
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2314

Performance Analysis of Learning Automata-Based 

Routing Algorithms in Sparse Graphs 

      Z.Farhadpour, Mohammad.R.Meybodi

   Abstract—A number of routing algorithms based on learning 

automata technique have been proposed for communication 

networks. How ever, there has been little work on the effects of 

variation of graph scarcity on the performance of these algorithms. In 

this paper, a comprehensive study is launched to investigate the 

performance of LASPA, the first learning automata based solution to 

the dynamic shortest path routing, across different graph structures 

with varying scarcities. The sensitivity of three main performance 

parameters of the algorithm, being average number of processed 

nodes, scanned edges and average time per update, to variation in 

graph scarcity is reported. Simulation results indicate that the LASPA 

algorithm can adapt well to the scarcity variation in graph structure 

and gives much better outputs than the existing dynamic and fixed 

algorithms in terms of performance criteria. 
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I. INTRODUCTION 

EARNING automata (LA) have traditionally been used to  

model biological learning systems and to learn an optimal 

action that a Random Environment (RE) offers. Learning 

is achieved by interacting with the environment, and 

processing its responses according to the chosen actions. In 

the learning process an automaton is presented with a set of 

actions by the environment with which it interacts, and it 

chooses one of these actions. Base on the chosen action, the 

automaton is either rewarded or penalized by the environment 

with a certain probability. Based on this response, the 

automaton attempts to learn the optimal action. The goal is 

that the automaton eventually chooses this action more 

frequently than the other possible actions [8], [9].we provide 

here a basic introduction to LA, and the way by which it can 

be used to solve dynamic single source shortest path routing 

problem. The learning loop (fig.1) involves two entities, the 

RE and the LA. The actual process of learning is represented 

as a set of interactions between the RE and the LA. The LA is 

offered a set of actions },...,,{ 21 r  by the RE it interacts 

with, and is limited to choose only one of these actions at any 

given time. Once the LA decides on an action, i , this action 

will serve as the input to the RE.  
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The RE will then respond to the input by giving a reward 

signified by the value "0", or a penalty, signified by the value 

"1", base on the penalty probability ic associated with i .

This response serves as the input to the automaton. Based 

upon the response from the RE and the current information 

that it has accumulated so far, the LA decides on its next 

action and the process repeats. 

Fig. 1 Automaton–environment feedback loop. 

 The intention is that the LA learns the optimal action, and 

eventually chooses this action more frequently than any other 

action. this paper , uses the family of variable structure 

stochastic learning automata (VSSA).which are completely 

defined in terms of action probability updating schemes which 

are either continuous or discreet. The action probability vector 

P (n) of an r-action LA is defined as 
T

r nPnPnP )](),...,(),([ 21 , where )(nPi  is the probability 

of choosing action i  at time "n" , with:  
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Formally, a VSSA can be defined as a 

quadruple ),,,( TP , where: 

i) },...,,{ 21 r is the set of r actions offered by the 

RE that the LA must choose form. 

ii) )](),...,(),([ 21 nPnPnPP r  is the action probability 

vector , where iP  represents the probability of choosing action 

i  at the 
thn time instant. 

iii) }1,0{ is the set of inputs from the RE, where "0" 

represents a reward and "1" represents a penalty. 

iv) T is the updating scheme. This is a map form P

to P, and defines the method of updating the action 

probabilities on receiving an input form the RE. 

L
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The updating rule that is used here is analogues to the linear-

reward-inaction ( RIL ) scheme, well-known in LA [8].the 

probability updating schemes for the RIL (whose rationale can 

be found in [11], [12]) is:   
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Where r (0< r <1) is the parameter of scheme. Typically, 

r  is chosen to be close to unity and only rewards are 

processed inn this scheme.  

Given an action probability vector P (t) at time "t", the average 

penalty is defined as [11]: 
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As t , if the average penalty 0)( MtM , at least 

asymptotically, the automaton is generally considered to be 

better than pure-chance automaton. )]([ tME  is given by 

[11]: 

(4))]([)]}(|)([{)([ tEtPtEEtME

A learning automaton is considered optimal  if [11]: 

(5)0re       whe)]([lim 1ctMEn

The RIL  scheme has been proven to be optimal [11]. 

