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Performance analysis of a flexible manufacturing
line operated under surplus-based production control
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Abstract—In this paper we present our results on the performance
analysis of a multi-product manufacturing line. We study the influ-
ence of external perturbations, intermediate buffer content and the
number of manufacturing stages on the production tracking error of
each machine in the multi-product line operated under a surplus-
based production control policy. Starting by the analysis of a single
machine with multiple production stages (one for each product type),
we provide bounds on the production error of each stage. Then, we
extend our analysis to a line of multi-stage machines, where similarly,
bounds on each production tracking error for each product type, as
well as buffer content are obtained. Details on performance of the
closed-loop flow line model are illustrated in numerical simulations.

Keywords—flexible manufacturing systems, tracking systems, dis-
crete time systems, production control, boundary conditions.

I. INTRODUCTION

AManufacturing network consisting of workstations inter-
connected in a tandem manner, where at each station one

machine serves several buffers (i.e., flexible machine), can be
frequently encountered as a part of an industrial production
process. For example, in case of semiconductor manufacturing
it is typical to observe that at some stages the machines are
working with multiple product types. In order to produce a
wafer several layers of semiconductor material have to be
put together, which implies that the product (wafer) has to
undergo several times (some wafers more that others) through
the same process before it is finally ready (see, e.g., [1]). In this
case manufacturing machines work with intermediate products
(wafers) of different processing stages. Another example of
flexible manufacturing lines can be observed in the automotive
industry (see, e.g., [2]).

Analysis on control and performance of networks, which
present flexible behavior in the production process, has always
attracted much attention of manufacturers, as well as of
researchers. Thus control problems of flexible manufacturing
lines are widely studied and a lot of valuable approaches
including queuing theory, Petri nets, dynamic programming,
linear programming, hybrid systems were proposed and some
of them are implemented (for surveys see, e.g., [3]–[5]).

In this paper we focus on the performance analysis of a
flexible production line controlled by a surplus-based1 decen-
tralized production control (see e.g., [6]). Specifically, given
the presence of unknown but bounded production speed per-
turbations, as well as demand rate fluctuations, we investigate
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1In the surplus-based control, decisions are made based on the production
tracking error, which is the difference between the cumulative demand and
the cumulative output of the system.

how close the cumulative production output of the network
follows its cumulative production demand under this control
policy.

In order to achieve our goal we use classical tools from
control theory. The production flow process is described by
means of difference equations and in order to analyse its
performance, a Lyapunov theory approach is exploited (see,
e.g., [7], [8] and references there in).

Each machine in the network is responsible for several
production stages. At each stage the machine coordinates its
individual production with those of the rest of the system.
While working at one stage the machine does not switch to
another one unless the primary control objective at this stage
is fulfilled or product starvation occurs. The primary objective
of each production stage may be viewed as manufacturing
a sufficient quantity of parts to satisfy the demand of its
immediate downstream production stage (belonging to the
downstream machine) and some desired amount as back-up
material storage in its downstream buffer. The production
strategy itself is intuitive and it can be associated with a wide
range of existing techniques such as Basestock policy (see,
e.g., [6]), Hedging Point policy (see, e.g., [3]), and Clearing
policy (see, e.g., [9]).
To the best of our knowledge, concerning the previous results
on performance analysis of surplus-based approaches (see,
e.g., [3]–[5], [10]–[14], the novelty of our results can be
summarized as follows. The proposed production model is
considered in discrete time. The production speed of each ma-
chine is defined as deterministic with bounded perturbations.
The future production demands are assumed to be unknown
and with bounded fluctuations. As a result, for one flexible
manufacturing machine of N production stages, strict, so-
called ”worst” case bounds on the production tracking error
for each product type are obtained. Extending this strategy to
a network of P machines with N production stages each, we
present the obtained results regarding the bounds on the pro-
duction tracking errors and buffer contents for each machine
and its buffers. Furthermore, we show that, though the analysis
given in this paper is focused on multi-product manufacturing
lines, the obtained results can be easily extended to re-entrant
configurations with one product type demand.

