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 
Abstract—Developing complete mechanistic models for 

polymerization reactors is not easy, because complex reactions occur 
simultaneously; there is a large number of kinetic parameters 
involved and sometimes the chemical and physical phenomena for 
mixtures involving polymers are poorly understood. To overcome 
these difficulties, empirical models based on sampled data can be 
used instead, namely regression methods typical of machine learning 
field. They have the ability to learn the trends of a process without 
any knowledge about its particular physical and chemical laws. 
Therefore, they are useful for modeling complex processes, such as 
the free radical polymerization of methyl methacrylate achieved in a 
batch bulk process. The goal is to generate accurate predictions of 
monomer conversion, numerical average molecular weight and 
gravimetrical average molecular weight. This process is associated 
with non-linear gel and glass effects. For this purpose, an adaptive 
sampling technique is presented, which can select more samples 
around the regions where the values have a higher variation. Several 
machine learning methods are used for the modeling and their 
performance is compared: support vector machines, k-nearest 
neighbor, k-nearest neighbor and random forest, as well as an original 
algorithm, large margin nearest neighbor regression. The suggested 
method provides very good results compared to the other well-known 
regression algorithms. 
 

Keywords—Adaptive sampling, batch bulk methyl methacrylate 
polymerization, large margin nearest neighbor regression, machine 
learning.  

I. INTRODUCTION 

ENERALLY, polymerization processes have series of 
difficulties in modeling and optimization actions, because 

of their specific features, as well as the general characteristics 
of the chemical processes. From the last point of view, 
reactions are complex and, often, their phenomenology is not 
fully elucidated. Or, elaborating credible phenomenological 
models involves precise knowledge of physical and chemical 
laws that govern the process. Often, some approximations are 
required, affecting the accuracy of the model results. In 
addition, the complexity of mathematical models causes extra 
difficulties on how to solve them and, also, on the necessary 
time, which means the inability to use the models in on-line 
optimal control procedures. In these circumstances, empirical 
modeling based on input-output data becomes a preferable 
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alternative to the phenomenological modeling, in terms of 
both methodology and result accuracy. Several examples are 
given. 

The first part of article [1] is a review concerning the use of 
artificial neural networks (ANNs) in polymerization reaction 
engineering, focusing on different types of methodologies and 
applications.  

In the chemical engineering area, and especially for the 
polymerization processes, ANNs were applied to a diversity of 
processes, included in various methodologies. Some examples 
are the following: direct and inverse modeling of free radical 
polymerization of methyl methacrylate [1], [2], development 
of a virtual soft sensor in the polyethylene terephthalate 
production process [3], modeling the styrene living radical 
polymerization mediated by 2,2,6,6-tetramethyl-1-piper-
idinoxyl [4], selection of mixture initiators for batch 
polymerization [5], modeling the free radical polymerization 
of styrene [6], reaction temperature prediction during the 
styrene polymerization [7], fluorescence modeling of the 
polydimethylsiloxane/silica composites containing lanthanum 

[8] and the list remains opened. 
Free radical polymerization of methyl methacrylate is 

considered the case study of this approach. The gel, glass and 
cage effects are exhibited in the bulk polymerization of MMA. 
The gel effect arises because of the decrease in termination 
rate constant at high monomer conversion, associated with 
increased diffusional resistance to the growing radicals. It is 
manifested as a sudden increase in conversion, as well as in 
the gravimetrical average molecular weight with time, after 
some polymerization has occurred. Similarly, the glass effect 
is associated with the decrease of propagation rate constant, 
due to increased diffusional resistance to the movement of the 
monomer toward a growing radical. This leads to the 
polymerization stopping short of complete monomer 
conversion, even though the reactions are irreversible. A 
special adaptive technique is applied in modeling to take into 
account the high variations of some parameters in a short time. 

Monomer conversion (x), numerical average molecular 
weight (Mn), gravimetrical average molecular weight (Mw) 
are determined as function of reaction conditions (initiator 
concentration, I0, temperature, T, and time, t). 

II. ADAPTIVE SAMPLING 

The free radical polymerization of methyl methacrylate 
achieved in a batch bulk process is associated with non-linear 
gel and glass effects, i.e. it has regions where the values of 
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T
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T
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M  0, ljiijl ,,,0 
  
where }1,0{ij  is 1 only when xj is a target neighbor of xi, 

ijijl    if and only if li yy   and 0 otherwise, ijd  is the 

distance between xi and xj, ijl  is the loss and 0h  is a 

constant. A “target” neighbor is an instance with the same 
class label, and an “impostor” is a neighbor with a different 
class label. 

