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 
Abstract—With the exponential growth of cellular users, a new 

generation of cellular networks is needed to enhance the required 
peak data rates. The co-channel interference between neighboring 
base stations inhibits peak data rate increase. To overcome this 
interference, multi-cell cooperation known as coordinated multipoint 
transmission is proposed. Such a solution makes use of multiple-
input-multiple-output (MIMO) systems under two different 
structures: Micro- and macro-diversity. In this paper, we study the 
capacity and bit error rate in cellular networks using MIMO 
technology. We analyse both micro- and macro-diversity schemes 
and develop a hybrid model that switches between macro- and micro-
diversity in the case of hard handoff based on a cut-off range of 
signal-to-noise ratio values. We conclude that our hybrid switched 
micro-macro MIMO system outperforms classical MIMO systems at 
the cost of increased hardware and software complexity. 

 
Keywords—Cooperative multipoint transmission, ergodic 

capacity, hard handoff, macro-diversity, micro-diversity, multiple-
input-multiple-output systems, MIMO, orthogonal frequency division 
multiplexing, OFDM. 

I. INTRODUCTION 

ITH the evolution of mobile telecommunication 
technology, MIMO systems are being employed in 

cellular systems as a solution to the high demand for capacity 
in cellular networks in order to combat fading noise and 
improve the performance of these systems. MIMO systems are 
used in modern wireless standards, including IEEE 802.11n, 
3GPP LTE, mobile WiMAX systems and mesh networks (e.g. 
Muni-wireless). LTE-advanced also aims to use 8x8 MIMO 
driven by 128-QAM modulation and promises to deliver 1 
Gbits/s at fixed speeds and 100 Mbits/s to mobile users [1].  

MIMO technology has many advantages: Large data rate, 
large spectral efficiency, large number of users, improvement 
in coverage and reliability, better interference suppression, 
better quality of service (QoS), low bit error rate (BER), and 
low transmission power. On the other hand, MIMO systems 
suffer from a number of disadvantages such as software and 
hardware complexity caused by computationally intensive 
signal processing algorithms and the deployment of many 
antennas. MIMO systems also suffer from radio frequency 
(RF) interference and antenna correlation. In addition, the 
limited battery lifetime of mobile devices [1] and the classical 
thermal problems associated with the operation of 
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telecommunication equipment in general cause high power 
consumption in MIMO systems [2].  

Technically, MIMO systems are characterized by spatial 
multiplexing and spatial diversity at the base station (BS) level 
where multiple signal paths of the transmitted information 
signal are combined at the receiving antennas. This is referred 
to as micro-diversity MIMO. To further improve the 
performance of cellular networks, macro-diversity MIMO is 
also used as a combination of cooperative multipoint (CoMP) 
transmitters [1]-[3]. 

II. MACRO- AND MICRO-DIVERSITY MIMO SYSTEMS 

A. Macro-Diversity MIMO 

When the BS and the mobile station are widely separated 
(each in a different cell), the system is called multi-cell MIMO 
cooperation or cooperative MIMO or macro-diversity MIMO 
system. In this case, the BS has multiple antennas and can 
serve a single user or multiple users. Multi-cell cooperation 
MIMO works when several BSs located in different cells are 
combined to send or receive multiple data streams from 
multiple users. This combination is called BS cooperation not 
only to share data but also to share control signals and user 
channel state information. In this scheme, the antennas are 
dispatched [2].  

The cooperative MIMO scheme has a lot more advantages 
than disadvantages. In general, MIMO systems suffer from co-
channel interference (CCI) caused by sharing common system 
resources and frequency reuse among adjacent cells. CCI can 
significantly reduce data rates and cause outages in cellular 
system. To solve this problem, the BSs in different cells 
coordinate with each other the transmission of signals to 
improve signal-to-interference-noise ratio (SINR) and 
throughput. By using distributed antennas, cooperative MIMO 
systems improve coverage, cell edge throughput and capacity 
by decorrelating the MIMO sub-channels. In addition to 
cancelling the inter-cell interference, the cooperative BS 
scheme also decreases the BER. The disadvantages of macro-
MIMO include an increase of system complexity and the large 
signaling overhead required for supporting device cooperation. 
For these reasons, macro-diversity MIMO employment is on 
the rise. One application is 3GPP LTE coordinated multipoint 
transmission/reception (CoMP), where it is possible to send 
the same data to many mobiles in adjacent cells [2].  