The paper is organized as follows. First, in Section 2 the
flow model of one manufacturing machine with surplus-based
pull control is presented. The detailed analysis of production
error trajectories is developed in this section. Then the flow
model of a flexible manufacturing line with surplus-based pull
control is analyzed in Section 3. Here necessary conditions are
derived to guarantee the uniform ultimate boundedness of the
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production error trajectories of each machine. Performance and
robustness issues of the closed-loop flow models are illustrated
in numerical simulations in Section 4. Finally, Section 5
contains conclusions and our future developments.

II. ANALYSIS OF ONE FLEXIBLE MACHINE

Figure 1 shows a schematics of one machine M with N
production stages, which directly correspond to the number of
product types that it can serve. The machine is interconnected
with N buffers B1 . . . BN , each containing its infinite product
supply of corresponding product type.

Fig. 1. Schematics of one flexible manufacturing machine M .

A. Flow Model

In discrete time the cumulative number of produced prod-
ucts in time k for a simple manufacturing machine can be
described as the sum of its production rates at each time step
till time k. Thus the flow model of each production stage of
one flexible machine (see Figure 1) in discrete time is defined
as

yj(k + 1) = yj(k) + βj(k)uj(k), ∀k ∈ N, j = 1, . . . , N, (1)

where yj(k) ∈ R is the cumulative output of the machine for
product type j in time k, uj(k) ∈ R is the control input
of the machine in processing stage of product type j and
βj(k) = μj + fj(k) where μj is a positive constant that
represents the processing speed of the machine for servicing
the product type j and fj(k) ∈ R is an unknown external
disturbance affecting the performance of the machine at stage
j. Under the assumption that there is always sufficient quantity
of the raw material to feed the machine, the control aim is
to track the non-decreasing cumulative production demand of
each product type j on its output. We define the cumulative
production demand by using ydj(k) ∈ R given by

ydj(k) = ydj0 + vdjk + ϕj(k), ∀j = 1, . . . , N, (2)

where ydj0 is a positive constant that represents the initial
production demand of product j, vdj is a positive constant
that defines the average desired demand rate of product j, and
ϕj(k) ∈ R is the bounded fluctuation that is imposed on the
linear demand vdjk.

In order to give a solution to this tracking problem we
consider the controller based on the production tracking error
of each product type. The machine can only work at one
stage at a time. The controller randomly selects the stage at
which the machine must work, from those where production
is needed. The machine works at this stage till its product
demand is satisfied. Then the controller again selects a stage

for the machine to work at. In case the product demand of all
product types are satisfied, the controller idles the machine.

The above mentioned can be formulated by following
control algorithm (see next paragraph for summary):

{q(k) = Bj}
if εj(k) > 0 then

uj(k) = 1,

us(k) = 0, ∀s �= j, s, j = 1, . . . , N,

q(k + 1) = Bj ,

if εj(k) ≤ 0 and∃s �= j : εs(k) > 0 then

uj(k) = 0,

us(k) = 1,

q(k + 1) = Bs,

if εs(k) ≤ 0, ∀s then

uj(k) = 0,

us(k) = 0, ∀s �= j, s, j = 1, . . . , N,

q(k + 1) = 0, (3)

where q(k) is the internal variable that specifies the buffer that
machine M is processing, εj(k) ∈ R is the production tracking
error at stage j. Note that all Bj buffers are considered to
always have sufficient raw material.
Summarizing (3), the machine can only work on one buffer
(product type) at a time. The control input uj(k) of each
production stage j can only take the value of 0 (stop) or 1
(produce). The uj(k) receives the value of 1 only if production
stage j needs to produce (εj(k) > 0). The machine will remain
at its current state (q(k) = Bj) while all the conditions of
the state are satisfied. The value of 0 is given to the control
input of stage j if at least one of the conditions of the current
state q(k) = Bj is unsatisfied. The change in the value of
the control signal of a stage j also implies a change in the
machine’s state q(k). The machine has N + 1 states. This is
due to that N is the total number of processing stages (product
types) that M can be working in, which directly relate to the
states of the machine, plus the idle state (q(k) = 0).

