
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

660

 

 

  

Abstract—Performance of a limited Round-Robin (RR) rule is 

studied in order to clarify the characteristics of a realistic sharing 

model of a processor. Under the limited RR rule, the processor 

allocates to each request a fixed amount of time, called a quantum, in a 

fixed order. The sum of the requests being allocated these quanta is 

kept below a fixed value. Arriving requests that cannot be allocated 

quanta because of such a restriction are queued or rejected. Practical 

performance measures, such as the relationship between the mean 

sojourn time, the mean number of requests, or the loss probability and 

the quantum size are evaluated via simulation. In the evaluation, the 

requested service time of an arriving request is converted into a 

quantum number. One of these quanta is included in an RR cycle, 

which means a series of quanta allocated to each request in a fixed 

order. The service time of the arriving request can be evaluated using 

the number of RR cycles required to complete the service, the number 

of requests receiving service, and the quantum size. Then an increase 

or decrease in the number of quanta that are necessary before service is 

completed is reevaluated at the arrival or departure of other requests. 

Tracking these events and calculations enables us to analyze the 

performance of our limited RR rule. In particular, we obtain the most 

suitable quantum size, which minimizes the mean sojourn time, for the 

case in which the switching time for each quantum is considered. 

 

Keywords—Limited RR rule, quantum, processor sharing, sojourn 

time, performance measures, simulation, loss probability. 

I. INTRODUCTION 

NDER the RR (Round-Robin) rule, a processor allocates 

to each request a fixed amount of time, called a quantum, 

in a fixed order. If a requested service time (the total time 

required from the processor) is completed in less than the 

quantum, the request leaves; otherwise, it feeds back to the end 

of the queue of quantum waiting requests (called a quantum 

waiting queue), waits its turn to receive another quantum of 

service, and continues in this fashion until its requested service 

time has been obtained from the processor. In such an RR 

paradigm, the service ratio for individual requests decreases 

with an increase in the number of arriving requests. Therefore, 

in theory, the sojourn time of each request increases to infinity 

with an increase in the number of arriving requests. In order to 

prevent such an increase in the sojourn time of each request in 

an RR paradigm and to develop a realistic model of sharing, a 

method for limiting the number of requests being allocated 

quanta is considered. In such a limited RR system, the sum of 

the number of requests being allocated quanta is kept below a 

fixed value (called the service number restriction). Arriving 

requests that cannot be allocated quanta because of such a 
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restriction are entered in the queue of service waiting requests 

(called a service waiting queue) or rejected. Practical 

performance measures, e.g., the mean sojourn time of requests, 

the mean number of requests, and the loss probability of such 

limited RR systems, are evaluated via simulation. Moreover, in 

order to clarify the performance of the realistic limited RR rule, 

two queuing methods of an arriving request are also considered. 

The performances of the two methods are compared.  

In order to evaluate these practical performance measures, 

we propose a new simulation algorithm. In this simulation 

algorithm, first, the requested service time of an arriving 

request is converted into a quantum number. One of these 

quanta is included in an RR cycle, which means a series of 

quanta allocated to each request in a fixed order. The service 

time of such an arriving request can be evaluated using the 

number of RR cycles required to complete the service, the 

number of requests receiving service, and the quantum size. 

Then, at the arrival or departure of other requests, an increase or 

decrease in the number of quanta that are necessary before 

service is completed is reevaluated. Tracking these events and 

calculations enables us to analyze performance for our limited 

RR rule. Moreover, by considering the switching time for each 

quantum we obtain the most suitable quantum size for 

minimizing the mean sojourn time. 

The processor-sharing (PS) rule, an idealization of 

quantum-based RR scheduling in the limit where the quantum 

size becomes infinitesimal, has been the subject of many papers 

[1]-[2]. A limited PS system, in which the number of requests 

receiving service is kept below a fixed value, has also been 

proposed, and performance of this system has been analyzed 

[3]. Moreover, the influence that the variability of the job size 

or the quantum size in the presence of switching overhead gives 

to the mean sojourn time in the non-limited RR rule has been 

evaluated [4]-[6]. However, practical performance measures of 

the limited RR rule have not been studied. Moreover, the 

influence that the quantum size or the service restriction 

number may have on the mean sojourn time, the mean number 

of requests, or the loss probability in the limited RR system 

have not been clarified. 

