
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2314

Performance Analysis of Learning Automata-Based

Routing Algorithms in Sparse Graphs

 Z.Farhadpour, Mohammad.R.Meybodi

 Abstract—A number of routing algorithms based on learning

automata technique have been proposed for communication

networks. How ever, there has been little work on the effects of

variation of graph scarcity on the performance of these algorithms. In

this paper, a comprehensive study is launched to investigate the

performance of LASPA, the first learning automata based solution to

the dynamic shortest path routing, across different graph structures

with varying scarcities. The sensitivity of three main performance

parameters of the algorithm, being average number of processed

nodes, scanned edges and average time per update, to variation in

graph scarcity is reported. Simulation results indicate that the LASPA

algorithm can adapt well to the scarcity variation in graph structure

and gives much better outputs than the existing dynamic and fixed

algorithms in terms of performance criteria.

Keywords—Learning automata, routing, algorithm, sparse

graph

I. INTRODUCTION

EARNING automata (LA) have traditionally been used to

model biological learning systems and to learn an optimal

action that a Random Environment (RE) offers. Learning

is achieved by interacting with the environment, and

processing its responses according to the chosen actions. In

the learning process an automaton is presented with a set of

actions by the environment with which it interacts, and it

chooses one of these actions. Base on the chosen action, the

automaton is either rewarded or penalized by the environment

with a certain probability. Based on this response, the

automaton attempts to learn the optimal action. The goal is

that the automaton eventually chooses this action more

frequently than the other possible actions [8], [9].we provide

here a basic introduction to LA, and the way by which it can

be used to solve dynamic single source shortest path routing

problem. The learning loop (fig.1) involves two entities, the

RE and the LA. The actual process of learning is represented

as a set of interactions between the RE and the LA. The LA is

offered a set of actions },...,,{ 21 r by the RE it interacts

with, and is limited to choose only one of these actions at any

given time. Once the LA decides on an action, i , this action

will serve as the input to the RE.

Z.Farhadpour is with the Computer Engineering Department, Islamic Azad

University, Farahan Branch, Iran (mail: z.farhadpour@gmail.com).

Mohammad.R.Meybodi is with the Computer Engineering Departement,

Amirkabir University, Iran (mmeybodi@aut.ac.ir)

The RE will then respond to the input by giving a reward

signified by the value "0", or a penalty, signified by the value

"1", base on the penalty probability ic associated with i .

This response serves as the input to the automaton. Based

upon the response from the RE and the current information

that it has accumulated so far, the LA decides on its next

action and the process repeats.

Fig. 1 Automaton–environment feedback loop.

 The intention is that the LA learns the optimal action, and

eventually chooses this action more frequently than any other

action. this paper , uses the family of variable structure

stochastic learning automata (VSSA).which are completely

defined in terms of action probability updating schemes which

are either continuous or discreet. The action probability vector

P (n) of an r-action LA is defined as
T

r nPnPnP)](),...,(),([21 , where)(nPi is the probability

of choosing action i at time "n" , with:

(1)1)(Pand1)(0
1 i nnP

r

ii

Formally, a VSSA can be defined as a

quadruple),,,(TP , where:

i) },...,,{ 21 r is the set of r actions offered by the

RE that the LA must choose form.

ii))](),...,(),([21 nPnPnPP r is the action probability

vector , where iP represents the probability of choosing action

i at the
thn time instant.

iii) }1,0{ is the set of inputs from the RE, where "0"

represents a reward and "1" represents a penalty.

iv) T is the updating scheme. This is a map form P

to P, and defines the method of updating the action

probabilities on receiving an input form the RE.

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2315

The updating rule that is used here is analogues to the linear-

reward-inaction (RIL) scheme, well-known in LA [8].the

probability updating schemes for the RIL (whose rationale can

be found in [11], [12]) is:

(2)1if)()1(

0andchosenif)()1(

0andchosenif)(1)1(

i

i

nPnP

isnPnP

isnPnP

jj

jrj

j

ij

ii

Where r (0< r <1) is the parameter of scheme. Typically,

r is chosen to be close to unity and only rewards are

processed inn this scheme.