The production tracking error at each stage of M is given
by:

εj(k) = ydj(k) − yj(k), ∀k ∈ N. (4)

For further analysis, let us rewrite flow model (1) in a closed-
loop with (3) in terms of production tracking errors as

Δεj(k) = vdj + Δϕj(k) − βj(k)uj(k), (5)

where for all j = 1, . . . , N , Δεj(k) = εj(k + 1) − εj(k) and
Δϕj(k) = ϕj(k + 1) − ϕj(k). Here we assume that system
(5) satisfies the following assumptions.

Assumption 1 (Boundedness of perturbations) There are con-
stants c1, c2, c3 and c4 such that

c1 < Δϕj(k) < c2, ∀k, j = 1, . . . , N, (6)

c3 < fj(k) < c4, ∀k, j = 1, . . . , N. (7)
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From Assumption 1, it follows that Wj(k) = Δϕj(k)− fj(k)
satisfies

α1 < Wj(k) < α2, ∀k, j = 1, . . . , N, (8)

with α1 = c1 − c4 and α2 = c2 − c3.

Assumption 2 (Capacity condition) Constants c1, c2, c3 and
c4 satisfy the following inequalities

c1 > −vdj, ∀j = 1, . . . , N, (9)

α2 < μj − vdj, ∀j = 1, . . . , N, (10)

and the following condition (also know as capacity condition)
holds

0 <

N∑

j=1

vdj + Δϕj(k)

μj + fj(k)
< 1. (11)

By (9), (10), and (11) we state that, in the presence of market
fluctuations bounded by (c1, c2), the demand rate for each
product type can only be positive, the production speed at each
manufacturing stage of the machine is always faster than the
demand rate of its product and in general the processing speed
of the machine is faster than its demand rate, respectively.

It is important to notice that machine M at each process
step j has a processing speed of μj +fj(k) lots per time unit,
which can differ from the other processing steps.

B. Results on Performance

In this section we present the results respecting the produc-
tion error trajectories behavior of flow model (5).

Theorem 1 Assume that the discrete time system defined by
(5) satisfies Assumptions 1 and 2. Then all solutions of (5) are
ultimately bounded by

lim sup
k→∞

N∑

j=1

εj(k) − vdj − α2

μj + c3
≤ 0, (12)

lim inf
k→∞

εj(k) ≥ vdj + α1 − μj . (13)

Note that by replacing vdj + Δϕj(k) for vd + Δϕ(k) this
result can be also extended to a re-entrant production machine
serving one product type.

Proof: see Appendix A.
The obtained bounds can be appreciated graphically through

a phase portrait of the production error trajectories shown in
Figure 2, which was made for a single machine producing 2
product types. The product demand rate vdj = 0.99 [lots/time
unit] and the production rate at each stage μj=2[lot/ time unit].
Here the experiment starts with initial production tracking
errors ε1(0) = 2 [lots] and ε2(0) = 2 [lots]. It can be observed
that first the controller activates stage 1 of M . The machine
works with this stage till ε1(k) ≤ 0 and switches to stage 2.
Eventually the trajectories of the tracking errors enter the zone
depicted by the rectangular triangle, where they remain for the
rest of the experiment. The legs of this triangle are given by
(13) and the hypotenuse by (12).
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Fig. 2. Tracking Errors ε2(k) vs. ε1(k) , with vdj = 0.99 [lots/time unit]
and μj=2[lot/ time unit].

III. ANALYSIS OF A FLEXIBLE FLOW LINE

Figure 3 shows a schematics of a flexible manufacturing
line consisting of P machines M1, . . . , MP with N production
stages each. Each machine Mi receives its intermediate prod-
ucts from N upstream buffers Bi,1, . . . , Bi,N . The products
flow through the network in unidirectional manner.