 The LMNN method was adapted for regression, resulting in 
the Large Margin Nearest Neighbor for Regression (LMNNR) 
algorithm [10], [11]. It uses an objective function F, which is 
to be minimized, which takes into account 3 criteria:  
 

332211 FwFwFwF FFF  ,  (2) 
 
where the weights of the criteria are normalized: 

1321  FFF www . 

In order to simplify the expressions of the Fi functions, let 
us make the following notations, where dM means the 
weighted square distance function using the weights we search 
for:  ,, jiMij dd xx  ,, kiMik dd xx )()( jiij ffg xx   and 

)()( kiik ffg xx  .  

 The first criterion is: 
 

 ij

n

i iNj
ij gdF   

 

1
1 )(

1 ,  (3) 

 
where N(i) is the set of the nearest k neighbors of instance i. 
This criterion says that the nearest neighbors of i should have 
similar values to the one of i, and more distant ones should 
have different values. It tries to minimize the distance between 
an instance i and its neighbors with similar values. If a 
neighbor j has a dissimilar value, the second factor, 1 – gij, 
becomes small and the distance is no longer necessary to be 
minimized. 

 The second criterion is expressed as: 
 

      
  


n

i iNj iNl
ilikijij gdgdF

1 )( )(
2 0,111max . (4) 

 
 It takes into account a pair of neighbors, j and l, by analogy 

to a target and an impostor. We try to minimize the distance to 
the neighbors with close values (the positive term), while 
simultaneously trying to maximize the distance to the 
neighbors with distant values (the negative term). The value of 
this function criterion cannot be negative. Moreover, the 
distance to an instance with a dissimilar value should be larger 
than the distance to an instance with a close value. The large 

margin concept is applied by forcing these two distances to 
differ by at least 1. This is an arbitrary value and can be 
changed without affecting the optimization problem; it would 
only result in the scaling of the model weights. 

 The third criterion is used in general to prevent the values 
of the weights from becoming too large (however, it is not 
used for our particular case studies, because the weights of the 
model do not become very large anyway): 
 


 


p in

j

n

i
ii jmF

1 1
3 )( .  (5) 

 
 The optimization of the objective function is performed by 

gradient descent, using an approximate differential method 
with the central difference definition of the derivative [15]. 
That is, for a small ε, the following relation holds, where the 
truncation error is O(ε2): 
 

.
2

)()(
)('


 


xfxf

xf  (6) 

 
TABLE IV 

THE BEST PERFORMANCE OF THE LMNNR ALGORITHM FOR THE THREE 

CONSIDERED PROBLEMS 

Dataset 
No. 

proto-
types 

No. 
optimizati

on 
neighbors 

No. 
regression 
neighbors 

Training 
set 

Testing 
set 

Monomer 
conversion 

(x) 

1 3 3 1 0.999952 

1 5 5 1 0.999953 

2 3 3 1 0.999952 

2 5 5 1 0.999953 
Numerical 

average 
molecular 

weight 
(Mn) 

1 3 3 1 0.999638 

1 5 5 1 0.999623 

2 3 3 1 0.999638 

2 5 5 1 0.999623 
Gravimetri
cal average 
molecular 

weight 
(Mw) 

1 3 3 1 0.999812 

1 5 5 1 0.999816 

2 3 3 1 0.999812 

2 5 5 1 0.999816 

 
For all the following configurations, the algorithm was 

applied 10 times and the best result was recorded. Table IV 
presents the best performance of the LMNNR algorithm. 
Similar as for the algorithms implemented in Weka, the 
coefficient of determination R2 was used as a performance 
measure. 

V. CONCLUSIONS 

Even if the optimization method of LMNNR requires 
repeated experiments for the same configuration, the results 
are very good and actually better than the results provided by 
well-established machine learning algorithms implemented in 
Weka. This shows that the model based on the combination of 
the k-nearest neighbor paradigm with the idea of the large 
margin has a great potential for regression problems.  

 The good quality of the results is also due to the adaptive 
sampling method, which gives the most relevant information 
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to the algorithms by selecting more sample points in the 
regions where the process has a higher variation and a smaller 
number of points in the more uniform regions. 
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