Given an action probability vector P (t) at time "t", the average

penalty is defined as [11]:

(3))(c

])(Pr[].(t)|1(t)Pr[

)](|1)(Pr[)](|)([)(

1 i

1 i

tP

t

tPttPtEtM

i

r

i

i

r

i

As t , if the average penalty 0)(MtM , at least

asymptotically, the automaton is generally considered to be

better than pure-chance automaton.)]([tME is given by

[11]:

(4))]([)]}(|)([{)([tEtPtEEtME

A learning automaton is considered optimal if [11]:

(5)0re whe)]([lim 1ctMEn

The RIL scheme has been proven to be optimal [11].

Learning is not only considered in single automaton case, but

also hierarchies of automata and distributed interconnections

of automata are used for solving decision problems in a

decentralized fashion. A number of routing algorithms based

on LA theory have been proposed for dynamic shortest path

routing in communication networks. In these algorithms a

network of independent decentralized LA controllers is used

to learn and maintain shortest path information in a graph. In

this paper a comprehensive study is launched to investigate the

performance of LASPA the first learning automata solution to

the dynamic shortest path routing, across different graph

structures with varying scarcities. The rationale behind this is

that full connectivity is not always enforceable in real- world

situations. The sensitivity of three main performance

parameters of the algorithm, being average number of

processed nodes, scanned edges and average time per update,

to variation in graph scarcity is reported and the algorithm is

compared to some fixed and dynamic algorithms in terms of

performance criteria. The remaining sections of this paper is

organize as follows: section II presents the first learning

automata based algorithm for shortest path routing called

LASPA , in section III a performance evaluation study is

launched to investigate the sensitivity of LASPA algorithm to

variation in graph scarcity. In section IV the results are

reported and the algorithm is compared with some fixed and

dynamic shortest path algorithms.

II.LASPA FOR SOLVING DSSSP

 Routing is the distributed activity of building routing

tables, one for each node in the network, which tells incoming

data packets which outgoing link to use to continue their travel

to their destination node. The problem of computing and

maintaining the shortest paths information in a graph with a

single source where there are continuous probabilistic updates

in edge-weights referred to as the Dynamic Single Source

Shortest path Problem (DSSSP). In such an environment, one

needs to devise efficial solutions to maintain the shortest path

even though there are updates on the structure of the graph

without recomputing everything from scratch following each

topology update. LA-based solution to DSSSP (such as any

LA system) consist of three principle components namely, the

automaton, the environment, and the reward-penalty structure.

In this case, the "system" would imply a team of LA

interacting with the stochastic graph and playing a cooperative

game.

A. The Automata

 In this algorithm a LA is stated at every node in the graph

so as to have invoked a game of automata in a sequential

fashion. At every instance, its task is to choose a suitable edge

from all the outgoing edges in that node. The intention is that

it guesses that this edge belongs to the shortest path tree of the

"average" overall graph. It accomplishes this by interacting

with the environment. It first chooses an action from its

prescribed set of actions. It then requests the environment for

the current random edge-weight for the edge it has chosen.

The system computes the current shortest path by invoking a

dynamic shortest path algorithm such as Ramalingam &

Rep’ s algorithm (RR) or Frigioni algorithm (FMN) whence

the LA determines whether the choice it made should be

rewarded or penalized.

 B.The environment

 The environment consists of the overall dynamically

changing graph. In the graph, there are multiple edge-weights

which change continuously and stochastically. These changes

are based on a distribution that is unknown to the LA, but

assumed to be known to the environment. In a religious LA-

environment feedback, the environment also supplies a

reward/penalty signal to the LA. In the algorithm, this

feedback is inferred by the system, after it has invoked either

the RR or FMN algorithms.