Fig. 3. Schematic of a flexible production line

A. Flow Model

The flow model of each production stage of a flexible line
(Figure 3) in discrete time is defined as

yi,j(k + 1) = yi,j(k) + βi,j(k)ui,j(k), ∀k, i, j, (14)

where i = 1, .., P is the machine number, j = 1, ..., N is the
processing stage (product type) number of machine i, yi,j(k) ∈
R is the cumulative output of machine i in processing stage
j in time k, ui,j(k) ∈ R is the control input of machine i in
processing stage j and βi,j(k) = μi,j + fi,j(k) where μi,j is
a positive constant that represents the processing speed of the
machine i at its stage j and fi,j(k) ∈ R is an unknown external
disturbance affecting the performance of the ith machine at its
stage j.
Under the assumption that there is always sufficient quantity of
the raw material to feed the input buffers B1,j , the control aim
is to track the non-decreasing cumulative production demands
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given by (2) on each output of the multi-product manufacturing
line.

In order to give a solution to this tracking problem we
consider the following control algorithm:

{qi(k) = Bi,j}
if εi,j(k) > 0 and wi,j(k) ≥ βi,j(k) then

ui,j(k) = 1,

ui,s(k) = 0, ∀s �= j, s, j = 1 . . . , N,

qi(k + 1) = Bi,j ,

if (εi,j(k) ≤ 0 or wi,j(k) < βi,j(k)) and

∃s �= j : εi,s(k) > 0 and wi,s(k) ≥ βi,s(k) then

ui,j(k) = 0,

ui,s(k) = 1,

qi(k + 1) = Bi,s,

if (εi,s(k) ≤ 0 or wi,s(k) < βi,s(k)) , ∀s then

ui,j(k) = 0,

ui,s(k) = 0, ∀s �= j, s, j = 1 . . . , N,

qi(k + 1) = 0, (15)

where qi(k) is the internal variable representing the current
buffer that Mi is processing, wi,j(k) is the buffer content of
Bi,j . For the current time step βi,j(k) is the minimal raw
material content in buffer Bi,j , such that machine Mi is able to
process if required at this stage. Note that B1,j is considered to
always contain sufficient raw material. Thus the buffer content
condition w1,j(k) ≥ β1,j(k) is assumed to be always satisfied.
The tracking error for each product type j at each stage of Mi

is given by:

εi,j(k) = εi+1,j(k) + wdi+1,j − wi+1,j(k), (16)

εP,j(k) = ydj(k) − yP,j(k), (17)

where i = 1, . . . , P − 1, and j = 1, . . . , N . Here wi+1,j(k) =
yi,j(k) − yi+1,j(k) is the buffer content of buffer Bi+1,j and
wdi+1,j

is the constant that represents the desired buffer level
(extra stock) of buffer Bi+1,j .
For further analysis, let us rewrite flow model (14) in a closed-
loop with (15) in terms of tracking errors as

Δεi,j(k) = vdj + Δϕj(k) − βi,j(k)ui,j(k), (18)

∀j = 1, . . . , N, i = 1, . . . , P

where Δεi,j(k) = εi,j(k + 1) − εi,j(k).
Notice that machine Mi operates at each production step

j under a processing speed of μi + fi(k) lots per time unit,
which is the same for each production stage of the machine,
but can differ from the other machines in the network.

For system (18) the following assumptions are satisfied.

Assumption 3 (Boundedness of perturbations ) There are
constants c1, c2, c3 and c4 such that

c1 < Δϕj(k) < c2, ∀k, j = 1, . . . , N (19)

c3 < fi(k) < c4 ∀k, i = 1, . . . , P. (20)

From Assumption 3, it follows that Wi,j(k) = Δϕj(k)−fi(k)
satisfies

α1 < Wi,j(k) < α2, ∀k, (21)

with α1 = c1 − c4 and α2 = c2 − c3.

