
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2332

Performance Analysis of the Subgroup Method
for Collective I/O

Kwangho Cha, Hyeyoung Cho, and Sungho Kim

Abstract—As many scientific applications require large data
processing, the importance of parallel I/O has been increasingly
recognized. Collective I/O is one of the considerable features
of parallel I/O and enables application programmers to easily
handle their large data volume. In this paper we measured
and analyzed the performance of original collective I/O and
the subgroup method, the way of using collective I/O of MPI
effectively. From the experimental results, we found that the
subgroup method showed good performance with small data size.

Keywords—Collective I/O, MPI, Parallel Filesystem.

I. INTRODUCTION

BECAUSE many scientific applications such as ‘parallel
out-of-core’ require large data processing, parallel I/O

of high performance systems has received many attentions.
The research about parallel I/O can be classified into the
studies about parallel file system and parallel programming
environment. This paper discusses collective I/O in terms of
parallel programming environment such as MPI and analyzes
the performance of collective I/Os and their variants.

Collective I/O is a technique that handles discontiguous
small requests from each computational node[1]. MPI-IO, one
of the part of MPI2, also defines collective I/O and MPI
implementations such as MPICH[2] and LAM/MPI[3] provide
this feature.

The subgroup method for collective I/O is a way of using
collective I/O effectively in terms of application programs[4].
The main concept of the subgroup method is that after splitting
the entire processes group into several subgroups, only master
nodes of each subgroup participate collective I/O. Although
the previous work explained the main concept of the subgroup
method, it was not enough to verify this suggested scheme. In
this paper, we explain the concept of the subgroup method and
its overhead in more detail and introduce the performance on
the linux cluster system. We could measure the performance
of the subgroup method on the PVFS [5], [6] and verify the
advantage and the limit of the subgroup method strictly.

Since the subgroup method is an application level approach,
its performance is rely on the performance of lower layer
such as MPI library, communication protocol, networks and
so on. For this reason, our performance analysis is based
on the performance measurement on application layer. From
the experimental results, we found that, with small data size,
especially less than 16KB, the subgroup method showed
good performance. We think the experimental result implies

The authors are with the Supercomputing Center, Korea Institute of Science
and Technology Information(KISTI), Korea.(e-mail: khocha@kisti.re.kr).

it will be useful to use the subgroup method for fine-grained
applications.

This paper is organized as follow. Section 2 introduces
collective I/O and its related works. Section 3 describes the
concept of the subgroup method in detail. The test result of the
subgroup method is described in section 4. Finally, we draw
the conclusion in section 5.

II. COLLECTIVE I/O

This section describes the concept of collective I/O and
the previous works related with collective I/O. When MPI2
was announced, its I/O semantics, MPI-IO, also included the
concept of collective I/O. Since MPI is the most prevail
parallel programming environment nowadays, in this paper we
focus on collective I/O of MPI-IO.

 A. Collective I/O

The studies about many parallel applications reported that
data from each processes are stored noncontiguously in mem-
ory or file system and each process wants to write or read their
own data.[1], [7]. Collective I/O handles these requests effi-
ciently by regarding separate and discontiguous I/O requests
as a contiguous one. In other words, each process participates
an I/O operation for the same file simultaneously. Generally
it tries to improve I/O performance by merging separate I/O
requests.

There are several implementations of collective I/O such as
two-phase I/O and disk direct I/O[7], [8], [9]. In case of two-
phase I/O, a data can be accessed efficiently by splitting the
access into two phases. In the first phase, processes access
data assuming a distribution in memory that results in each
process making a single, large, and contiguous access. In the
second phase, processes redistribute data among themselves to
the desired distribution. The advantage of this approach is it
is possible to reduce the file access time by making all file
accesses large and contiguous[9].

 B. Collective I/O of MPI-IO

MPI-IO defines some types of file operations such as
collective, non-collective, blocking, non-blocking, and so
on[10], [11]. Collective I/O of MPI-IO means all pro-
cesses in the same communicator perform I/O operation
in the same time and its examples are the functions such
as MPI_File_read_all(), MPI_File_write_all(),
and so on.

