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Abstract— Eight difference schemes and five limiters are applied 

to numerical computation of Riemann problem. The resolution of 
discontinuities of each scheme produced is compared. Numerical 
dissipation and its estimation are discussed. The result shows that the 
numerical dissipation of each scheme is vital to improve scheme’s 
accuracy and stability. MUSCL methodology is an effective approach 
to increase computational efficiency and resolution. Limiter should be 
selected appropriately by balancing compressive and diffusive 
performance. 
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I. INTRODUCTION 
S an new discipline, the Computational Fluid Dynamics 
formed from sixties of 20th century . Since 80s, because of 

the great progress of numerical methods and unprecedented 
development of computer technology, CFD has been one of the 
important tools in Fluid Dynamics research, just as wind tunnel 
and theory analysis. Furthermore, CFD is widely applied in 
oceanography, meteorology, aerospace, automotive, energy 
sources and so on. 

Difference schemes are the nucleus and the most active 
factor in CFD. All through the development of CFD, every 
progress in difference schemes always make great contribution 
to it. 

In this paper, we chose several classical difference schemes 
in the development history of CFD, such as MacCormack 
scheme, Jameson scheme, FVS-family schemes, FDS-family 
schemes, AUSM-family schemes and so on; moreover, applied 
some limiters to one-dimensional shock-tube problem; at last, 
we carried on numerical simulation, and compared the 
performance of difference schemes and limiters mentioned. 

II. RIEMANN PROBLEM AND COMPUTATIONAL MODEL 

A. Riemann problem  
The physical analogue of the Riemann problem is the 

shock-tube problem. Shock-tube problems have played, over a 
period of more than 100 years, a fundamental role in fluid 
dynamics research. The structure of the solution of the 
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Riemann problem is described as a set of elementary waves 
such as shock waves, contacts, rarefactions. The Riemann 
problem is always the fundamental and crucial problem of CFD, 
The exact Riemann problem solution is an invaluable reference 
solution that is useful in assessing the performance of 
numerical methods and to check the correctness of programs in 
the early stages of development. In respect that, most of the 
difference schemes based on the approximate Riemann solver, 
from which developed to multi-dimensional [1] . 

B. One-dimensional time-dependent Euler equations 
Here we study the classical Riemann problem for the 

one-dimensional time-dependent Euler equations; it’s an Initial 
Value Problem (IVP), for the non-linear hyperbolic 
conservation laws   
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Where Λ is the diagonal matrix formed by the eigenvalues of 
A, namely   
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The ( ), ( )R U L U is the right eigenvector and left eigenvector 
of A, respectively [1]; the A can be expressed as  
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This text we will get the results at t=0.4s. 
C. Structure of the solution 

 The wave patterns under given IC above is shown in Fig.1. 
When t=0, two stationary gases in a tube are separated by a 
diaphragm. On the left of the diaphragm is higher pressure Lp ; 
on the right is lower pressure Rp . The rupture of the diaphragm 
generates a time-dependent right shock wave, a left rarefaction 
and a contact discontinuity. At the time of t (t>0), the gas in the 
tube was divided into four domains, A and D are the regions 
which are not disturbed by waves remain the initial values; B is 
the region the left rarefaction passed, it’s pressure denoted Bp ; 
C is the region after the right shock, it’s pressure denoted Cp , 
moreover, B Cp p= ; but the density and temperature of the two 
regions are different, so B and C was divided by a contact. 
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t>0 t=0A CB D

contact shockrarefaction

t=0 t=0PL PR

t>0 t=0A CB D

contact shockrarefaction

t=0 t=0PL PR
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contact shockrarefaction  
Fig. 1 Wave pattern in the solution of the given Riemann problem and 

the corresponding distribution in the shock-tube. 

III. DIFFERENCE SCHEMES AND LIMITERS 
The construction and choice of difference schemes is the key 

to computation, when utilizing numerical methods to solve the 
Euler equations above. Here we will follow the clue of the 
development of difference schemes, introduce six classical 
difference schemes in different period, and then take the 
computation case of one-dimensional shock-tube problem for 
example to carry on numerical simulation. 

A. Difference schemes  
At first, we will give a brief introduction to the difference 

schemes this paper utilized; limited to the section, we haven’t 
list the specific expressions, for details the reader can see the 
related reference.  

(1) MacCormack scheme 
In 1969, MacCormack scheme a evolution from 

Lax-wendroff scheme was presented. It is a Centred scheme 
with second-order accuracy and two steps. It was the 
protagonist of the computation of two-dimensional steady flow 
problem and widely applied from 60s to 70s in 20th century [2]. 