Learning is not only considered in single automaton case, but 

also hierarchies of automata and distributed interconnections 

of automata are used for solving decision problems in a 

decentralized fashion. A number of routing algorithms based 

on LA theory have been proposed for dynamic shortest path 

routing in communication networks. In these algorithms a 

network of independent decentralized LA controllers is used 

to learn and maintain shortest path information in a graph. In 

this paper a comprehensive study is launched to investigate the 

performance of LASPA the first learning automata solution to 

the dynamic shortest path routing, across different graph 

structures with varying scarcities. The rationale behind this is 

that full connectivity is not always enforceable in real- world 

situations. The sensitivity of three main performance 

parameters of the algorithm, being average number of 

processed nodes, scanned edges and average time per update, 

to variation in graph scarcity is reported and the algorithm is 

compared to some fixed and dynamic algorithms in terms of 

performance criteria. The remaining sections of this paper is 

organize as follows: section II presents the first learning 

automata  based algorithm for shortest path routing called 

LASPA , in section III a performance evaluation study is 

launched to investigate the sensitivity of LASPA algorithm to 

variation in graph scarcity. In section IV the results are 

reported and the algorithm is compared with some fixed and 

dynamic shortest path algorithms. 

II.LASPA FOR SOLVING DSSSP 

      Routing is the distributed activity of building routing 

tables, one for each node in the network, which tells incoming 

data packets which outgoing link to use to continue their travel 

to their destination node. The problem of computing and 

maintaining the shortest paths information in a graph with a 

single source where there are continuous probabilistic updates 

in edge-weights referred to as the Dynamic Single Source 

Shortest path Problem (DSSSP). In such an environment, one 

needs to devise efficial solutions to maintain the shortest path 

even though there are updates on the structure of the graph 

without recomputing everything from scratch following each 

topology update. LA-based solution to DSSSP (such as any 

LA system) consist of three principle components namely, the 

automaton, the environment, and the reward-penalty structure. 

In this case, the "system" would imply a team of LA 

interacting with the stochastic graph and playing a cooperative 

game. 

A. The Automata  

       In this algorithm a LA is stated at every node in the graph 

so as to have invoked a game of automata in a sequential 

fashion. At every instance, its task is to choose a suitable edge 

from all the outgoing edges in that node. The intention is that 

it guesses that this edge belongs to the shortest path tree of the 

"average" overall graph. It accomplishes this by interacting 

with the environment. It first chooses an action from its 

prescribed set of actions. It then requests the environment for 

the current random edge-weight for the edge it has chosen. 

The system computes the current shortest path by invoking a 

dynamic shortest path algorithm such as Ramalingam   &  

Rep’ s algorithm (RR) or Frigioni algorithm (FMN) whence 

the LA determines whether the choice it made should be 

rewarded or penalized. 

       B.The environment 

       The environment consists of the overall dynamically 

changing graph. In the graph, there are multiple edge-weights 

which change continuously and stochastically. These changes 

are based on a distribution that is unknown to the LA, but 

assumed to be known to the environment. In a religious LA-

environment feedback, the environment also supplies a 

reward/penalty signal to the LA. In the algorithm, this 

feedback is inferred by the system, after it has invoked either 

the RR or FMN algorithms. 

      C.Reward /penalty 

       Based on the action that the LA has chosen, and the edge-

weight that the environment provides, the updated shortest 

path tree is computed. The effect of this choice is now 
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determined by comparing the cost with the current “average” 

shortest paths, and the LA thus infers whether the choice 

should be rewarded or penalized. The automaton then updates 

the action probabilities using an appropriate scheme, and the 

cycle continues. The LASPA algorithm works as follows: 

Let G (V, E) denoted a dynamically changing directed graph 

with a set of V vertices and E edges, which is to be processed 

by LASPA algorithm. Suppose there is a dynamically 

changing graph where randomly selected edge-weights change 

depending on a probabilistic distribution. The goal is to 

determine the underlying shortest path of the average weights, 

which the system unaware of it. The general pseudo code of 

LASPA is shown below: 