II. LIMITED ROUND-ROBIN RULE 

A. Quantum Allocation 

In the limited RR rule, the sum of the requests being 

allocated the quantum is kept below a fixed value. An arriving 

request that cannot be allocated the quantum because of such a 

service number restriction will be entered in the service waiting 

queue (called the queuing system) or rejected (called the loss 
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system). In the queuing system, at the end of service for a 

request, another request is taken from the service waiting queue 

and is allocated the quantum.  

Two queuing methods of an arriving request to the quantum 

waiting queue are considered. In the end-in method, an arriving 

request is queued to the end of the quantum waiting queue. In 

the top-in method, it is queued to the top of the quantum 

waiting queue. The waiting time before the first quantum is 

allocated to an arriving request (called the waiting time) is 

extended in the end-in method, but the time from the first 

quantum allocation to the end of service (called the service 

time) is shortened. In contrast, the waiting time may be 

shortened in the top-in method, but the service time may be 

extended. Therefore, the mean sojourn times of these two 

methods, which are obtained as the sum of the respective mean 

waiting times and mean service times, have to be compared. 

Moreover, in the limited RR system in the presence of 

switching overhead, the suitable quantum size, which 

minimizes the mean sojourn time, may be obtained. Therefore, 

the suitable quantum size has to be studied in various limited 

RR systems, such as the queuing system, the loss systems, the 

top-in system, or the end-in system. 

B. Simulation Algorithm 

In the simulation program the variable time increment 

method, in which the simulation time is skipped until the next 

event that causes a change in a system state occurs, is used in 

order to shorten the simulation execution time. Events that can 

cause a change in a system state in the simulation of the limited 

RR system include the following.  

1. Arrival of a Request 

When a request arrives, the waiting time is obtained, in the 

case of the top-in method, from the number of requests waiting 

for the first quantum to be allocated (requests that have not 

received service yet) depending on the quantum size plus the 

time before the start of the next quantum after the arrival of the 

request (Fig. 1). On the other hand, in the case of the end-in 

method, this time is obtained from the total number of requests 

in the quantum waiting queue, which is the sum of the requests 

receiving service and the requests waiting for the first quantum 

to be allocated, again depending on the quantum size. The time 

until a next request arrives is also calculated according to a 

predetermined distribution, e.g., the exponential distribution, 

the hyper-exponential distribution, or the Erlang inter-arrival 

distribution.  

 

 

Fig. 1 Waiting Time 

2. Start of Service  

At the beginning of a service request (the first quantum 

allocation), first, the quantum number required to complete the 

service is obtained from the requested service time S�over the 

quantum length ql.The service time of this arriving request S�is 

obtained from the time required to complete the RR cycles plus 

a portion of the left quantum.Each RR cycle includes one of the 

quantum numbers obtained above. That is,  

 

S� � �loor	S� ql� � ql � n � S�⁄ � �loor	S� ql⁄ � � ql      (1) 

 

Here, n represents the number of requests receiving service, 

and floor (value) returns the next lowest integer value by 

rounding down, if necessary. Sr is also calculated according to 

the predetermined distribution. 

Each quantum allocated to an arriving request is inserted into 

the existing RR cycle, as shown in Fig. 2. Therefore, the 

remaining service time of the requests receiving service is 

extended as 

 

 S� � S� � ceil	S� ql� � ql   ⁄                      (2) 

 

Here, So represents the remaining service time of each 

request just before the first quantum is allocated to an arriving 

request. Further, ceil (value) returns the next highest integer 

value by rounding up if necessary. 

 

 

Fig. 2 Inserted quantum 

3.  End of Service  

At the end of service for a request, the quantum allocated to 

this request is removed from the existing RR cycle, as shown in 

Fig. 3.  
 

