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Abstract—This paper describes a methodology for remote
performance monitoring of retail refrigeration systems. The proposed
framework starts with monitoring of the whole refrigeration circuit
which alows detecting deviations from expected behavior caused by
various faults and degradations. The subsequent diagnostics methods
drill down deeper in the equipment hierarchy to more specifically
determine root causes. An important feature of the proposed concept
is that it does not require any additional sensors, and thus, the
performance monitoring solution can be deployed a a low
installation cost. Moreover only a minimum of contextua
information is required, which also substantially reduces time and
cost of the deployment process.

Keywords—Condition monitoring, energy basdlining, fault
detection and diagnostics, commercial refrigeration.

|. INTRODUCTION

HE refrigeration system typically consumes more than

50% of the total supermarket energy [1]. Henceit ishighly
important to operate the refrigeration system at its optimum
performance level. Undetected faults or equipment
degradations can cause economic losses and potentially violate
existing dtrict regulations regarding the food quality. The
reduction of the equipment downtime, service cost and utility
cost are the main drivers for on-going research in the
refrigeration fault detection and diagnostics area.

There are severa approaches how to handle the faultsin the
sysem. The simplest but most expensive is to perform
corrective actions only in response to equipment failures —
fault based corrective maintenance. Smarter and widely used
approach is the so-called preventive maintenance. In this case
the maintenance is performed regularly in selected time
intervals, which are typicaly based on the equipment
manufacturer recommendation. But dtill, the particular
equipment condition is not taken into account. In contrast to
that, the condition based maintenance (CBM) aims to trigger
the maintenance action at the time when it is necessary, i.e.
when there is a clear evidence of deteriorating performance. If
the monitoring is done in a systematic way, many “hard” faults
can be detected, which would otherwise cause the system to
stop functioning. Moreover in case of degradations (slowly
evolving “soft” faults) the optimum maintenance schedule can
be determined.
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Faults can be detected at various levels of the equipment
hierarchy: the system or circuit level is good for detecting
general faults, while the equipment or device levels can help to
detect specific problems, such as the stuck expansion valve.
Performance monitoring of the refrigeration system may
include aspects of monitoring and processing of alarms,
monitoring of process data (temperatures, pressures), and
monitoring of electricity consumption.

Typicaly the refrigeration monitoring and control system
activates alarms whenever the measured values of key
parameters (e.g. case temperatures, compressor discharge
pressure) are out of their predefined ranges. This is the
commonly used method for indication and alerting of potential
problems. Analysis of alarm logs can provide additional
insights. Both manual and advanced pattern recognition
methods were described in the literature [2], [3]. Sequences or
combinations of alarms can be learned from historical data,
and consequently used in real-time for detection of specific
faults in the current operation.

From the on-line monitored process data it is possible to
calculate performance metrics characterizing the system as a
whole, or its individual parts. Coefficient of performance
(COP), which is widely used for monitoring of chillers and
other vapour compression cycle equipment, might be used asa
natural metric for the system-level monitoring. COP is
evaluated as the ratio between the delivered cooling energy
and the total energy input. However the coefficient is very
hard to caculate due to usually missing mass flow
measurements. Cooling output is then often replaced by the
cooling demand, assuming that it is met, calculated by a
model, which takes into account occupancy schedules, case
door open signals and other inputs.

In the electricity consumption monitoring scenario, the
measured power is systematically compared with a referential
value (baseline) and any maor discrepancy is reported.
Several approaches can be used to construct the baseline. First
one determines the expected energy consumption from the
manufacturer data for electrical devices (compressors, fans,
door heaters) adjusted to the actual operating conditions [4].
The other way is to model the baseline statisticaly as a
dependency between the energy consumption and suitable
explanatory variables.

Independently of its technical approach, any performance
monitoring solution has to address the following list of typical
requirements and desired features, which is a blend of end-
user’s and solution provider’s perspectives..
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e Simplicity and
applicability without additional tuning work.

