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Abstract—Tsunami disaster poses a great threat to coastal 

infrastructures. Bridges without adequate provisions for earthquake 
and tsunami loading is generally vulnerable to tsunami attack. During 
the last two disastrous tsunami event (i.e. Indian Ocean and Japan 
Tsunami) a number of bridges were observed subsequent damages by 
tsunami waves. In this study, laboratory experiments were conducted 
to study the effects of perforations in bridge girder in force reduction. 
Results showed that significant amount of forces were reduced using 
perforations in girder. Approximately 10% to 18% force reductions 
were achieved by using about 16% perforations in bridge girder. 
Subsequent amount of force reductions revealed that perforations in 
girder are effective in reducing tsunami forces as perforations in 
girder let water to be passed through. Thus, less bridge damages are 
expected with the presence of perforations in girder during tsunami 
period. 
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I. INTRODUCTION 
SUNAMI is one of the most terrifying and complex 
natural disaster that may affect coastal area severely. 

Tsunami waves are long oceanic waves that are mainly caused 
by earthquake, volcanic eruptions, landslides etc. under the sea 
bottom. Movement of offshore tectonic plates causes 
earthquake that led to tsunami in the deep sea. Waves thus 
created, propagate with considerable speed from the 
originating sources toward the shore. Their wave lengths 
decelerate near the shoreline due to compressing effects of up-
sloping seabed and due to the reduced water depth. Upon 
entering the shallower water near the coast, the wave velocity 
decreases, however, the wave height increases. The 
devastating power of tsunami forces may ruin infrastructures 
including bridges, road structures, utilities, wooden and 
masonry houses. 

The destructive effects caused by 2004 Indian Ocean 
tsunami have demonstrated the demolition power of tsunami 
that raised the concern about the tsunami impact among 
people. Although earthquake and tsunami occur 
simultaneously in a coastal area, in many cases more 
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destruction could be identified to be done by tsunami rather 
than earthquake. Tsunami has the power to destroy or collapse 
the infrastructures including bridges in its course. Fig. 1 
showed the impact attributed by 2004 tsunami along coastal 
line in Indonesia. Several structural damages were featured by 
many researchers during 2004 tsunami [1]-[5]. Therefore, it is 
evident that the tsunami induced forces should be introduced 
in the design of coastal structures. 

 

 
Fig. 1 Effects of tsunami 2004, along coastal line and bridge 

structures in Banda Aceh, Indonesia 

II.  LITERATURE REVIEW 
Bridges are the most important lifeline infrastructures that 

could provide immediate rescue and supportive performance 
after any disastrous event. During the last two recent tsunamis, 
extensive bridge damages were observed by tsunami forces. 
Therefore, it has become imperative to explore bridge 
performance under tsunami loading and however, adoption of 
any remedial measure to minimize destruction level is also an 
important issue. In general, two types of damages are 
encountered by tsunami waves. That are, damages to bridge 
sub and superstructures. Damages to substructures are 
generally caused by scouring of foundation material around 
bridge pier while damages to super structures were featured by 
partial transverse deck displacement as well as total or partial 
wash out of bridge deck (Fig. 2). Bridge failure by excessive 
scouring of surrounding material is a common phenomenon 
that occurs frequently all around the world [6]-[9]. Like river 
flows, tsunami waves also contribute a lot to the extreme 
removal of foundation material resulting in severe bridge 
damages. Flow velocities play a crucial role in controlling 
structural behavior of bridge substructures [10], [11]. 
Therefore, different loading conditions should be considered 
to understand the nature of damage pattern. Some of the 
damaged bridges by tsunami were shown in Figs. 3-5. There 
are limited research on estimating tsunami forces on bridge 
girder due to the complex nature and interaction between near 
shore wave and structures. Most of the researches were 
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concentrated on tsunami force impacts on vertical wall type’s 
structures; however, little attention was given to bridge 
damages. Post tsunami surveys provided the reported the 
needs for estimating and evaluating tsunami forces on bridges. 
This study focused on bridge performances with consideration 
of perforations in girder during tsunami event. 
 

 
 

 
 

 
Fig. 2 Bridge damage due to tsunami attack in Banda Aceh (a) Total 
Wash-Away of Deck [7] (b) Excessive Deck Displacement [12] (c) 

Damaged steel truss bridge with damaged cement plant in the 
background in Lhok Nga, Banda Aceh 

 
Fig. 3 Tsunami wave destroyed bridges on Wailuku River, HI, 1946 

 

 
Fig. 4 Damaged Miyako Bridge and Yamada Railway Bridge during 

Japan Tsunami 
 

 
Fig. 5 Damaged Numata-Kosen bridge during Tohoku Tsunami 

 
Evidences showed that in Sumatra, 81 bridges out of 168 

were washed away by 2004 tsunami waves that occupied 250 
km road section on the northwestern coast of Sumatra Island 
[13]. A number of researches were performed to investigate 
bridge performance and to estimate tsunami induced forces on 
bridges under tsunami loading through physical simulations 
[14]-[19]. Impacts of tsunami forces were evaluated by 
placing I-girder bridge deck on the dry land [20]. Results 
showed that the slowly-varying drag force on the bridge deck 
which followed the impulsive force, averaged over a 0.5s 
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duration, could be well predicted with wave height-dependent 
formula stipulated by the Japan Port and Harbour Association 
[21]. Other experiments were performed by placing box type 
bridge decks with abutments on a wet bed at certain height of 
still-water [22], [23]. 