(2) Jameson scheme 
   Jameson, Schmidt, and Turkel presented the famous JST 

centered finite volume scheme in 80s of the 20th century [3]. It 
employed Centred difference and constructed second-order, 
fourth-order artificial viscous term in order to restrain fluctuate. 
It is based on the gradient of the pressure to confirm the weight 
of second-order term and fourth-order term. In the case of 
pressure gradient is great (just as shock region), the 
second-order term played a main role on restrain the fluctuate 
of numerical solution, which may be appear in the vicinity of 
the high gradients; on the other hand, when pressure gradient is 
little (like the smooth region), it introduced fourth-order 
dissipation term to restrain the fluctuate caused by odd-even 
decoupling, therefore improved the stability of centered 
scheme. 

Jameson scheme is widely applied in the computation of 
subsonic, transonic, supersonic flow and flow through turbine; 
particularly, this scheme got great success in aerofoil 
computation and transonic detour flow.  

(3) FVS (Flux Vector Splitting) scheme 
The former two schemes are belong to Centred scheme, 

which needs add extra artificial viscous term to restrain 
fluctuate. So it requires the experienced user, and the addition 
of the artificial viscous term is easy to pollute the physical 
solution, influence the accuracy. Analyzed from the essence of 
its construction, Centred schemes have not consider the 
direction of propagation of information. Therefore, there is a 
nature conflict between the unidirectional propagation of the 
waves and the nondirectional Centred scheme [4].  

Since 80s of the 20th century, the upwind schemes have got 
remarkable development. Different from the Centred scheme, 
upwind scheme considered the propagation direction of the 
waves. So it has the natural predominance to express the 
characteristic of flow. Up to today, kinds of upwind schemes 
have been the mainstream of CFD. 

Flux Vector Splitting (FVS) scheme is one of the upwind 
schemes; it is convenient, efficient and has a strong ability in 
capturing shock wave. The flux vector splitting based on the 
direction of propagation of correlative information; then, the 
splitting components is required to perform upwind difference 
i.e. applied backward difference when the direction is positive 
and forward difference when the direction is reverse. There are 
various FVS schemes because of the difference of splitting 
approaches. The Van leer [5] and Steger-Warming scheme [6] 
are highly recommended. The former scheme does splitting 
based on local Mach, while the latter is on the sigh of 
eigenvalues of the flux. See for details the paper [7]. 

(4) FDS (Flux Difference Splitting) scheme 
Corresponding to FVS scheme, the other essential approach 

for identifying upwind directions is Flux Difference Splitting 
Method, which derived from Riemann approach, also refer to 
Godunov approach. The representative scheme of FDS is Roe 
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scheme [8], which has high resolution of shock wave and 
contact discontinuity. However, when the eigenvalues of 
Jacobin matrix of flux is little, it will against the entropy 
condition and generate unphysical solution, therefore must 
introduce entropy amend. 

In 1983, Harten [9] presented the Total Variable 
Diminishing (TVD) scheme by analyzing the reason why 
traditional difference schemes always produce spurious 
oscillations in the vicinity of shock waves. At the same time, he 
constructed a second-order TVD scheme which has a high 
resolution and excellent in capture shock wave with no 
oscillations. Therefore, it is popular as soon as been proposed; 
later, the approach of ENO, WENO and so on emerged.  

Note that, the Harten TVD scheme essentially is Roe scheme 
added TVD limiter, so made the scheme possessed TVD 
properties. In this paper, we utilize the Harten-Yee scheme [4].  

(5) NND (Non Oscillatory Non Free Parameter Dissipation 
Scheme) scheme. 

In China, academician Zhang Han-xin [10] constructed the 
Non Oscillatory Non Free Parameter Dissipation (NND) 
Scheme by analyzed the reason of oscillations of numerical 
solution in the vicinity of the shock and made its third-order 
dissipation term confined to certain relationship by applied 
different difference schemes at fore-and-aft of the shock wave. 
The research indicates that the NND scheme has the TVD 
properties also belong to TVD schemes family. 

(6) AUSM (Advection Upwind Splitting Method) scheme 
At present, one of the developing trends of upwind schemes 

is to combine the advantages to construct schemes with higher 
quality; namely, the Hybrid Upwind Splitting (HUS) scheme. 
The most famous HUS scheme is the AUSM scheme proposed 
by Liou and Steffen [11]. In theory, the AUSM scheme 
distinguishes the flow field into the linear field related with 
characteristic velocity u and non-linear field related with 
characteristic velocityu a± , moreover, splitting the pressure 
term from the advection flux, respectively. As far as the 
construction method concerned, AUSM scheme is the 
improvement of Van Leer scheme; likewise it is the 
combination of FVS and FDS analyzed from the dissipation 
term [4]. 