Before calling a collective I/O function, the filetype should
be defined. Because all data from each process should be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2333

.located in a file, each process has their own location in the file.
The filetype indicates which portions of file can be accessed
by the process and primitive and derived datatype are used
to define the filetype. ROMIO[12] is the well known MPI-IO
implementations and supports various kinds of file systems
such as NFS and PVFS.

Some MPI implementations also provide the performance
improvement technique such as access range hints[13], [14].
The access range hint is the access information which is
described in application program. By passing the information
about the blocks that will be accessed or not to file system, it
is possible to manage the prefetch technique efficiently.

III. THE SUBGROUP METHOD FOR COLLECTIVE I/O

In this section, we describe the main concept and the
structure of the subgroup method. Additionally the overhead
of the subgroup method and its real experimental result on a
cluster system is introduced.

 A. The Main Concept of the Subgroup Method

When collective I/O is performed, it is required that all pro-
cesses exchange the information about I/O operations before
executing collective write or collective read[7], [8]. In other
words, collective I/O is based on collective communications
among all processes in the group.

The subgroup method is a style of programming trying to
reduce the communication costs by decreasing the number of
processes which exchange the I/O information. Like figure
1, in case of the original collective I/O, all processes in the
default communicator participate an I/O operation. However
in case of the subgroup method, the default communicator is
divided into subgroups and only master processes of each sub-
group participate collective I/O. They also collect or dispense
data of their subgroup which should be written or read. In other
words, in case of collective write, master processes gather data
from their subgroup member and perform I/O function. For
collective read, master processes scatter data to member nodes
of their subgroup after I/O operation.

The other effect of the subgroup method is to increase data
size. Because data in a subgroup are aggregated, the larger
data are passed to collective I/O. Therefore, in case of small
data, it can improve the communication-to-computation ratio.

 B. The Structure of the Subgroup Method

Figure 2 shows the pseudo-code of the subgroup method.
The primitive MPI function for manipulating communica-
tors, MPI_Comm_split() is used for generating subgroups
and collective communications such as MPI_Gather()and
MPI_Scatter()are used for gathering and distributing data
within subgroup respectively.

Like figure 3, two kinds of communicators are newly created
and only the processes in the I/O communicator participate in
the collective I/O. To create two kinds of the communicator is
the first overhead of the subgroup method. We measured the
cost of MPI_Comm_split() on our linux cluster system
and figure 4 shows the result. We can observe that its cost is
proportional to the size of the default communicator.

Fig. 1. The concept of original collective I/O and the subgroup method.

/* Generate new communicator for subgroups */
MPI_Comm_split(MPI_COMM_WORLD,COLOR,KEY,&NEW_COMM);
MPI_Comm_rank(NEW_COMM, &new_rank);

/* Generate new communicator for the master processes */
if(master_process) set io_color;
MPI_Comm_split(MPI_COMM_WORLD,io_color,SUB_KEY,&IO_COMM);

..........
if (root_process) {
/* File Open & Generate filetype */
}
--
/****** READ *******/ | /****** WRITE ******/
if (master_process) { | MPI_Gather(..., NEW_COMM);
/* Perform collective */ | if (master_process) {
/* read operation */ | /* Perform collective */

MPI_File_set_view(....); | /* write operation */
MPI_File_read_all(....); | MPI_File_set_view(....);

} | MPI_File_write_all(....);
MPI_Scatter(..., NEW_COMM); | }

if (root_process) MPI_File_close();

Fig. 2. The pseudo-code of the subgroup method.

Figure 5 and 6 show the cost of collective communications,
MPI_Gather()and MPI_Scatter(). As the number of
processes and the data size are increased, the performance is
also degraded. Because the performance of MPI_Scatter()
is better than that of MPI_Gather(), it is expected that the
performance of the subgroup method for collective read is
better than that of the subgroup method for collective write
on our testbed.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2334

Fig. 3. The new communicators in subgroup method.