 

Fig. 3 Removed quantum 
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Therefore, the remaining service time of each request is 

shortened as 

 

S� � S� � �loor	S� ql� � ql⁄                      (3) 

 

Then, a request in the service waiting queue in the queuing 

system is taken, and the time until the first quantum is allocated 

to this request is calculated, using the procedure shown in 

Section II.B.1.  

Tracking these events and calculations enables us to evaluate 

practical performance measures, e.g., the loss probability, 

waiting time in the service waiting queue, and mean sojourn 

time for requests. 

III. EVALUATION RESULTS 

In the evaluation, the two-stage Erlang inter-arrival 

distribution and the two-stage hyper-exponential requested 

service time distribution are considered. Evaluation results are 

obtained as the average of ten simulation results. About 70,000 

requests are produced in each simulation. 

A. Non-Limited RR System 

Fig. 4 shows the evaluation results for the relationship 

between the mean sojourn time (shown as round makers) and 

the quantum size in the non-limited RR system. Here, Ar 

represents the arrival rate of requests. In this figure the mean 

waiting time (shown as cross markers), which is included in the 

mean sojourn time, is also evaluated. 95% reliability intervals 

obtained from the ten simulation results are included in the 

range of markers. The evaluation results for the quantum size of 

0 are obtained using a simulation program for the limited PS 

system [7].  

  

 

Fig. 4Comparison of sojourn time in non-limited RR system (Ar = 0.6, 

Sr = 1) 

 

With an increase in the quantum size, the mean sojourn time 

increases in both the end-in method and the top-in methods. 

The mean waiting time in the case of the end-in method 

increases more rapidly than in the case of the top-in method. On 

the other hand, the mean service time in the case of the top-in 

method increases more rapidly than in the case of the end-in 

method. As a result, the mean sojourn times in the case of the 

end-in method become slightly greater than in the case of the 

top-in method. 

B.  Infinite Queuing System  

In this queuing system, it is necessary to evaluate the waiting 

time in the service waiting queue (called the service waiting 

time) in addition to the sojourn time in the non-limited RR 

system.  

Fig. 5 shows the evaluation results for the relationship 

between the mean total sojourn time (shown as round markers), 

which is obtained as the sum of the mean sojourn time defined 

in Section II.A and the mean service waiting time, and the 

quantum size in the queuing system in which infinite waiting 

rooms are prepared. This figure also shows the mean service 

waiting time (shown as cross markers). Here, Rn represents the 

service restriction number. With an increase in the quantum 

size, the mean total sojourn time and the service waiting time 

increase. The mean service waiting time of the top-in method is 

the same as that of the end-in method. The mean total sojourn 

time in the case of the top-in method (shown as a dotted line) is 

slightly less than in the case of the end-in method (shown as a 

solid line). This is because of the same reason as in the case of 

the non-limited RR system (see Section III.A).  
 

 

Fig. 5 Comparison of the mean total sojourn or waiting time in the 

limited RR system (Ar = 0.7, Sr =1, Rn = 9) 

 

Fig. 6 compares the mean sojourn time of the limited RR 

system with the top-in method (shown as a solid line with round 

markers) with that of the non-limited RR system (shown as a 

solid line with cross markers). The mean sojourn time of the 

limited RR system is less than that of the non-limited RR 

system. With an increase in the quantum size, the difference in 

the mean sojourn times between these two systems increases. 

Fig. 6 also shows the evaluation result of the mean service 

waiting time of the limited RR system (shown as a dotted line). 

The total mean sojourn time of the limited RR system is almost 

the same as the sojourn time of the non-limited RR system. 

C. Suitable Quantum Size 

In the limited RR system in the presence of switching 

overhead, the suitable quantum size, which minimizes the mean 

total sojourn time, may be obtained. Fig. 7 shows the evaluation 

result for the relationship between the mean total sojourn time 

and the quantum size in the presence of switching overhead in 
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the infinite queuing system. Here, Sw represents the switching 

overhead. With a decrease in the quantum size, the mean total 

sojourn time decreases. It becomes a minimum at a quantum 

size of 0.15 (in the case of either the end-in or the top-in 

method). 