Fig. 1 depicts a macro-MIMO system where CoMP 
transmissions are combined at the BS sub-system [3]. 
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Fig. 1 Macro-diversity MIMO cellular system 

B. Micro-Diversity MIMO 

The other type of system is micro-diversity MIMO or 
single-cell MIMO, where the BS and the mobile stations (MS) 
are in the same cell. In this scheme, the ௧ܰ transmitting 
antennas and ௥ܰ receiving antennas are co-located. We will 
show that such system underperforms the macro-diversity 
MIMO in terms of capacity and BER in “normal” situations 
where hard handoff is not present. 

Fig. 2 illustrates a micro-MIMO system where multiple MS 
are served by one BS [2].  

 

 

Fig. 2 Micro-diversity MIMO cellular system 

III. MATHEMATICAL MODELING OF MIMO SYSTEMS 

In MIMO systems, a mobile user sends multiple streams to 
the BS using multiple antennas. The transmitted streams pass 
through a channel matrix consisting of all the paths between 
the transmission antennas ௧ܰ and the receiver antennas	 ௥ܰ. 
The BS gets the received signal in the form of a vector ݔ and 
decodes it into the original information signal as [3]  

 
ݕ   ൌ ݔܪ ൅ ݊, (1) 
 
where ݊ is the noise vector and ܪ is the channel matrix 
consisting of the transmitted information streams [3].  

The information capacity is a fundamental measure which 
quantifies the maximum amount of information transferable 
across a channel reliably. When the channel state information 

is known for the BS and mobile user, the ergodic channel 
capacity of the MIMO systems is [2] 
 

ܥ  ൌ maxொ,௧௥ሺொሻஸଵൣܧ logଶ detሺܫ ൅  ுሻ൧, (2)ܪܳܪߩ
 
where ߩ is the ratio between the transmitted power and noise 
power and Q the signal covariance matrix. The capacity grows 
linearly with the number of antennas without using additional 
transmission power or spectral bandwidth. In the case where 
the channel state information (CSI) is not known, the 

transmitter selects ܳ ൌ ଵ

ே೟ூ
 to maximize the channel capacity 

under worst-case statistics. In that case, the capacity becomes 
[2] 
 

ܥ   ൌ ܧ ቂlogଶ det ቀܫ ൅
ఘ

ே೟
ுቁቃ. (3)ܪܪ

 
Chae et al. analyses a BS cooperative network with 

coordinated beamforming (N-CBF) systems [1]. The study 
consists of three BS and three MS in each cell. Each MS has 
one antenna at the transmitter and each BS has more than one 
antenna. The MS and BS cooperate perfectly with each other 
for transmit processing. This system can be considered as 
multi-user MIMO that have equal power allocation supporting 
the three studied users. Three contributions were done in the 
work of Chae et al [1]: Linear network coordinated 
beamforming, nonlinear network coordinated beamforming, 
and the role of the receiver antennas. The linear concept is 
divided into two: Full broadcast channel and clustered 
broadcast channel. The clustered broadcast channel, with a 
low complexity non iterative N-CBF algorithm has two of 
three users receiving the same data streams. Therefore, the 
BSs do not need to reduce the inter-user interference between 
these two users, which implies that each user with same data 
stream can use the same signal sent to the other user in order 
to increase the SNR. A generalized linear N-CBF algorithm is 
used for full broadcast channel (where each user receives its 
own independent data). The linear N-CBF algorithms are 
compared to the sum capacity (supports two users even if the 
BS has more than two antennas at the transmitter). What 
distinguishes the linear N-CBF from the nonlinear N-CBF is 
the improvement in BER performance at the expense of higher 
complexity for the nonlinear N-CBF algorithm in which each 
user can use any number of receiver antennas (this use is 
called dimensionality constraint). Two antenna selection-
based and equal gain combining algorithms are proposed for 
performance comparison. The proposed system needs to have 
the smallest largest Eigenvalue of the inverse of the effective 
matched channel matrix and the largest Frobenius channel 
norm of the effective channel. The impact of receiver antennas 
is also studied to show that the BER gap discussed before 
decreases as the number of receiver antennas increases. It is 
noted in the study that although each user can have any 
number of data stream, Chae et al. [1] only discuss one data 
stream. The linear N-CBF method aims at assuring that the 
received signal is interference-free and assigns this task to the 
BS.  
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In the mentioned study, it is assumed that the channel ܪ௞ 
(of size ௥ܰ ൈ 3 and complex entries) is flat fading and realized 
with orthogonal frequency division multiplexing (OFDM). In 
the case of clustered broadcast channel, the received symbol at 
the ݄݇ݐ user can be expressed as  