Assumption 4 (Capacity condition) Constants c1, c2, c3 and
c4 satisfy the following inequalities

c1 > −vdj , ∀j = 1, . . . , N, (22)

α2 < μi − vdj, ∀i = 1, . . . , P, (23)

and the following condition (Capacity Condition) holds for
each Mi in the network

0 <
1

μi + fi(k)

N∑

j=1

(vdj + Δϕj(k)) < 1, ∀i. (24)

One of the important physical limitations in the network is
the buffer content restriction. In our model, in order for the
positive control action (ui,j(k) = 1) of the selected production
stage (Bi,j) of Mi to take place, the buffer of this stage must
satisfy the following condition on its content

wi,j(k) ≥ βi,j(k), ∀i = 2, . . . , P, j = 1, . . . , N. (25)

Thus, from (16) and (25), the following tracking error condi-
tion holds

εi+1,j(k) ≥ βi+1,j(k) − wdi+1,j
+ εi,j(k),

where i = 1, . . . , P − 1, j = 1, . . . , N , and wdi,j
satisfies the

following assumption:

Assumption 5 (Desired buffer content condition) The con-
stants wdi,j

comply with the following inequality

wdi,j
≥ μi,j + Nμi−1,j + (N + 1)c4 (26)

+(N − 1)(c2 − c1),

From (26) it follows that wdi,j
> βi,j(k), ∀k.

B. Results on Performance

In this section we present the results respecting the produc-
tion error trajectories behavior of flow model (18).

Theorem 2 Assume that the discrete time system defined by
(18) satisfies Assumptions 3, 4, and 5. Then all solutions of
(18) are ultimately bounded by

lim sup
k→∞

N∑

j=1

(εi,j(k) − vdj − α2) ≤ 0, (27)

lim inf
k→∞

εj(k) ≥ vdj + α1 − μj . (28)

Note that by replacing vdj
+Δϕj(k) by vd+Δϕ(k) this result

can be also extended to a re-entrant production line serving
one product type.

Proof: Due to extensive technical details the proof of
Theorem 2 is omitted in this paper and will be presented in
its full version.
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From (27), and (28) it can be deduced that for the buffer
content wi,j(k) of each buffer Bi,j defined by (16), it holds
that

lim sup
k→∞

wi,j(k) ≤ (N − 1)μi + N(α2 − α1)

+μi−1 + wdi,j
, ∀i = 2, . . . , P. (29)

Now, in order to support the present development let us present
simulation results.

IV. SIMULATION RESULTS

Consider the following example of a flexible production
line consisting of 2 manufacturing machines with 2 production
stages each (see Figure 3 ). The line is operating under surplus-
based regulators (15). The processing speed of each machine
is set to μi + fi(k) = (10, 5) (lots per time unit), the desired
buffer content of each buffer is selected considering (26) as
wd2 = (wd2,1 , wd2,2) = (26, 26) (lots), and the mean demand
rate for each product type vdj = 2 (lots per time unit) with
fluctuation rate of Δϕj(k) = 0.4 sin(90k). The tracking error
of each machine in the line is depicted in Figure 4. Here the
initial conditions (y1,1(0), y1,2(0), y2,1(0), y2,2(0)) are set to
the zero value and yd0 = 100 (lots). After the first 245 time
steps for product type 1 and 241 time steps for product type 2 ,
as it is shown in Figures 4 and 5, the system reaches its steady
state . Tracking errors are maintained inside [−8.4, 13.2] lots
for M1, and [−3.4, 8.2] lots for M2 (see the dashed lines of
Figure 4), which satisfy the bounds given by (27) and (28).
Figure 5 shows the buffer content of each Bi,j in the network.
After some transient behavior the inventory level of each buffer
is maintained inside the obtained bound (29).
Another experimental result can be appreciated in Figure 6.
This two graphics show the relation between the upper bound
on the production tracking error ε2,1(k) and ε2,2(k) and
the desired buffer content of the network from the previous
example. Here it can be observed that the amount of extra
storage for intermediate products has only limited influence
on the tracking precision of the network and the threshold
value of this influence is given by (26). In conclusion, the
presented simulation results reflect the desired flow model
behavior, i.e., all the values assigned to the parameters utilized
in this section are consistent with the assumptions of Section
3 and the outcome of the simulation example satisfies the
theoretical results.