 C.Reward /penalty

 Based on the action that the LA has chosen, and the edge-

weight that the environment provides, the updated shortest

path tree is computed. The effect of this choice is now

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2316

determined by comparing the cost with the current “average”

shortest paths, and the LA thus infers whether the choice

should be rewarded or penalized. The automaton then updates

the action probabilities using an appropriate scheme, and the

cycle continues. The LASPA algorithm works as follows:

Let G (V, E) denoted a dynamically changing directed graph

with a set of V vertices and E edges, which is to be processed

by LASPA algorithm. Suppose there is a dynamically

changing graph where randomly selected edge-weights change

depending on a probabilistic distribution. The goal is to

determine the underlying shortest path of the average weights,

which the system unaware of it. The general pseudo code of

LASPA is shown below:

 A. Initialization
 1. To begin with, the algorithm obtains a snapshot of the

directed graph with each edge having a random weight. This

edge-weight is based on the random call for an edge, where

each edge-cost has a (different) unknown mean and a

variance. The algorithm maintains an action probability

vector,)}(),...,(),({ 21 npnpnpP r
for each node of the

graph that contains the probability values for choosing

different actions, },...,,{ 21 r
offered by the random

environment which are the edges leaving the node. These are

modeled as the actions.)(npi
, represents the probability of

choosing action
i
 at the

thn time instance. All elements of

the action probability vector of a particular node are initialized

to have a value equal to one divided by the out degree of that

node. A higher probability value indicates a superior action. In

this case, each node has a number of possible outgoing edges.

Each possible outgoing edge corresponds to a probable action

that can be selected for calculating the shortest path tree.

Based on the chosen action, the system does shortest path

computations, whence it finds whether the random

environment inputs the automaton with }1,0{ where 0

represents a reward and 1 a penalty. Let
i
denote the action

corresponding to choosing the outgoing edge (x,y) from node

x to node y,and let dist(x) be the shortest path distance of x

from the source, and w(x,y) the weight of edge (x,y):

(6))(),()(1

)(),()(0

ydistyxwxdist

ydistyxwxdist

 2. Dijkstra’s Algorithm is run once to determine the

shortest path edges on the graph snapshot obtained in the first

step. Based on this, the action probability vector of each node

is updated such that the outgoing edge from a node which is

determined to belong to the shortest path edge has an

increased probability than before the update.

 B. Iterations

 3. Then a node is randomly chosen from the current graph.

For that node, based on the action probability vector, an edge

is chosen as follows. For example, if a node has three outgoing

edges (three possible actions) and the action probability vector

for that node is {0.3, 0.2, 0.5}, the edge (action) chosen is

selected based on this distribution.

 4. The Environment is then requested for the correct edge-

weight of the edge that is randomly selected in Step 3 above.

Since the edge-weights are real numbers, the edge-weight

should have increased/decreased. Thus, the current shortest

path’s tree is calculated using either of the existing edge-

weight increase/ decrease algorithms (i.e., either RR or FMN

algorithm).

 5. The action probability vector for the node whose edge

was just selected is updated such that the edge that could now

potentially belong to the shortest path’s tree has a greater

likelihood of being selected than before the update.

 6. Steps 3–5 above are repeated a large number of times

until the algorithm converge.

III. PERFORMANCE ANALYSIS OF LASPA

ALGORITHM

A. Experimental setting

 As mentioned in section II the environment which is

processed by LASPA algorithm consists of a dynamically

changing directed graph with a set of vertices and edges. This

graph is said to be sparse if the total number of edges is small

computed to the total number of possible edges. Or, more

formally, in a sparse graph, M=O (N) where N and M are the

number of nodes and edges in the graph respectively. In this

section the sensitivity of performance of LASPA to increase in

graph scarcity is evaluated. Several experiments were

designed to evaluate the performance of the algorithm on

several graph topologies with single source, directed edges,

positive real edge-weights that are normally distributed and

with stochastic edge updates and different degree of scarcity.