 

௞ݕ  ൌ ߱௞
௞ܪ∗ ௞݂ඥ݌௞ݔ௞+߱௞

௞ܪ∗ ∑ ௟݂
ଷ
௟ୀଵ,௟ஷ௞ ඥ݌௟ݔ௟ ൅ ߱௞

∗݊௞, (4) 
 

where ߱௞
௞ܪ∗ ௞݂ඥ݌௞ݔ௞ is the desired signal and 

߱௞
௞ܪ∗ ∑ ௟݂

ଷ
௟ୀଵ,௟ஷ௞ ඥ݌௟ݔ௟ is the interference, ݌ is the transmitted 

power for the symbol with ∑ ௞݌ ൌ ܲଷ
௞ୀଵ , ܲ is the total transmit 

power at the BS, ݔ௞ is the ݄݇ݐ transmit symbol and ݊௞ is the 
AWGN vector with variance ߪଶ per entry observed at the user, 

௞݂ is the unit-norm transmit beamforming vector, and ߱௞ ൌ
ுೖ௙ೖ
‖ுೖ௙ೖ‖

 is the unit-norm receive combining vector. When ܪ௞ ௞݂ 

= 0, the signal received at each user after combining is 
interference-free.  

The received symbol at each user can be expressed as 
 

ଵݕ   ൌ ට௉

ଷ
ሺ߱ଵ

ଵܪ∗ ଵ݂ݔଵ ൅ ߱ଵ
ଵܪ∗ ଶ݂ݔ௖ ൅ ߱ଵ

ଵܪ∗ ଷ݂ݔ௖ሻ ൅ ߱ଵ
∗݊ଵ, (5) 

 

ଶݕ  ൌ ට௉

ଷ
ሺ߱ଶ

ଶܪ∗ ଶ݂ݔ௖ ൅ ߱ଶ
ଶܪ∗ ଷ݂ݔ௖ ൅ ߱ଶ

ଶܪ∗ ଵ݂ݔଵሻ ൅ ߱ଶ
∗݊ଶ, (6) 

 

ଷݕ  ൌ ට௉

ଷ
ሺ߱ଷ

ଷܪ∗ ଷ݂ݔ௖ ൅ ߱ଷ
ଷܪ∗ ଶ݂ݔ௖ ൅ ߱ଷ

ଷܪ∗ ଵ݂ݔଵሻ ൅ ߱ଷ
∗݊ଷ, (7) 

 
where ܲ in (5)-(7) is the total transmitted power with the 
assumption of equal power allocation at each symbol (ܲ 3⁄  for 
,ଵݔ   .(ଷݔ ଶ andݔ

The received SINR for each user is given by 
  

 SINRଵ ൌ
௉

ଷఙమ	
ห߱ଵ

ଵܪ∗ ଵ݂
ଶ, (8) 

 

 SINRଶ ൌ
௉

ଷఙమ	
ห߱ଶ

ଶܪ∗ ଶ݂ ൅ ߱ଶ
ଶܪ∗ ଷ݂

ଶ, (9) 
 