V. CONCLUSION

The performances of a multi-product manufacturing net-
work operated under surplus-based pull control has been
studied. Developed results show uniform boundedness for
trajectories of each production tracking error for one flexible
machine considering that each production stage has a variable
processing speed. Also bounds on the production tracking
error of each stage of a multi-product manufacturing line were
presented. For a line it was considered that each production
machine has a variable processing speed. Simulation examples
were presented and discussed in order to illustrate and support
analytical results. One of the important outcomes of these

examples is the relation between the amount of extra interme-
diate product storage and the production tracking error. It was
shown that extra storage capacity has a limited influence on the
production tracking error. The threshold value on the desired
capacity for each buffer content was provided in Assumption
5 of the flow model analysis.

Furthermore, studies on manufacturing networks under
surplus-based pull control with the presence of production
delays and setup times, as well as its comparison with other
surplus-based pull strategies will be pursued in our future
research.
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APPENDIX A
PROOF OF THEOREM 1

Let us prove that Theorem 1 holds for one machine with
j = 1, . . . , N defined by (5). With this goal, let us introduce
the following Lyapunov function

V BN

k = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε1(k) − μ1 + vd1 + α1,
...

−εN(k) − μN + vdN + α1,
N∑

j=1

εj(k) − vdj − α2

μj + c3

︸ ︷︷ ︸
Xk

,

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

Here for the sake of brevity V BN

k = V BN (ε1(k), ..., εN (k)),
with V BN = 0, for all εj(k) ∈ [vdj + α1 − μj , vdj + α2 +

(μj + c3)
∑N

s=1
μs−α1+α2

μs+c3
], where s �= j.

Thus, ΔV B2

k along the solutions of εj(k) is given by

ΔV BN

k =

max

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε1(k) − Δϕ1(k) + α1 − μ1 + β1(k)u1(k),
...

−εN(k) − ΔϕN (k) + α1 − μN + βN (k)uN (k),
Xk+1,

0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
V

BN
k+1

+ min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε1(k) + μ1 − vd − α1,
...

εN (k) + μN − vdN − α1,
−Xk,

0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

−V
BN

k

,

(31)

where Xk+1 =
∑N

j=1
εj(k)+Wj(k)−α2−βj(k)uj(k)

μj+c3
.

In order to perform a more detailed analysis on ΔV BN

k , let us
divide this proof into 2 cases.

Case 1 (q(k) = 0)

Suppose that q(k) = 0, which from (3) implies that uj,k =
0, for all j = 1, ..., N .

Then we can rewrite ΔV BN

k from (31) as

ΔV B2

k =

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−ε1(k) − Δϕ1(k) + α1 − μ1,
...

−εN(k) − ΔϕN (k) + α1 − μN ,
Xk+1,

0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

V
BN

k+1

+ min

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε1(k) + μ1 − vd1 − α1,
...

εN (k) + μN − vdN − α1,
−Xk,

0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
−V

BN
k

.

(32)

From (3), εj(k) satisfies

εj(k) ≤ 0, (33)
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for all k and j. Then we can reduce ΔV BN

k from (32) to

ΔV BN

k = max

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−ε1(k) − Δϕ1(k) + α1 − μ1,
...

−εN (k) − ΔϕN (k) + α1 − μN ,
0

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
V

BN
k+1

+ min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε1(k) + μ1 − vd1 − α1,
...