Experimental results illustrated that, for the tsunami 
simulation, maximum forces and maximum velocity were 
found to occur at the same time [23]. The impacts of 
hydrodynamic load on piers with the presence of deck were 
identified through simulation of pier deck combination [24]. 
Bridge deck could obstruct the free flowing and topping over 
the wave before impinging the pier and thus fluid is captured 
in front of the piers creating larger pressure on them. 
Experimental results showed that the presence of deck could 
augment hydrodynamic pressure on pier as much as 50% 
when compared to only pier model. Some other experiments 
were performed to measure tsunami forces on the coastal 
structures [25]-[27]. Based on experimental results, formula 
was proposed for measuring tsunami fluid forces that attack 
structures behind the sea wall [27]. 

III. EXPERIMENTAL SET UP 
Physical experiments were conducted in a wave flume of 

17.5m long, 0.60m wide and 0.45m high (Figs. 6 and 7). The 
flume was divided into two sections with the upstream part 
served as a reservoir for generating tsunami whilst the 
downstream part was used to simulate tsunami propagation 
and tsunami force on model structures. A simple quick-release 
mechanism was used to open the gate with 100-kg weight 
connected to the gate and a winch with the strings. The sudden 
release of the gate allowed water to propagate abruptly to 
simulate tsunami like waves. The experimental setup in this 
research was similar to physical model used by Triatmadja and 
Nurhasanah [28] and Arnason et al. [29]. The flume was also 
equipped with a pump to fill the reservoir and an outlet to 
drain the downstream part of the flume. 

 

 
Fig. 6 Experimental Setup 

 
Fig. 7 Quick release mechanism 

 
A 1/100 scale bridge model with three girders was placed 

inside the wave flume. The bridge model was prepared by 
Perspex material. Water was reserved in the reservoir and then 
allowed to flow that could produce several wave heights prior 
the bridge model. For this investigation three different 
reservoir depths were chosen based on the maximum flow 
depth that could occur near the bridge location in the absence 
of the model. Two bridge configurations were investigated as 
shown in Fig. 8, viz. the first one was solid girder bridge and 
the second one was with approximately 16% perforations in its 
girder. The bridge model was attached to a steel plate that was 
linked to a vertical rod. This rod could swing freely on a 
hinge. A small pin was connected to the top of the rod that 
pressed a load cell when tsunami hit the model. Thus, forces 
were recorded in the load cell. Recorded values were adjusted 
by load cell calibration factor and handling factor in order to 
get the exact forces that was exerted on the bridge model. 
Water splashing over the bridge girder produced some 
additional forces on the rod. But, after experiments it was 
found that this rod assigned only 2~3% forces on the bridge. 
Fig. 9 is a photograph of the bridge model installed in the 
wave flume. In order to measure the wave height, a series of 
wave recorders were installed at selected stations. The 
distance between the adjacent stations, from Station 1 to 
Station 4, was 1 m, as depicted in Fig. 6. Table I represents the 
details of bridge girder. 

 
TABLE I 

DETAILS OF BRIDGE GIRDER 
Girder Models Solid Perforated 

Vertical projection area of each girder 
(mm2) 3750 mm2 3750 mm2 

Vertical projection area of the slab 750 mm2 750 mm2 
Perforation area (percentage) in girders 0 mm2 (0) 600 mm2 (16 %) 
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Fig. 8 Bridge model (solid and perforated) 
 

 
Fig. 9 Photo of the bridge model installed inside the flume 

IV. EXPERIMENTAL RESULTS 
The present investigation includes the experimental 

modeling of wave forces acts on a bridge girder struck by a 
tsunami. It includes the advantages in introducing perforations 
in bridge girder in assessing tsunami forces that attacks the 
bridge structures. Three different reservoir depths were 
considered that produced three different wave heights adjacent 
to the bridge model. Waves were propagated from right to left 
side of the model bridge. Fig. 10 showed the sequential attack 
of tsunami waves to the bridge model. 

 
Fig. 10 Snapshots were taken during the wave attacking bridge model 

 
The time history of wave heights and the total forces for the 

three different wave heights were depicted in the Fig.11 and 
Fig. 12, respectively. The front of the coming waves had 
smaller height that attacked the base of the bridge pier with 
maximum velocity. With time, velocity decreased and wave 
height increased and hit the bridge girder. While hitting the 
girder, waves splashed strongly and then overtopped the 
girder. Recorded wave heights during overtopping were 
almost twice as the real wave height that might occur near the 
bridge location inside the flume without the present of model. 

 

 
Fig. 11 Measured time histories of tsunami wave height 
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