 SINRଷ ൌ
௉

ଷఙమ	
ห߱ଷ

ଷܪ∗ ଷ݂ ൅ ߱ଷ
ଷܪ∗ ଶ݂

ଶ. (10) 
 

For full broadcast channel, the received symbol at each user 
is given by 

  

ଵݕ  ൌ ට௉

ଷ
ሺ߱ଵ

ଵܪ∗ ଵ݂ݔଵ ൅ ߱ଵ
ଵܪ∗ ଶ݂ݔଶ ൅ ߱ଵ

ଵܪ∗ ଷ݂ݔଷሻ ൅ ߱ଵ
∗݊ଵ,(11) 

 

ଶݕ  ൌ ට௉

ଷ
ሺ߱ଶ

ଶܪ∗ ଶ݂ݔଶ ൅ ߱ଶ
ଶܪ∗ ଷ݂ݔଷ ൅ ߱ଶ

ଶܪ∗ ଵ݂ݔଵሻ ൅ ߱ଶ
∗݊ଶ,(12) 

 

ଷݕ  ൌ ට௉

ଷ
ሺ߱ଷ

ଷܪ∗ ଷ݂ݔଷ ൅ ߱ଷ
ଷܪ∗ ଶ݂ݔଶ ൅ ߱ଷ

ଷܪ∗ ଵ݂ݔଵሻ ൅ ߱ଷ
∗݊ଷ.(13) 

 
The received SINR for each user is given by 

 

 SINR௞ ൌ
௉

ଷఙమ	
ห߱௞

௞ܪ∗ ௞݂
ଶ, ݇ ൌ 1, 2, 3.  (14)     

 

In the non-linear network coordinated beamforming, the 
BS removes the inter-user interference using a precoder ܨ (a 
matrix inversion of ܪ௥ሻ, ܪ௥ being the effective channel matrix. 
The transmitted symbol is given by 

 

ݏ   ൌ ி௫

ఊ
ൌ ுೝ

షభ௫

ఊ
, (15)  

 
where ߛ ൌ  ଶ. The received signal at user ݇ is given by‖ݔܨ‖

 

௞ݕ  ൌ
ଵ

ఊ
௞ݔ ൅ ݊௞. (16) 

 
The received SINR for the ݄݇ݐ user is given by 

 

  SINR ൌ
‖௫ೖ‖

మ

ఊఙమ
. (17)  

 
The largest eigenvalue ߛ of ሺܪ௥∗ܪ௥ሻିଵ is given by 

 
ߛ  ൌ ଶ‖ݔܨ‖ ൌ  (18) .∗ݔΛିଶܸ∗ܸݔ
 

The sum rate is expressed as 
 

  ܴ௖௕௖ ൌ ∑ሾܧ logଶሺ1 ൅ SINR௄ሻ
ଷ
௞ୀଵ ሿ	ሾbps/Hzሿ. (19)  

 
In another study, Zhang proposed a base transceiver station 

(BTS) coordination strategy with clustered linear precoding 
for the downlink of a cellular multi-user MIMO system [2]. 
This coordination strategy decreases the interference and 
provides a greater sum rate gain to increase the available 
spatial degrees of freedom (minimum number of transmitter 
and receiver antennas). Full intra-cluster coordination and 
limited inter-cluster coordination are considered. Precoding 
across BTSs in the same cluster gives the intra-cluster 
coordination. The inter-cluster coordination or intercell 
scheduling is used to pre-cancel interference for the users at 
the edge of neighboring clusters. The precoding technique 
used in this work is the block diagonalization that allows for 
each user to have an interference free channel and helps to 
increase the sum rate of the system. It is noted in this work 
that cell planning is not needed since the universal frequency 
reuse is applied. To define the inter-cluster coordination area, 
a tradeoff is done between sum rate and fairness.  