  A. Initialization
      1. To begin with, the algorithm obtains a snapshot of the 

directed graph with each edge having a random weight. This 

edge-weight is based on the random call for an edge, where 

each edge-cost has a (different) unknown mean and a 

variance. The algorithm maintains an action probability 

vector, )}(),...,(),({ 21 npnpnpP r
for each node of the 

graph that contains the probability values for choosing 

different actions, },...,,{ 21 r
offered by the random 

environment which are the edges leaving the node. These are 

modeled as the actions. )(npi
, represents the probability of 

choosing action 
i
 at the 

thn time instance. All elements of 

the action probability vector of a particular node are initialized 

to have a value equal to one divided by the out degree of that 

node. A higher probability value indicates a superior action. In 

this case, each node has a number of possible outgoing edges. 

Each possible outgoing edge corresponds to a probable action 

that can be selected for calculating the shortest path tree. 

Based on the chosen action, the system does shortest path 

computations, whence it finds whether the random 

environment inputs the automaton with }1,0{ where 0 

represents a reward and 1 a penalty. Let 
i
denote the action 

corresponding to choosing the outgoing edge (x,y) from node 

x to node y,and let dist(x) be the shortest path distance of x 

from the source, and w(x,y) the weight of edge (x,y):  

(6))(),()(1

)(),()(0

ydistyxwxdist
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      2. Dijkstra’s Algorithm is run once to determine the 

shortest path edges on the graph snapshot obtained in the first 

step. Based on this, the action probability vector of each node 

is updated such that the outgoing edge from a node which is 

determined to belong to the shortest path edge has an 

increased probability than before the update.  

      B. Iterations 

      3. Then a node is randomly chosen from the current graph. 

For that node, based on the action probability vector, an edge 

is chosen as follows. For example, if a node has three outgoing 

edges (three possible actions) and the action probability vector 

for that node is {0.3, 0.2, 0.5}, the edge (action) chosen is 

selected based on this distribution. 

      4. The Environment is then requested for the correct edge-

weight of the edge that is randomly selected in Step 3 above. 

Since the edge-weights are real numbers, the edge-weight 

should have increased/decreased. Thus, the current shortest 

path’s tree is calculated using either of the existing edge-

weight increase/ decrease algorithms (i.e., either RR or FMN 

algorithm). 

      5. The action probability vector for the node whose edge 

was just selected is updated such that the edge that could now 

potentially belong to the shortest path’s tree has a greater 

likelihood of being selected than before the update. 

      6. Steps 3–5 above are repeated a large number of times 

until the algorithm converge. 

III. PERFORMANCE ANALYSIS OF LASPA 

ALGORITHM 

A. Experimental setting 

      As mentioned in section II the environment which is 

processed by LASPA algorithm consists of a dynamically 

changing directed graph with a set of vertices and edges. This 

graph is said to be sparse if the total number of edges is small 

computed to the total number of possible edges. Or, more 

formally, in a sparse graph, M=O (N) where N and M are the 

number of nodes and edges in the graph respectively. In this 

section the sensitivity of performance of LASPA to increase in 

graph scarcity is evaluated. Several experiments were 

designed to evaluate the performance of the algorithm on 

several graph topologies with single source, directed edges, 

positive real edge-weights that are normally distributed and 

with stochastic edge updates and different degree of scarcity. 

For the above experiments a random generator is used. 

Random graph topology generator is a module builds a 

random directed graph with n nodes, e edges, and positive real 

edge weights. The edge-weights are randomly generated and 

are normally distributed. The random graph can be built from 

either specifying the number of nodes and edges or by 

specifying the graph scarcity. 

B. Performance Metrics 

      Three metrics which were used for evaluating the 

performance of the algorithm are listed below: 

Number of scanned edges: This quantity measures the 

number of edges that are scanned in update operations. 

The first scanned edge is the edge whose weight is 

changed. Next, when an edge is scanned to check if it is in 

the shortest path, its value is incremented. 

Number of processed nodes: This quantity measures the 

number of nodes that are processed in update operations. 