0

0.005

0.01

0.015

0.02

0.025

0.03

168421

ex
ec

ut
io

n
tim

e
(s

ec
)

the number of processes in a new communicator

MPI_Comm_split

the number of total processes = 4
the number of total processes = 8

the number of total processes = 16

Fig. 4. The cost of MPI Comm split().

IV. PERFORMANCE EVALUATION

To test the performance of the subgroup method, we used
16 nodes cluster system as the testbed like table I. Each node
has two AMD processors and all nodes are connected via
gigabit ethernet. Because file system should be support MPI-
IO, we installed PVFS, one of the famous parallel file systems.
Because our testbed is the small scale cluster system, we
configured PVFS with 4 I/O servers and 1 meta server. To use
MPI-IO semantics properly, we also used MPICH2 library.

Figure 7 shows the result of our experiments. As we
expected in the previous section, the performances of the
subgroup method for collective read is better than that for
collective write. Especially, it shows that when the data size
is small, the subgroup method is superior to original collective
I/O. When the data size is less than 16KB, the performance
improvement for collective write and collective read are upto
53% and 70% respectively. Furthermore, in case of data size is

TABLE I
THE CONFIGURATION OF TESTBED

CPU AMD Opteron 240
CPU/Node 2
The Number of Nodes 16
Memory 1 GB
Network Gigabit Ethernet
OS Linux 2.6.9
File System PVFS 2.6.1
MPI Library MPICH2-1.0.5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1684

ex
ec

ut
io

n
tim

e
(s

ec
)

the number of processes

MPI_Gather
data size = 08KB
data size = 16KB
data size = 32KB
data size = 64KB

Fig. 5. The cost of MPI gather().

0

0.002

0.004

0.006

0.008

0.01

0.012

1684

ex
ec

ut
io

n
tim

e
(s

ec
)

the number of processes

MPI_Scatter
data size = 08KB
data size = 16KB
data size = 32KB
data size = 64KB

Fig. 6. The cost of MPI Scatter().

4KB, the subgroup method shows more improved performance
irrespective of the number of processes. This implies that it
is possible to consider using of the subgroup method for fine-
grained applications.

V. CONCLUSION

We have studied the efficient collective I/O of MPI and
this paper introduces the performance of collective I/O and
the subgroup method. Although the subgroup method requires
additional MPI functions, it can reduce the number of pro-
cesses in the communicator for collective I/O. Because it also
increases the data size for collective I/O, it can improve its
performance.

In our test environment, because the cost of data gathering
and scattering in sub communicator were not negligible, the
subgroup method with large data failed to improve the per-
formance. On the other hand, in case of using small data, the
subgroup method shows good performance. For this reason,
it is expected that the subgroup method can be used for fine-
grained applications.

This paper is based on the experimental result on the small
scale linux cluster system. To obtain more detail characteristics
of the subgroup method, we are planning to expand the scale
of testbed.

REFERENCES

[1] John M. May, “Parallel I/O for High Performance Computing,” Morgan
Kaufmann, 2000.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2335

32KB

16KB

8KB
4KB

16

8

4

0
20
40
60
80

100
120
140
160
180

bandwidth (MB/sec)

Read Performance
Collective Read
Subgroup Read

data size

the number of
 processes

bandwidth (MB/sec)

32KB

16KB

8KB
4KB

16

8

4

0
20
40
60
80

100
120
140

bandwidth (MB/sec)

Write Performance
Collective Write
Subgroup Write

data size the number of
 processes

bandwidth (MB/sec)

Fig. 7. The read and write performance: For the subgroup method, the size
of subgroup was 2 when the number of processes was 4 and in other cases it
was set as 4.