* No additional sensors — this requirement is aicglp
barrier for the deployment of more sophisticatedhoés that
require more data.

e Minimum deployment efforts (costs) — the lesstesh
information is required the better.
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robustness — ensure wide solutiomeasurements and relationships in the refrigeratigstem

while neglecting some details. As the need for extoial
information is significantly smaller, these methodse
relatively widely applicable, robust and having low
deployment costs. On the other hand they may Isedlesurate
when applied to time series data with short sarggberiod (in
minutes). Usually a reasonably good compromise inode

¢ Reasonable computational burden — applies to bostructure can be found as will be also documentddliowing

controller-embedded (on-line) and server-based -lifue)
analytics.

* Model adaptability — as the control strategies aften
changed throughout the season (year) to cope wvething
operating conditions, any models used
monitoring need to be adaptable as well.

« Ability to cope with data inconsistencies, sushnaissing
data or outliers.

» Mitigation of false alarms using confidence bosina
similar techniques.

¢ Monetization — ability to convert information alidaults
into cost impact.

» Clearly arranged, easily readable and interptetedsult
visualization.

This paper describes overall concept of a
performance monitoring solution whose core fundliy is
based on a substantially enhanced method for ene
monitoring and baselining. An important aspect ¢ t
proposed solution is that it does not require mihan the
“typically available sensor set”, which is undersias a group
of sensors that can be found practically on argy si¢spite the
rather large variety in types of systems and smtugiroviders
involved.

The paper is structured as follows. Firstly the rgpe
baselining methodology is described (section II§luding
overall system architecture, associated fault aegratiation
detection capabilities in dedicated subsectionsis Tis
followed by examples of lower level
diagnostics methods in section Ill. Finally the closions are
made.

Il. ENERGY BASELINING

Several alternative approaches can be used foltapeaent
of energy baseline models for commercial refrigerat
systems. But each has some pros and cons.

Energy models can be based on the first principlbgsics,
thermodynamics or chemistry. But they require a odt
contextual information that is very difficult to gén an
automated way, because there
language (ontology) used by the refrigeration vesdor
solution providers for the system description. $9 anodel
which requires rich contextual information is natho quite
difficult and time consuming to build but it is aldardly
portable to other systems.

Statistical models bring more robustness in ternfis
portability and scalability as they are often basely on basic

remo

sections.

A.Remote Monitoring Architecture
The remote performance monitoring system itselsia of

in perforraanc,se"eral parts as illustrated in Fig. 1.

System data and electricity measurements are tedlday
the local control system and transferred via a kaitg( TCP/IP
based) to the data warehouse, which is deployed remote
data center. This data transfer is usually perfarinea batch-
wise manner, e.g. once per hour. This is apprapriet the
remote performance monitoring analytics are nopsspd to
run in real-time. Instead, they are used to suppbe
interactive work of an energy analyst in the rends&a center.

The data is further processed in the remote dateiceRaw
data integrity checks are applied to the seleatiodata points
peeded for specific calculations and evident oliare
removed. Consequently, the data points are synzedrand

tionally aggregated in time (e.g. averaged) keefbey enter
ﬁ% core baseline modeling algorithm. The comparisbthe
measured actual data with the expected energy owisn
(provided with confidence bounds) produces a lidt
deviations, which are further processed in theaweiag layer.
The final output for the user (energy analyst ogrepor in the
remote monitoring centre) is the information whetlike
monitored system is working properly or if theree aany
obvious faults or issues that require further itigasgion.
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Fig. 1 System Architecture

is no standard common

Two types of faults can be detected by the remoédytics
at the refrigeration system (circuit) level — img&neous
anomalies and long-term degradations, which arigdtigte of
faults with completely different dynamics.

B.Data Pre-processing

Invalid or missing data has to be properly handiedause
otherwise they could cause misleading results. llidesome

(0]
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basic form of data pre-processing can be done Nodaf
control hardware,
warehouse. However, this is not always possible.

Three data pre-processing tasks can be distingliishthe
remote monitoring system. The first one is to reenagaw
outliers, i.e. the data outside associated vabdatianges.
Some less evident outliers can be actually lethéndata since
the proposed robust regression method (subsecfida &ble
to cope with them. In the second task, individuilet series
are synchronized and, in the third one, they agreagated in
time. The aggregation step is important as it h&dpsitigate
the impact of transient system dynamics. Effeciggregation
can eliminate the need for a dynamic baseline masleich
would otherwise increase the overall solution camny.