The BTSs and mobile users in this work are considered to 
have multiple antennas. In order to do the coordination 
strategy, three assumptions were made: (1) The BTSs know 
everything about the users located in the same cluster and at 
the edges, (2) The BTSs in the same cluster can fully share 
CSI and user data and BTSs in different clusters can also 
exchange traffic information, and (3) BTSs in the same cluster 
are synchronized in time and phase and any propagation 
delays from BTSs to mobile users are recovered. BTSs within 
a cluster serve interior users and neighboring clusters 
coordinate with each other to serve edge users.  

The selection of a cluster (named home cluster) by an edge 
user is based on the channel state, and the neighboring clusters 
(act as helpers) are used for data transmission, while the other 
clusters are named interferer clusters. To serve the edge users, 
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the number of users within a cluster must be reduced, yielding 
a tradeoff between reducing interference for edge users and 
maximizing the whole throughput. While serving this edge 
user, neighboring clusters have to reduce the number of 
degrees of freedom for their own users in order to give it for 
the edge user in the other cluster. The inter-cluster 
coordination deals with two important parameters: 
coordination distance and cluster size. The coordination 
distance helps with the grouping of the users in the clusters 
between interior users and edge users. Interior users are served 
with intra-cluster coordination (multi-cell BD). To classify if 
the user is cluster interior user or cluster edge user, the 
coordination distance ܦ௖ (distance between interior and edge 
user) is studied. The user is a cluster edge user if the distance 
of the user to the cluster edge is no larger than ܦ௖.  

In yet another study, Heath considers an interference aware 
link adaptation strategy that requires limited coordination 
between BS [3]. The research studies two interfering cells and 
two possible spatial transmission modes which are spatial 
multiplexing and statistical beamforming. In spatial 
multiplexing, the user demultiplexes a symbol of data stream 
across all the transmit antennas to achieve higher data rates. 
The interfering signals and the desired signal are assumed to 
be Gaussian. The mutual information determines the value of 
adapting to different interference scenarios. There are several 
steps that allow us to determine the interference-aware link 
adaptation. Mobile users estimate their sensitivity to 
interference and acknowledge it to its BS. The users in other 
cells know the spatial mode used by the interferer when the 
BS exchange spatial transmission plans and inform each other 
about their transmission schedule. Each user knows the spatial 
mode being used by any interfering BS because the BS 
broadcast an interference mode allocation summary vector to 
all mobile users. Each mobile user estimates its sensitivity to 
different kinds of spatial interference and its effective rate. 
Thus the sensitivity to interference can significantly impact 
the achieved rate. This proposed approach gives SNR 
improvements with a single interferer, and it is proven that this 
approach also works with multiple number of interferers.  

Also in another study [4], Shim proposes an enhancement to 
block diagonalization that mitigates the effect of the other-cell 
interference (OCI) and maximizes the system capacity. By 
using the OCI plus noise covariance matrix at the transmitter, 
and in the presence of OCI for a given receiver structure, the 
proposed method is realized. One assumption is made: The 
transmitter has full CSI for all users in the cell and knows the 
interference plus noise covariance matrix for each in-cell user 
(estimated at each user). To verify the performance of this 
technique, an analysis of the asymptotic sum capacity 
(maximum sum rate per antenna in the limit of a large number 
of antennas) must be done. The asymptotic sum capacity 
technique is achieved by assuming two cases: (1) no 
interference, and (2) OCI. The asymptotic sum capacity 
technique is the maximum sum rate/antenna in the limit of a 
large number of antennas. The system model is assumed to 
have ܭ users, ௧ܰ antennas for the BS, ோܰ,௞ receiver antennas 
for the ݇th user, flat fading channel, and orthogonal frequency 

division multiplexing (OFDM) modulation. Using OCI plus 
noise covariance matrix at the transmitter, the capacity is 
maximized and the effect of OCI is reduced in the system. In 
case of interference-heavy environment, the interfering power 
at each user can be considered as a white noise and the sum 
rate becomes a function of each user’s SINR. In the case 
where the SINR is high, the loss of capacity due to OCI is 
calculated by the sum of the single-user MIMO capacity at 
each user with interference-noise ratio (INR) instead of SINR. 
The sum rate of MIMO-BD using interference plus noise 
covariance matrix is limited to the amount of INR even at only 
high SINR. But the MIMO-BD sum rate with OCI when the 
SINR is low is determined by the sum rate of a noise-limited 
MIMO-BD with reduced degrees of freedom. The latter 
corresponds to the case where the number of interferers is less 
than the number of receiver antennas.  