For the above experiments a random generator is used.

Random graph topology generator is a module builds a

random directed graph with n nodes, e edges, and positive real

edge weights. The edge-weights are randomly generated and

are normally distributed. The random graph can be built from

either specifying the number of nodes and edges or by

specifying the graph scarcity.

B. Performance Metrics

 Three metrics which were used for evaluating the

performance of the algorithm are listed below:

Number of scanned edges: This quantity measures the

number of edges that are scanned in update operations.

The first scanned edge is the edge whose weight is

changed. Next, when an edge is scanned to check if it is in

the shortest path, its value is incremented.

Number of processed nodes: This quantity measures the

number of nodes that are processed in update operations.

Time required per update operation: This quantity is the

running time required to update weights and to obtain all

the shortest paths.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2317

IV. RESULTS

 This section reports the results of the experiments that

were conducted to examine the performance of LASPA in

different random graph topologies. The algorithm is compared

with two dynamic routing algorithms RR and FMN. The

results of three sets of experiments are summarized below:

Experiment set1: Here the performance of LASPA is

compared with two dynamic shortest path routing

algorithm RR and FMN. The RR, FMN, LASPA are

implemented on a random graph topology with 50 nodes

and 20% scarcity. The edge-weights are random real

value having a mean between 1.0 and 5.0 and with

variance between 0.1 and 0.9. The value of learning

parameter was set to 0.98. The results of this experiment

are shown in figures2-4. The results show 75-95%

improvement of the performance of LASPA with respect

to that of FMN and RR.

Experiment set2: The second set of experiments was

conducted to evaluate the RR, FMN and LASPA

algorithms varying in graph structures, specifically, in

number of nodes in the graphs and the graph scarcity. The

results of the experiment are listed in tables I-III.

Experiment set3: In this experiment, the sensitivity of the

performance of LASPA algorithm to increase in graph

scarcity keeping other parameters constant is evaluated.

Figures 5, 6 show the variation of average time per update

and the average number of processed nodes with the

variation in the graph scarcity. It was observed that as

scarcity of the graph increases, the average time to update

and the average number of processed nodes decrease.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000

operations

a
v
e
r
a
g
e
 p

r
o
c
e
s
s
e
d
 n

o
d
e
s

RR

FMN

LASPA

Fig. 2 Plot of the average processed nodes as a function of the

number of Operations done for the various algorithms. Here, every

“Operation” signifies an increase/decrease of the edge weight, whose

inclusion in the shortest path tree is being considered.

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

operations

a
v
e
r
a
g
e
 s

c
a
n
n
e
d
 e

d
g
e
s

RR

FMN

LASPA

Fig. 3 Plot of the average scanned edges as a function of the number

of Operations done for the various algorithms. The term “Operation”

has the same significance as in Fig.2.

0

5

10

15

20

25

0 1000 2000 3000 4000 5000

operations

a
v
e
r
a
g
e
 t
im

e
 p

e
r
 u

p
d
a
te

RR

FMN

LASPA

Fig. 4 Plot of the average time per update as a function of the number

of Operations done for the various algorithms. The term “Operation”

has the same significance as in Fig.2.