C.The Core Algorithm

The core algorithm is based on the locally weighte

regression technique [5], [6], [7] which was sedelctas a
method allowing to meet many of the challengingiirezments
summarized in section .

The model defined in [8] can be adopted for theppse of
energy baseline modeling. Let's assume sequences

independent variableg, = (xi,...,%) and dependent variable

Yy = (Yi.---, W), Wherex, is a vector of lengtim. Further, it is
supposed that the relation betwegrandy, can be described
by stochastic functional relationshyp= f(x), k = 1,...,N The
data vectorx can be mapped onto a feature veaigro(Xy),
possibly of much higher dimension p. This givesoagibility
to express the functional mappif{g as a parametric model,
which in our case is the linear regression for aualar
responsey.
yk = ¢k9 + gk (1)
where g is a noise term and is a vector of local model
coefficients to be estimated from

-1
0= (¢kTWk¢k) ¢kTka (2
An estimate of the dependent variable is then obthby
Y =40 3
~ T -1, 7
5 =aup W8, ) 8 Wy @
N
9k = z Ii Yi (5)
i=1

humidity, augmented with time variables and metrics

before the data is uploaded te thiepresenting the load imposed by occupants.

The local regression method satisfies the adaftabil
requirement by including a serial time variablettire set of
explanatory variables. Moreover, possible globial terms of
the whole space of operating conditions - non-linea
relationships can be effectively approximated bgaldinear
(in coefficients) dependencies.

From the mathematical point of view there is onlyeo
strong assumption for calculation of the estimafe the
expected energy consumption: the invertibility bé tmatrix
(9'Wip) when computing the weighted least square
estimation of regression coefficients accordinggoation (2).
These practical difficulties can be avoided by erdlugh data
integrity check applied before the estimation alton itself.

Application logic, which is adapted to the specificmain

f refrigeration systems, divides the required eerset into

WO groups mandatory measurements and optional
measurements. The expected energy consumption tcheno
calculated in rare cases when any of the mandalatey points

is missing. When available, the optional data Eoimtlp to
improve the estimation accuracy that can be obdeovethe
vidbith of calculated confidence bounds.

The local regression algorithm is implemented inag that
a series of predictive models is built on-the-ity & series of
states (query points). These energy consumptionefacare
created locally considering only the most similatad points
(N-dimensional list of selected explanatory varg)) which
are weighted by a selected kernel function. Theghtéig
function secures the localness of the model asssigas a
weight to each data point based on its relativeadee, such as
normalized Euclidean distance, from the query pimirihe N-
dimensional space. The size of the neighbourhoodrar the
query point, and thereby the number of points usedthe
model identification, is affected by the chosen nieér
weighting function and by the bandwidth parametsglied to
each individual explanatory variable.

Though there are methods for an automated bandwidth
selection [9], the preferred way is to exploit themain expert
knowledge to estimate optimum values of these peatens in
advance. The second important parameter to be chsdbe
polynomial order for each explanatory variable. Tiual
values are 0, 1 or 2. In fact, setting the polyradroirder to
zero means to build so called nearest neighbouightesl
average model [10], [11]. This simple kernel smaowh
method is quite popular, however suffers from theé bias
especially on the edge of the area given by thedtdunction
span. Polynomial orders in the presented modelmeal,
seldom quadratic - were selected according to dgdec
physical dependencies as a trade-off between tas &nd
variance of the estimate. .

where W, is a weighting matrix. The last equation (5) D-Anomaly Detection

demonstrates the linearity yn

The refrigeration system is modeled using a sefesét of
explanatory variables. This is very often some doatipn of
outdoor and indoor air parameters, such as temperatr

Anomaly is a temporal event with unusual energy
consumption, i.e. when the energy consumption aeiee
upper confidence bound of the expected value etginTehe
expected energy consumption for given time is eateldi using
the local data (serial time is also one of explanatariables)
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except the data in the nearest time vicinity. Tikiglone in
order to exclude potentially anomalous data fromhhseline
estimation.
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Fig. 2 Weighting for anomaly detection
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It actually means that only the data points insideinterval
defined by the selected time bandwidth (e.g., 3 th&)nare
used for the baseline evaluation when the kernigl @ompact
support is considered. The same weighting mecharigsm
applied in all other dimensions. Fig 2 illustrategy the time
localness and adaptation capability of the anondalection
algorithm. Should any set point or even the whatetol
strategy be changed, the algorithm builds the eetl
consumption from the similar data within the kertigle span
with weights applied to all other explanatory vatés — both
external and internal conditions. Then the domingaitern of
the similar data points determines the result.