In an important study [5], it was established that in the case 
of two transmitters located at the same distance ܦଵ ൌ  ,ଶܦ
when one of them starts to come closer to two receivers (BS), 
the system capacity decreases [5]. The SNR saturates when 
the distance of the transmitter is not large, which means near 
the two receivers. The received power increases, but the 
introduced noise also increases because they are proportional. 
This causes a decrease in the system ergodic capacity.  

In a recent study [6], the ergodic capacity of macro-
diversity in flat Rayleigh fading channel was studied with no 
CSI at the transmitters. The ergodic sum capacity is expressed 
as 
 

ሽܥሼܧ   ൌ ܧ ቄlogଶ ቚܫ ൅
ଵ

ఙమ
 ுቚቅ, (20)ܪܪ

  
where ߩ is the SNR of the system. At 10 = ߩ dB, the ergodic 
capacity is approximately 4 bits/s/Hz when the network has 3 
users and approximately 5 bits/s/Hz when the network has 6 
users and 6 antennas.  

The application of multi-user detection (MUD) that can 
mitigate the CCI is studied by Sun and Zhang [7]. The 
proposed solution was BS coordination, where the BSs get the 
CSI either by uplink channel estimation or feedback channel. 
The BSs are connected by high-speed wired backbones to 
guarantee the reliability of the information. Despite strong 
interference environment, the mobile users can communicate 
with the BS in adjacent cells. The interference is transformed 
into constructive signals by the BS coordination which gives 
the system a huge performance gain. The BS coordinated 
MUD schemes studied in this work are ZF COMP, MMSE 
COMP, ZF-SIC COMP, and MMSE-SIC COMP. These 
schemes were proven to significantly decrease the BER, 
improve the performance of the system, and mitigate the CCI. 
The schemes were compared in multi-cell environment and 
single-cell with and without interference. The Bell Labs 
Space-Time architecture is the spatial multiplexing technique 
used to improve the spectral efficiency of the system. 
Successive interference cancellation are done and combined 
with MMSE and ZF. Simulations of BER vs. SNR were done 
for 1x1 MIMO and 4x4 MIMO in interference environment 
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and interference free environment. The results showed that the 
single cell processing failed to detect the required signals, and 
that both ZF and ZF-SIC have a constant BER throughout for 
different values of SNR. Coordination with other cells gave an 
impressive result for ZF COMP and ZF-SIC COMP. MMSE-
SIC COMP gave the lowest BER among all other schemes.  

The capacity of the MIMO system was studied by Choi and 
Andrews from the perspective of intercell scheduling in multi-
antenna selection [8]. The DPC multicell is very useful for 
performance bound but demands a high amount of information 
exchange. To reduce inter-cell interference, inter-scheduling 
was proposed, where neighboring BSs schedule their 
transmission either dynamically or based on a certain 
sequence. The multiuser diversity gain grows by a factor of 

ඥlog	ሺ2ܭሻ, and when the BSs cooperate, the growth factor 

increases to ඥ2log	ሺ2ܭሻ, taking into account the shadow 
fading and geometry of the mobile. It was concluded in that 
study that inter-cell scheduling has higher capacity than 
frequency reuse, with a capacity value of 1 bits/Hz for 2x2 
MIMO and 2 bits/Hz for 4x4 MIMO. That is, inter-cell 
scheduling gives an extra 1 bit/Hz than frequency reuse. 