The characteristics of AUSM scheme are excellent. Such as: 
easy to construction, no matrices operation, high shock 
resolution, stable, possess the accuracy of FDS scheme in the 
boundary and the robust of FVS scheme when captured the 
strong discontinuities at the same time. After ten years 
developing, it has been applied to various computation models 
from slow flow to supersonic flow, formed a series of AUSM 
schemes.  

There are two embranchments after the AUSM scheme 
proposed. One is leaded by Liou to modify the Mach splitting 
function and pressure splitting function, developed the 
AUSMDV, AUSM+ schemes, furthermore, introduce the 
pressure dissipation, deduced to AUSM+up [12]–[13] scheme ; 
the other one is leaded by Kim to introduce the pressure weight 
function amendment technology, developed AUSMPW, 
AUSMPW+[14], M-AUSMPW+, MLP (Multi-dimensional 

Limiting Process) scheme [15]. 

B. Limiters  
Nowadays, the computation procedure of CFD is commonly 

consist of two steps: the first step is called data reconstruction, 
which is to reconstruction the value at computing cell interface 
by utilizing the value of successive computing cells; the second 
step is to utilize the value obtained by the data reconstruction, 
apply kinds of difference schemes no matter upwind schemes 
or centred schemes to construct the flux to numerically solve 
the equation, it is called the resolve step. 
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Fig. 2 Reconstruction of data in computing cells 

 
The MUSCL (Monotone Upstream-Centred Scheme for 

Conservation Laws) approach is routinely used in practice to 
increase the high-order accuracy. The reconstruction is 
constrained appropriately so as to avoid spurious oscillations. 
Generally speaking, the reconstruction step includes two parts: 
interpolation and limit. Interpolation is to obtain the value at the 
interface of computing cells by utilizing the value of successive 
computing cells; limit is to avoid spurious oscillations by 
constraining the gradient of the value. It is introduced in the 
form of limiters. Here we chose 5 limiters as follows [15]. 
SUPERBEE is given by  

 ( ) max[min(2 ,1),min( ,2)]r r rϕ =  (8) 
Double MINMOD is given by 
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MINMOD is given by 
 ( ) min mod( ,1)r rϕ =  (12) 
The Fig.3 illustrates five of these flux limiters constructed 

from TVD region; the upper borderline of the shadow is the 
SUPERBEE, the lower borderline is MINMOD, and the rest is 
Double MINMOD, VANLEER, and VANALBADA from the 
top down. 

 Limiter function ( )rΦ must be included in the shadow 

region, so as to make the difference schemes satisfy the TVD 
condition and achieve second-order accuracy. The closer to the 
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top of the shadow, the less of the dissipation caused by the 
limiter; its resolution is higher, however, its stability, 
convergence getting worse at one time; on the contrary, when 
close to the bottom of the shadow, the dissipation caused by 
limiter increased, its resolution reduced, the stability and 
convergence of the limiter got enhanced.   
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Fig.3 Comparison of five flux limiter functions 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. The comparison and analysis of the numerical results of 
different difference schemes 
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Fig.4 Comparison the numerical (symbol) solution of 8 schemes 

with the exact (line) solution 
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Fig.5 Microscope of 3 concerned regions of density  

 
The given text is a modified version of the popular Sod’s test; 

the solution consists of a right shock wave, a right traveling 
contact wave and a left sonic rarefaction wave; this test is very 
useful in assessing the entropy satisfaction property of 
numerical methods. Fig.4 show comparisons between exact 
solutions and numerical solutions at output time (t=0.4) 
obtained by these 8 schemes listed; the quantities shown are 
density, pressure, and particle velocity. The spatial domain is 
the interval [-1, 1] which is discretized with M=500 computing 
cells; boundary conditions are transmissive. We can find that 
all results obtained by applied these 8 schemes to the text are 
approximate to the exact solution. In A, B, C, D four regions, 
the numerical results are virtually identical with the exact 
solution. In the smooth regions, the results of Centred schemes 
almost accord with the results of the upwind schemes; but the 
differences emerged in the vicinity of high gradients. We can 
see from the Fig.5 that, ① represent the region near the left 

rarefaction wave, ②represent the region near the  right contact 

wave, ③ represent the region near the shock wave, the results 
of two Centred schemes (MacCormack scheme and Jameson 
scheme) emerged spurious oscillations to a certain extent, 
especially in Fig.5.③, the oscillations are distinct; Otherwise, 
the upwind schemes are stable, but the curves are smoothed 
because of the implicit dissipation of upwind schemes.  