 

 

Fig. 6 Comparison of the mean total sojourn or waiting time 

 (Ar = 0.7, Sr =1, Rn = 9) 

D.  Suitable Service Restriction Number 

Fig. 8 shows the evaluation result for the relationship 

between the mean service waiting time (shown as a solid line) 

or the mean sojourn time (shown as a dotted line) and the 

service restriction number in the infinite queuing system with 

the top-in method. With a decrease in the service restriction 

number, the mean service waiting time increases. On the other 

hands, the mean sojourn time decreases. Therefore, the total 

mean sojourn time level becomes a minimum at a service 

restriction number of 12 or 14 for an arrival rate of 0.7 or 0.6. 

 

 

Fig. 7 Suitable quantum size (Ar = 0.7, Sr = 1, Rn = 8, Sw = 0.01) 

 

 

Fig. 8 Suitable restriction number (Ar = 0.7, Sr = 1, Rn = 9, Sw = 0.01) 

E. Loss System 

Fig. 9 shows the evaluation result for the relationship 

between the mean number of requests and the quantum size in 

the loss system in which the service restriction number is 6 

(shown as round markers) or 9 (shown as cross markers). Fig. 

10 also shows the evaluation result for the relationship between 

the mean sojourn time and the quantum size. In the case of a 

service restriction number of 9, the mean number of requests 

and the mean sojourn time is greater than in the case of the 

service restriction number of 6. Moreover, the mean number of 

requests in the case of the end-in method (shown as a solid line) 

is greater than in the case of the top-in method (shown as a 

dotted line). This is because the number of requests waiting for 

the first quantum to be allocated in the quantum waiting queue 

in the case of the end-in method is much greater than in the case 

of the top-in method. On the other hand, the percentage of 

waiting time that consists of the sojourn time is small. 

Therefore, the mean sojourn time both in the case of the end-in 

method (shown as a solid line) and in the top-in method (shown 

as a dotted line) is almost the same. 
 

 

Fig. 9 Mean number of requests in the loss system (Ar = 0.7, Sr = 1) 
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Fig. 10 Mean sojourn time in the loss system (Ar = 0.7, Sr = 1) 

 

 

Fig. 11 Loss probability in the loss system (Ar = 0.7, Sr = 1) 

 

Fig. 11 shows the evaluation result for the relationship 

between the loss probability and the quantum size in the loss 

system. The logarithm of the loss probability increases linearly 

with an increase in the quantum size. 

Fig. 12 compares the mean sojourn time of the loss system 

(shown as a solid line) with that of the non-limited RR system 

(shown as a dotted line). With an increase in the quantum size, 

the difference in the mean sojourn time between the case of the 

limited RR system and the case of the loss system increases. 

IV. CONCLUSION 

In order to prevent excessive increase in the sojourn time of 

each request in an RR discipline, we proposed a limited RR 

system. Practical performance measures, e.g., the mean sojourn 

time in the server, waiting time in the queue, and loss 

probability, were evaluated using simulation programs. 

 

 

Fig.12 Comparison of the mean sojourn time (Ar = 0.7, Sr = 1) 

 

In these programs, the requested service time of an arriving 

request is converted to the number of RR cycles, and increases 

or decreases in the number of these RR cycles is tracked at the 

arrival or departure of other requests. Moreover, the top-in 

method and the end-in method are studied as queuing methods 

of an arriving request to the quantum waiting queue, and the 

performances of these two methods are compared. It is also 

clarified that in the infinite queuing system, the suitable 

quantum size in the presence of switching overhead, or the 

suitable service restriction number, which minimizes the mean 

total sojourn time, can be obtained. In the future, we intend to 

study the performance of a prioritized limited RR system, 

where prioritized requests and non-prioritized requests share 

the quantum. 
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