[2] MPICH-A Portable Implementation of MPI, http://www-unix.mcs.anl.
gov/mpi/mpich

[3] LAM/MPI Parallel Computing, http://www.lam-mpi.org
[4] Kwangho Cha, Taeyoung Hong, and Jeongwoo Hong, “The Subgroup

Method for Collective I/O,” Proc. The 5th International Conference
on Parallel and Distributed Computing, Applications and Technologies
(PDCAT 2004), LNCS 3320, pp. 301∼304, Dec. 2004.

[5] Avery Ching, Alok Choudhary, Wei-keng Liao, Rob Ross, and William
Gropp, “Noncontiguous I/O through PVFS,” Proc. IEEE International
Conference on Cluster Computing, pp 405∼414, 2002.

[6] Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev
Thakur, “PVFS: A Parallel File System for Linux Clusters,” Proc. 4th
Annual Linux Showcase and Conference, pp 317∼327, 2000.

[7] David Kotz, “Disk-directed I/O for MIMD multiprocessors,” ACM
Transactions on Computer Systems, Vol. 15, No. 1, pp 41∼74, Feb.
1997.

[8] Rajesh Bordawekar, “Implementation of collective I/O in the Intel
Paragon parallel file system: initial experiences,” Proc. 11th interna-
tional conference on Supercomputing, pp 20∼27, 1997.

[9] Rajeev Thakur, William Gropp, and Ewing Lusk, “Data sieving and
collective I/O in ROMIO,” Proc. of the 7th Symposium on the Frontiers
of Massively Parallel Computation, pp 182∼189, 1999.

[10] William Gropp, Ewing Lusk, and Rajeev Thakur, “Using MPI-2: Ad-
vanced Features of the Message Passing Interface,” The MIT Press, 1999.

[11] Hakan Taki and Gil Utard, “MPI-IO on a parallel file system for
cluster of workstations,” Proc. 1st IEEE Computer Society International
Workshop on Cluster Computing, pp 150∼157, 1999.

[12] ROMIO: A High-Performance, Portable MPI-IO Implementation,
http://www-unix.mcs.anl.gov/romio

[13] Jean-Pierre Prost, Richard Treumann, Robert Blackmore, Carol Hartan,
Richard Hedges, Bin Jia, Alice Koniges, and Alison White, “Towards a
High-Performance Implementation of MPI-IO on Top of GPFS,” Proc.
The 6th International Euro-Par Conference, LNCS 1900, pp 1253∼1262,
Sep. 2000.

[14] Jean-Pierre Prost, Richard Treumann, Richard Hedges, Bin Jia, and
Alice Koniges, “MPI-IO/GPFS, an optimized implementation of MPI-IO

on top of GPFS,” Proc. 2001 ACM/IEEE conference on Supercomput-
ing(CDROM), pp 17∼17, Nov. 2001.

Kwangho Cha received the M.E. degree in computer engineering from the
Information and Communications University, Daejeon, Korea in 2002. Since
2002, he has been with the Supercomputing Center of Korea Institute of
Science and Technology Information, Daejeon, Korea, where he is currently
a research staff. He is also the Ph.D. student in computer science at the Korea
Advanced Institute of Science and Technology. His research interests include
cluster computing, parallel file system, and grid computing. He is a member
of the IEEE Computer Society and the Korea Information Science Society.

Hyeyoung Cho received the M.E. degree in computer engineering from the
Information and Communications University, Daejeon, Korea in 2004. She
is currently a researcher of the Supercomputing Center of Korea Institute of
Science and Technology Information. Her interests include cluster system,
distributed and parallel file system, and embedded system. She is a member
of the Korea Information Science Society.

Sungho Kim received the Ph.D. degree in aerospace engineering from Korea
Advanced Institute of Science and Technology, Daejeon, Korea in 1999. He is
currently a senior researcher of the Supercomputing Center of Korea Institute
of Science and Technology Information, Daejeon, Korea. He performed many
national projects related to cluster computer architecture, system software and
grid computing technology. He is now one of the key members to design 4th
supercomputer of KISTI Supercomputing Center and other related projects.
His research interests include cluster computing and embedded computing.