εN(k) + μN − vdN − α1,
0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
︸ ︷︷ ︸

−V
BN

k

. (34)

Here, let us assume that for V BN

k+1 the maximum is reached in
the j element of the function, i.e. V BN

k+1 = −εj(k)−Δϕj(k)+
α1 − μj . Then from the definition of min it holds that

ΔV BN

k ≤ −εj(k) − Δϕj(k) + α1 − μj

+εj(k) + μj − vdj − α1,

ΔV BN

k ≤ −vdj − Δϕj(k)
(6,9)
< 0. (35)

For V BN

k+1 with maximum reached by its last element it holds
that

ΔV BN

k = −V BN

k . (36)

Thus, for in this case for V BN

k > 0 given by (30) its increment
ΔV BN

k < 0. This concludes the analysis of Case 1.
Case 2 (q(k) = Bj) Suppose that εj(k) satisfies

εj(k) > 0 (37)

for all k. Thus, the machine is working with buffer Bj

(q(k) = Bj), which is considered to always have a sufficient
raw material. Without loss of generality let us assume for now
that εs(k) ∈ R for all s �= j. Then we can rewrite ΔV BN

k from
(32) as

ΔV BN

k =

max

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ε1(k) − W1(k) + α1,
...

−εN(k) − ΔϕN (k) + α1 − μN ,
Xk+1,

0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
V

BN
k+1

+ min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε1(k) + μ1 − vdN − α1,
...

εN (k) + μN − vdN − α1,
−Xk,

0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
︸ ︷︷ ︸

−V
BN

k

. (38)

Subcase 1: Let us first analyse (38) assuming that εs(k)
satisfies

εs(k) > 0 (39)

for all k, s �= j, and s = 1, ..., N . Then due to condition (37)
and (39), the increment (38) satisfies

ΔV BN

k ≤

max

{
εj(k)+Wj(k)−α2−μj

μj+c3
+ εs(k)+Δϕs(k)−α2

μs+c3
,

0

}

︸ ︷︷ ︸
−V

BN∗

k+1

+ min

{
−εj(k)+vdj+α2

μj+c3
+ −εs(k)+vds+α2

μs+c3
,

0

}

︸ ︷︷ ︸
−V

BN∗

k

. (40)

Consider now that for V BN∗

k+1 the maximum is reached

in its first element, i.e. V BN∗

k+1 =
εj(k)+Wj(k)−α2−μj

μj+c3
+

εs(k)+Δϕs(k)−α2

μs+c3
. Then from the definition of min it holds

that

ΔV BN

k ≤ −μj + fj(k)

μj + c3

+
vdj + Δϕ(k)

μj + c3
+

vds + Δϕs(k)

μs + c3

(7,11)
< 0.

In case that for V BN∗

k+1 given by (40) the maximum is reached
in its second element, then from the definition of min

ΔV BN

k = −V BN

k . (41)

Thus, for this subcase for V BN

k > 0 given by (30) its
increment ΔV BN

k < 0.

Subcase 2: Now let us analyse (38) assuming that εs(k)
satisfies

εs(k) ≤ 0 (42)

for all k, s �= j, s = 1, ..., N . In analogy with the procedure
followed in previous subcase it is obtained that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔV BN

k ≤ −vds − Δϕs(k)
(6,9)
< 0

if V BN

k+1 = −εs(k) − Δϕ(s) + α1 − μs,

ΔV BN

k ≤ −μj+fj(k)
μj+c3

+
vdj+Δϕj(k)

μj+c3
+ vds+Δϕs(k)

μs+c3

(7,11)
< 0

if V BN

k+1 =
εj(k)+Wj(k)−α2−μj

μj+c3
+ εs(k)+Δϕs(k)−α2

μs+c3
,

ΔV BN

k = −V BN

k

if V BN

k+1 = 0.

Thus, for this subcase for V BN

k > 0 given by (30) its increment
ΔV BN

k < 0. This concludes the analysis of Case 2.
Summarizing for 2 cases, we have shown that for V BN

k > 0
given by (30) its increment ΔV BN

k < 0 for all εj(k) /∈ [vdj +

α1−μj, vdj +α2 +(μj + c3)
∑N

s=1
μs−α1+α2

μs+c3
], and V BN = 0

∀εj(k) ∈ [vdj +α1−μj, vdj +α2+(μj +c3)
∑N

s=1
μs−α1+α2

μs+c3
],

where s �= j. Thus, lim supk→∞
V BN

k = 0, which completes
our proof.


