structural Compactness and Computational Complexity 

of NN models for On-Line Speed Estimation 

The structure of neural network model depends on the 

number of inputs, number of outputs and the degree of 

nonlinearity of the system.  

The number of neurons in the input/output layer is uniquely 

defined and is equal to that of inputs/outputs of the system to 

be modeled. The number of hidden layers, hidden neurons and 

the type of architecture are the choice of the design for a 

desired accuracy. For the desired accuracy, the number of 

hidden neurons is used as an index to measure the structural 

compactness of model. The neural network model with lesser 

number of hidden neurons is found to be compact and gives 

ease in real time implementation of the on-line flux estimator.  

The number of parameters and nonlinear function extraction 

in the network indicates its computational complexity. Each 

parameter warrants some mathematical operations. The 

number of parameters for SNC-NN can be calculated using 

(1). As SLFF-NN is a special case of MLFF-NN with one 

hidden layer, the same formula (2) suits both type of FF-NN.   
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For on-line speed estimation, the complexity of the model 

assumes importance as the computation/estimation time has to 

be small enough for effective control of induction motor 

drives. The mathematical complexity of the model is 

compared by determining the number of basic operations 
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needed by the NN model. This will depend upon the type of 

architecture and number of neurons.  

Let Na be the number of additions, Nm be the number of 

multiplications and Nnf be the number of nonlinear function 

extractions needed for the model. The time taken in real time 

by a processor for a given model can be easily computed if the 

time for the basic operations is known. Let ta, tm and tnf be the 

execution time needed for addition, multiplication and 

nonlinear function extraction. The total execution time Ttotal 

can be obtained as 

 

Ttotal = Na × ta + Nm × tm + Nnf × tnf        (3)   

 

This general approach helps to determine the execution time 

for any target processor. In this paper, ADSP-TS101 with 

operating clock frequency of 250 MHz is used for 

implementing all the NN models for on-line flux estimation. 

The execution time in micro seconds for the operations 

namely addition, multiplication, and non-linear function 

extraction are presented in Table II [17]. 

 
TABLE II 

TIME TO EXECUTE MATHEMATICAL FUNCTIONS ON ADSP-TS101 

Mathematical operation Execution Time (µs) 

Addition 0.004 

Multiplication 0.004 

Tan-Sigmoid {(e
n

- e
-n

)/(e
n

-e
-n

)} 0.224 

 

TABLE III 
PERFORMANCE COMPARISON OF NN MODELS FOR SPEED ESTIMATION IN 

TERMS OF STRUCTURAL COMPACTNESS, COMPUTATIONAL COMPLEXITY AND 

EXECUTION TIME  
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SNC 6-15(h)-1 15 232 216 216 15 05.09 

MLFF 6-15-15-1 30 361 330 330 30 09.36 

SLFF 6-75-1 75 601 525 525 75 21.00 

 

The parameters, neurons, computations and execution time 

required by the SNC-NN, MLFF-NN and SLFF-NN models 

are tabulated in Table III. From the Table III, it is seen that 

SNC-NN model requires much lesser number of hidden 

neurons (15) as compared to MLFF-NN and SLFF-NN that 

requires 30 and 75 hidden neurons respectively. Hence SNC-

NN model results in structurally compact model as compared 

to SLFF-NN and MLFF-NN model. The total number of 

parameters and computations required for SNC-NN is found 

to be lesser as compared to MLFF-NN and SLFF-NN. Hence, 

SNC-NN model is of lesser complexity as compared to SLFF-

NN and MLFF-NN model. Coding the models on ADSP-

TS101, it is found that SNC-NN model is 1.83 and 4.12 times 

faster as compared to MLFF-NN model and SLFF-NN model 

respectively. Thus, it can be concluded that SNC-NN 

architecture gives the most compact and mathematically less 

complex model with faster execution time for on-line speed 

estimation.  

The overall summary of the paper is detailed as follows: 

From the above analysis, it is inferred that the steady state 

and dynamic performance of SNC-NN and MLFF-NN model 

are found to be similar and superior as compared to SLFF-NN. 

The SNC-NN model resulted in structurally compact, 

computationally less complex model with faster execution 

time as compared to SLFF-NN and MLFF-NN models. The 

SNC-NN and SLFF-NN model can be self organized which 

greatly aids design automation where as MLFF-NN lacks the 

design methodology. Thus the SNC-NN model is observed to 

derive the advantage of multilayer mapping capability of 

MLFF-NN model and self-organizing feature of SLFF-NN 

model.   

Thus, it can be concluded that SNC-NN architecture 

provides the required accuracy, structurally compact, 

computationally less complex model with faster execution 

time. Besides, SNC-NN architecture can be self organized 

which gives ease in design. Hence, SNC-NN model is 

identified to be most suitable model for on-line speed 

estimation in sensorless vector controlled IM drives.        

VI. CONCLUSION 

The suitability of neural architecture for on-line speed 

estimation is investigated which is the major contribution of 

this paper. The on-line speed estimator is modeled using three 

types of Neural Architectures namely SNC-NN, MLFF-NN 

and SLFF-NN architectures. For comparison, all the three NN 

models are trained with same training data, algorithm and 

same accuracy. On testing, the SNC-NN and MLFF-NN 

models are found to be superior in terms of accuracy as 

compared to SLFF-NN model. 

The SNC-NN model resulted in structurally compact and 

computationally less complex model as compared to SLFF-

NN and MLFF-NN models. Implementing all the models on 

ADSP-TS101, SNC-NN model is found to be faster as 

compared to other two models. 

The SNC-NN model combines the advantage of self-

organizing feature of SLFF-NN and powerful multilayer non- 

linear mapping capability of MLFF-NN.  

Thus, it can be concluded that SNC-NN model is accurate, 

simple, self-organizing, structurally compact and 

computationally less complex and faster in execution time and 

found to be a promising alternative for online speed estimation 

in sensor-less IM drives.  

ACKNOWLEDGMENT 

The research project titled “AI techniques for Electrical 

Drives” is supported by the grants from the All India Council 

for Technical Education (AICTE), a statutory body of 

Government of India. File Number: No 8023/BOR/RID/RPS-

79/2007-08 and 8020/RID/TAPTEC-32/2001-02.  

 

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:12, 2011

1702

APPENDIX 

The parameters of the induction machine used for 

simulation are given in the table shown below. 
 

INDUCTION MOTOR PARAMETERS 

Parameters Values Parameters Values 

Rated Power 

Rated voltage 

Rated current 

Type 

Frequency 

Number of poles 

Rated Speed 

1.1kW 

415V 

2.77A 

3 Ph 

50Hz 

4 

1415RPM 

Stator Resistance (Rs) 

Rotor Resistance (Rr) 

Magnetizing Inductance (Lm) 

Stator  Inductance (Ls) 

Rotor  Inductance (Lr) 

Total Inertia (JT) 

Friction Coefficient (B) 

6.03Ω 

6.085Ω 

0.4893H 

0.5192H 

0.5192H 

0.011787Kgm2 

0.0027Kgm2/s 
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