Because of there is no dissipation term in the discrete 
equations of Centred schemes, so it needs to add extra artificial 
viscous term to restrain fluctuating near the high gradients. The 
artificial viscous term influenced the accuracy of solution, as a 
matter of fact, as to the computed case of this paper; the centred 
schemes results could achieve the same effects as the upwind 
schemes by adjusting the coefficients of the artificial viscous 
term to constrain the oscillations. Analyzed from the true 
physical situation, Centred schemes fit for the subsonic flow, 
conflicted with the physical characteristics of the propagation 
of information in both the supersonic and hypersonic flow.  

Upwind schemes considered the direction of propagation of 
the information. When applied to discrete equations, it has the 
inherent implicit dissipation term differs from the artificial 
viscous term; accordingly, there are no free coefficients need to 
be adjusted.  The governing equations of CFD referred to are 
mainly hyperbolic, the characteristic curves exist and the 
information or disturbances will propagation along the 
characteristic curves at characteristic speed. Upwind schemes 
are just designed to meet the direction of propagation to 
difference, that’s why it has the natural predominance to 
express the physical characteristics of flow.Neither the ways of 
construction nor the implicit dissipation terms are same 
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between different upwind schemes; so the performance of 
constraining oscillation is various. Just as the centred schemes 
the magnitude of the dissipation term will leads to exaggerated 
fluctuate or smooth influenced accuracy. In fact, difference 
schemes commonly contain numerical dissipation term, no 
matter the centred or upwind schemes; it’s the byproduct of the 
numerical computation. Based on the Lax entropy condition, 
we concluded that suitable numerical dissipation is an 
insurance to got the true physical solution. Due to the diversity 
of the numerical dissipations, there are great deference in 
accuracy and reliability between schemes [4].  

It is worth to pay attention to the AUSM-family schemes, 
which are the combination of FVS and FDS; they possess the 
high resolution of FDS and the excellent computation 
efficiency of FVS. A satisfactory feature of the numerical 
shock wave of AUSM scheme in Fig.4 is that it is monotone, 
there are no spurious oscillations in the vicinity of the shock, it 
has the identical excellent performance as TVD and NND 
schemes.    
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                    (a) 100 cells                               (b) 50 cells 

Fig.6 The results in different numbers of computing cells 

B.  The comparison of different numbers of computing cells  
 Here we decrease the amount of computing cells discretized 

the spatial domain, did the same text case again with 100 cells 
and 50 cells respectively, Fig.6 shows the results. Compared 
the Fig.4 with Fig. 6 we can conclude that along with the 
reduction of the computing cells number, the computational 
accuracy of the results of all 8 schemes is fall. This 
phenomenon is caused by the diminishment of the numbers of 
points which described the information of the flow field. At the 
same time, the distinction of results between different schemes 
is more obvious. From Fig.6 (b) we can clearly see that the 
dissipation of Jameson centred scheme is the most severe, 
almost can not distinguish the four regions of the flow field. 
The next is Harten-Yee TVD, Van Leer and AUSM schemes 
have stable sensitivity of the mesh, exhibited a better 
performance.  
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Fig.7 The result of interpolation of MUSCL on 50 cells 

C. The comparison of limiters 
This paper applied the MUSCL interpolation method to 

different schemes to achieve high-order accuracy. Take the 
AUSM+up scheme for example, the results of Fig.7 show the 
application of five limiters and first-order accuracy solution; 
the number of the computing cells is 50. Compared Fig.7 with 
Fig.6, it is obvious that the accuracy has been improved greatly 
after applied the limiters.   

Limiters are essentially a function of limiting the gradient of 
solution. It plays an important role on the accuracy, stability 
and convergence of the computation. As shown in Fig.7, as to 
the SUPERBEE limiter, whose compressibility stronger than 
any other else emerged obvious fluctuation in the vicinity of 
discontinuities, because of the insufficiency of the dissipation. 
Therefore, to estimate a limiter in practical application need to 
combine with the difference schemes, balance the contradiction 
between the resolution and dissipation, find the limiters with 
high resolution, stability, and satisfactory accuracy. 

V. CONCLUSION 
Various difference schemes and limiters are applied in 

numerical computation of one-dimensional shock-tube 
problem; Resolution of discontinuities of each scheme is 
compared, and discussed the numerical dissipation of 
difference schemes. We compared the magnitude of numerical 
dissipation of centred schemes with that of upwind schemes by 
computation; and conclude that the numerical dissipation of 
each scheme is the key to improve the scheme’s accuracy and 
assess its quality. It is effective to increase the computational 
efficiency and resolution of difference schemes by Using 
MUSCL method. Limiter should be selected appropriately by 
balancing compressive and diffusive performance.  
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