TABLE I STATISTICS REPORTING THE NUMBER OF PROCESSED

NODES WITH THE VARIATION OF GRAPH SPARSITY

scarcity RR FMN LASPA

10% 0.241 0.251 0.08

30% 0.425 0.196 0.012

50% 0.492 0.216 0.006

70% 0.0872 0.188 0.005

90% 1.174 0.161 0.0036

TABLE II STATISTICS REPORTING THE NUMBER OF SCANNED EDGES

WITH THE VARIATION OF GRAPH SPARSITY

scarcity RR FMN LASPA

10% 18.0456 11.733 1.0828

30% 19.02 7.113 1.259

50% 16.55 7.119 1.416

70% 16.89 7.574 1.124

90% 16.0 6.944 1.112

TABLE III. STATISTICS REPORTING THE TIME PER UPDATE WITH THE

VARIATION OF GRAPH SPARSITY

scarcity RR FMN LASPA

10% 6.418 3.732 1.87

30% 6.256 2.534 1.734

50% 6.278 2.606 1.812

70% 4.394 1.954 1.991

90% 3.23 1.674 1.671

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2318

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1000 2000 3000 4000 5000

operations

a
v
e
r
a
g
e
 p

r
o
c
e
s
s
e
d
 n

o
d
e
s

50%

30%

10%

Fig. 5 Sensitivity of average number of processed nodes of LASPA to

variation in graph scarcity the term “Operation” has the same

significance as in Fig.2.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 1000 2000 3000 4000 5000

operations

a
v
e
r
a
g
e
 t
im

e
 p

e
r
 u

p
d
a
te

10%

30%

50%

70%

Fig. 6 Sensitivity of average time per update of LASPA to variation

in graph scarcity. The term “Operation” has the same significance as

in Fig.2.

V. CONCLUSIONS

 In this paper, a comprehensive study is launched to investigate

the performance of LASPA, the first learning automata based

solution to the dynamic shortest path routing, across different graph

structures with varying scarcities. The sensitivity of three main

performance parameters of the algorithm, being average number of

processed nodes, scanned edges and average time per update, to

variation in graph scarcity is reported. Simulation results indicate that

the LASPA algorithm can adapt well to the scarcity variation in

graph structure and gives much better outputs than the existing

dynamic and fixed algorithms in terms of performance criteria.

REFERENCES

[1] S. Misra, , B. John Oommen,” An Efficient Dynamic Algorithm for

MaintainingAll-Pairs Shortest Paths in Stochastic Networks,” IEEE

TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 6, JUNE 2006.

[2] G. I. Papadimitriou, M. Sklira, and A. S. Pomportsis,” A New Class of

Optimal Learning Automata,” IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS,

VOL. 34, NO. 1, FEBRUARY 2004.

[3] N. Baba,,Y. Mogami, “A New Learning Algorithm for the Hierarchical

Structure Learning Automata Operating in the Nonstationary S-Model

Random Environment,” IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32,

NO. 6, DECEMBER 2002.

[4] M. A. L. Thathachar, P. S. Sastry,”Varieties of Learning Automata: An

Overview,” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6,

DECEMBER 2002.

[5] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis,

“LearningAutomata: Theory, paradigms and applications,” IEEE Trans.

Syst., Man,and Cybern., vol. 32, no. 6, pp. 706–709, Dec. 2002.

[6] G. I. Papadimitriou and A. S. Pomportsis, “Learning-automata-based

TDMA protocols for broadcast communication systems with

burstytraffic,” IEEE Commun. Lett., vol. 4, no. 3, pp. 107–109, 2000.

[7] P. Narvaez, K.-Y Siu, and H. Y. Tzeng, “New dynamic algorithms for

shortest path tree computation,” IEEE/ACM Trans. Networking, vol. 8,

pp. 734–746, 2000.

[8] B. J. Oommen and E. V. de St. Croix, “Graph partitioning using learning

automata,” IEEE Trans. Comput., vol. 45, pp. 195–208, 1995.

[9] B. J. Oommen and T. D. Roberts, “Continuous learning automata

solutions to the capacity assignment problem,” IEEE Trans. Comput.,

vol.49, pp. 608–620, Jun. 2000.

[10] G. Ramalingam, Bounded Incremental Computation. Berlin:Springer-

Verlag, 1996, vol. 1089, Lecture Notes in Computer Science.

[11] K. S. Narendra and M. A. L. Thathachar, Learning Automata.

EnglewoodCliffs, NJ: Prentice-Hall, 1989.

[12] S. Lakshmivarahan, Learning Algorithms Theory and Applications.New

York: Springer-Verlag, 1981.