ANOMALY DETECTION: CircuitBPower
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Fig. 3 Anomaly detection example - no anomaly detbc

In practice it means that any control strategy geawith
non-negligible influence is potentially detectedlyoonce -
possibly as a false alarm - and therefore the gnarglyst
should check the results against the control gjyatgata.
Anomalies detected immediately after the contrrdtegy has
changed should be dismissed.

Fig. 3 provides demonstration of the anomaly deiact
algorithm applied to real data. The first plot cargs the
actual energy consumption with the estimated onée-—
predicted by the local model. The monetizationhaf fault is
straightforward because the discrepancy is meadtiredtly
in kilowatts. In this particular example no faulasvdetected.
There were only small deviations that — after pssagg by the
fault reasoning module - didn't flag any specifwilt.

E.Degradation Detection
In contrast to anomalies, any degradation is ugaadlowly

2517-9438
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developing process that negatively affects the esyst
performance. Typical examples in the refrigerasgatem are
the refrigerant leakage, condenser coil foulingcompressor
oil quality degradation. One implementation chajlerof any
degradation detection algorithm is that the impaut
degradation differs for various system operatingditons.
Then the degradation process can be assessed egviobs
system performance for the same or very similaditamms for
a sufficiently long time interval given by the tgpi
degradation dynamics. Mean degradation level oviér a
possible operating conditions for given time span be then
evaluated.

applied weights
Query point—__

one season (year) offset

Fig. 4 Wéighting funciion in time dimension - deuj;uﬂon detection

The local models based only on the recent dataatann
principle provide the degradation detection abitigcause the
time distance between the similar data used tallih# model
and the actually measured data is too short cordptrea
typical time scale when the degradation has a délepact on
performance. The data used for the baseline cansmnu
should be thus drawn from the history when the esyst
operated at its peak performance. The fixed distdratween
the actually investigated (queried) point and thedbe of time
weighting kernel function was chosen (Fig. 4).

DEGRADATION DETECTION: CircuitBPower
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Fig. 5 Degradation detection example - worse peréorce than last
season for certain driving condition was detected

L
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One year proved to be a good choice as the similar
conditions in terms of weather can be expected haimene
year old data. The progress of degradation carsbesaed on
a continuous basis. The increasing trend of theiatiem
between the measured and expected energy consamptio
means that the particular equipment or systemterideating.
Non-negligible variance of this deviation can beserved as
the degradation varies for different operating c¢towl
throughout the year.

An average degradation trend can be optionallyrdeted
from the regressed curve and used as an imporput for the
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optimum maintenance planning. Fig. 5
degradation detection algorithm applied to the sdata as in
Fig. 3. The key difference is that the local modetre now
built based on the last season data. The resultsate the
system was performing better last year for someyeaof
operating conditions. The degradations were evatbah real
test data from several sites using more than ore g
history. At some sites the deviation between theeo and
last year energy consumption for similar operatingditions

was significant and helped the analysts at the remq

monitoring centre to prioritize further investigats.

F.Fault Reasoning

A clear decision about the fault presence cannobdsed
only on a single deviation between the actually snead
energy consumption and the baseline. Thereforeihportant
to add a fault reasoning layer at the top of thdt fdetection
functionality. In more general context [12], thest®m
observations specified by one or more rules ardecal
symptoms. Each fault then can have several symptbats
support the particular fault presence (also cafledtributing
or admitting symptoms) and, on the other hand,atsao have
set of symptoms that deny the particular fault @nes (also
called excluding or cancelling symptoms). Faulielikoods
can be calculated based on the evaluated relesappdrting
and excluding) symptom values within pre-definedheti
window.

Two types of faults are considered in the preseoteatept
— anomaly and degradation faults. The relative ate
between measured and upper confidence bound of
estimated baseline is considered as an instantarsooptom
relevancy. Both faults have just one symptom supmprthe
fault presence and actually no symptom that wowdydthe
fault. Various reasoning techniques [12] can bdadtqa when
transforming symptom to the fault likelihood. Theegented
solution implements a robust moving average fitigri
technique. The fault is then reported wheneveratjgregated
level exceeds a predefined threshold. This subatint
reduces the number of events reported to the apevdiile
ensuring that none of the most important is missed.