Time required per update operation: This quantity is the 

running time required to update weights and to obtain all 

the shortest paths.
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IV. RESULTS 

       This section reports the results of the experiments that 

were conducted to examine the performance of LASPA in 

different random graph topologies. The algorithm is compared 

with two dynamic routing algorithms RR and FMN. The 

results of three sets of experiments are summarized below: 

Experiment set1: Here the performance of LASPA is 

compared with two dynamic shortest path routing 

algorithm RR and FMN. The RR, FMN, LASPA are 

implemented on a random graph topology with 50 nodes 

and 20% scarcity. The edge-weights are random real 

value having a mean between 1.0 and 5.0 and with 

variance between 0.1 and 0.9. The value of learning 

parameter was set to 0.98. The results of this experiment 

are shown in figures2-4. The results show 75-95% 

improvement of the performance of LASPA with respect 

to that of  FMN and RR. 

Experiment set2: The second set of experiments was 

conducted to evaluate the RR, FMN and LASPA 

algorithms varying in graph structures, specifically, in   

number of nodes in the graphs and the graph scarcity. The 

results of the experiment are listed in tables I-III. 

Experiment set3: In this experiment, the sensitivity of the 

performance of LASPA algorithm to increase in graph 

scarcity keeping other parameters constant is evaluated. 

Figures 5, 6 show the variation of average time per update 

and the average number of processed nodes with the 

variation in the graph scarcity. It was observed that as 

scarcity of the graph increases, the average time to update 

and the average number of processed nodes decrease. 
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Fig. 2 Plot of the average processed nodes as a function of the 

number of Operations done for the various algorithms. Here, every 

“Operation” signifies an increase/decrease of the edge weight, whose 

inclusion in the shortest path tree is being considered. 
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Fig. 3 Plot of the average scanned edges as a function of the number 

of Operations done for the various algorithms. The term “Operation” 

has the same significance as in Fig.2. 
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Fig. 4 Plot of the average time per update as a function of the number 

of Operations done for the various algorithms. The term “Operation” 

has the same significance as in Fig.2. 

TABLE I STATISTICS REPORTING THE NUMBER OF PROCESSED

NODES WITH THE VARIATION OF GRAPH SPARSITY 

scarcity RR FMN LASPA 

10% 0.241 0.251 0.08 

30% 0.425 0.196 0.012 

50% 0.492 0.216 0.006 

70% 0.0872 0.188 0.005 

90% 1.174 0.161 0.0036 

TABLE II STATISTICS REPORTING THE NUMBER OF SCANNED EDGES

WITH THE VARIATION OF GRAPH SPARSITY 

scarcity RR FMN LASPA 

10% 18.0456 11.733 1.0828 

30% 19.02 7.113 1.259 

50% 16.55 7.119 1.416 

70% 16.89 7.574 1.124 

90% 16.0 6.944 1.112 

TABLE III. STATISTICS REPORTING THE TIME PER UPDATE WITH THE

VARIATION OF GRAPH SPARSITY 

scarcity RR FMN LASPA 

10% 6.418 3.732 1.87 

30% 6.256 2.534 1.734 

50% 6.278 2.606 1.812 

70% 4.394 1.954 1.991 

90% 3.23 1.674 1.671 
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Fig. 5 Sensitivity of average number of processed nodes of LASPA to 

variation in graph scarcity the term “Operation” has the same 

significance as in Fig.2. 
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Fig. 6 Sensitivity of average time per update of LASPA to variation 

in graph scarcity. The term “Operation” has the same significance as 

in Fig.2. 

V. CONCLUSIONS 

      In this paper, a comprehensive study is launched to investigate 

the performance of LASPA, the first learning automata based 

solution to the dynamic shortest path routing, across different graph 

structures with varying scarcities. The sensitivity of three main 

performance parameters of the algorithm, being average number of 

processed nodes, scanned edges and average time per update, to 

variation in graph scarcity is reported. Simulation results indicate that 

the LASPA algorithm can adapt well to the scarcity variation in 

graph structure and gives much better outputs than the existing 

dynamic and fixed algorithms in terms of performance criteria. 
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