The system level performance indicators discussed
previous sections need to be augmented with equipheeel
analytics with the capability to detect specificulfa and
initiate respective corrective actions. Equipmergvel
monitoring significantly narrows the scope of tlavllevel
fault searching process. Examples of two analyjoglied to
compressors - as the most expensive and mostatniieces
of equipment within the refrigeration system - previded in
the following sections.

EQUIPMENT LEVEL MONITORING

A.Compressor Rack Monitoring

2517-9438
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illustratese th The power or amperage of each compressor in tHeisac

usually available. In this situation, the model floe individual
compressor amperage draw can be constructed fraitable
measurements (suction and discharge pressures
temperatures, refrigerant properties and rack obsignals).
The presented work was focused on the most typical
compressor type - reciprocal - however the modeksire is
general enough so that also other types of compessin be
modeled with sufficient accuracy. When any of coesgsors in

he rack is working inefficiently due to some fadu(e.g.,
leaking valve, increased friction) its capacitydecreased and
other compressors have to compensate the misspacita
This means that the original relations capturethénmodel are
broken and this can be observed as a deviation eketw
expected and modeled compressor amperage for gateof
variables.

and

Compressor asured vs estimated amp draw

21:00 00:00 12:00 15:00 18:00

21:00 00:00 03:00 08:00 09:00 12:00 15:00 18:00
Time

Fig. 6 Compressor amps draw monitoring

Fig. 6 illustrates the effect of an artificiallytinduced fault
on the deviation between the measured amperageitand
baseline

B.Liquid Slugging Predictive Detection

Slugging is a process when the large quantitiesiqoid
refrigerant enter the compressor. This can havey ver
detrimental effect on the compressor performannesdme
extreme cases, the machine can be completely gedtro
YThere are several mechanisms, how the liquid shaggi
originates, described in literature (e.g., [13]heTkey task is
to predict the liquid slugging before it actuallggpens, i.e. to
detect any dangerous trend in the monitored canditithat
will likely lead to the liquid slugging.

One possibility is to exploit existing rule basedult
detection frameworks such as described in [12h mutshell,
each liquid slugging causing mechanism was destribea
set of rules — symptom based on the available meamnts.
There are number of symptoms that contribute toaoicel the

Compressor rack is one of the most vulnerable anitelihood of the liquid slugging fault. These depencies are

expensive parts of the supermarket refrigeratiostesy.
Usually there are several compressors (typicalg) Bistalled
in one rack to deliver the expected cooling load.

given by a fixed mapping table between faults amdptoms.
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Fig. 7 AFDD engine — example

A,B,C,D,EF ... measurements
Thr... Thresholds

They are defined on various levels of the refriera
system according to the particular measurementsaailiy.
The methodology is very robust regarding to theseen
requirements. It means that, e.g., the target isysten have
only the measurements of the refrigerant properéieghe
common suction line at disposal and the algoriterstiil able
to provide some useful results.

Of course, a richly instrumented refrigeration sgstwith,
e.g. the superheat measurements at each evaporatam, be
diagnosed much better, i.e. the liquid sluggindtféar better
— increased danger of liquid slugging) can be ®dcto its
origin. The original approach is enhanced by cimginihe
AFDD (automated fault detection and diagnosticsyimes
(see Fig. 7.) from distinct levels of the system.

IV. CONCLUSION

The paper introduced several concepts and algasittam
remote performance monitoring of the
refrigeration systems. In particular, the methodtfe system
(circuit) level relative performance indicator avation based
on the energy consumption baselining was propdsatiows

distinguishing between the anomalies and degrassatio

detection. Both algorithms were validated agaiest site test
data. Subsequent fault diagnostics can be suppadnied
dedicated equipment level methods described briftiie end
of this paper.
deployment cost as there are very modest sensoireetgnts
(satisfied already by overwhelming majority of @nt
installations — no additional sensors required) eeny limited
contextual information is sufficient for the algtwin
initialization.
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