IV. A HYBRID SWITCHED MICRO-MACRO MIMO SCHEME 

A. Comparison between Macro- and Micro-MIMO 

We first conduct a number of simulations using MATLAB 
to analyze the capacity of a MIMO system in general versus 
the SNR in a Rayleigh fading channel for a different number 
of transmitter ௧ܰ 	and receiver antennas ௥ܰ. Fig. 3 illustrates 
the capacity vs. SNR for ௧ܰ ൌ ௥ܰ ൌ 2, 3,	and 4, and compares 
it to the Shannon capacity. We notice that the digital 
bandwidth efficiency (in bits/Hz) increases with the number of 
antennas and exceeds the Shannon capacity.  

 

 

Fig. 3 Capacity vs. SNR for different number of antennas 
 

Next, we conduct simulations to compare the capacity and 
BER of micro-diversity and macro-diversity MIMO in the 
case of soft handoff. Assuming 2x3 MIMO, Rayleigh fading 
channel, block diagonalization technique, and MMSE 
receiver, the capacity (in bits/Hz) and BER are plotted as a 

function of the SNR (in dB) in Figs. 4 and 5, respectively. We 
note that the capacity of macro-diversity MIMO exceeds that 
of micro-diversity MIMO for all values of SNR, and that the 
capacity expectedly increases with an increasing SNR. We 
also note that the BER of macro-diversity MIMO is lower than 
that of micro-diversity MIMO for all values of SNR, and that 
the BER expectedly decreases with an increasing SNR. 

 

 

Fig. 4 Capacity vs. SNR for micro- and macro-diversity MIMO with 
soft handoff 

 

 

Fig. 5 BER vs. SNR for micro-diversity and macro-diversity MIMO 
with soft handoff 

B. The Hard Handoff Case 

We now consider the case of hard handoff, also known as 
break-before-make. In this scenario, different frequency 
ranges are used in adjacent channels to minimize the 
interference. When the MS moves from cell to cell and needs 
to communicate with another BS, the communication with the 
first BS is terminated because different frequencies are used. 
In the case of a call setup, the MS keeps track of the 
communicating cells and choose the cells that fall above the 
handoff threshold. The advantages of hard handoff are low 
cost because it requires only one channel to operate and the 
user does not feel an interruption in the call because it is a fast 
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handoff. We choose this type of handoff in our developed 
hybrid scheme as detailed below. 

C. Hybrid Model 

In this hybrid micro-macro MIMO scheme, switching is 
conducted between macro- and micro-diversity MIMO 
schemes and vice-versa. In a cellular network, the MS receives 
signals from the BS located in the same cell and from adjacent 
BSs. Receiving signals from other BSs increases the spectral 
efficiency of the cellular network and improves the data rates 
for the edge users. In the case of two BSs and one MS in each 
cell, if the first MS is communicating with the BS in the same 
cell, the other BS located in a different cell will be the 
interfering one. But the interfering BS also sends signals to 
this MS, so the signals from the interfering BS and serving BS 
arrive at the MS at the same time and they are synchronized. 
The overall capacity is higher when there is cooperation 
between the BSs, i.e., macro-diversity, than the capacity of a 
single cell. But it was shown in previous work [1]-[8] that in 
some instances the user’s capacity (and BER) with no 
cooperation is better than the capacity (and BER) under 
cooperation. Therefore, a switching must be conducted in 
those instances and a hybrid micro-macro MIMO scheme 
could be deployed to decide whether to use cooperation or not.  

D. The Switching Algorithm 

For macro-diversity, the capacity is given by 
 
୫ୟୡ୰୭ܥ   ൌ ߚ logଶሺ1 ൅ ܾSINR୫ୟୡ୰୭ሻ, (21) 
 
and for micro-diversity, the capacity is given by 
 
୫୧ୡ୰୭ܥ   ൌ logଶሺ1 ൅ ܾSINR୫୧ୡ୰୭ሻ, (22) 
 
where ܾ is the gap between the simulated and theoretical limit 
of the signal-to-noise ratio. 

 To define whether to operate under a micro-diversity or 
macro-diversity scheme, the capacities and SNRs are 
compared. First the channel information is determined for the 
serving BS and the neighboring BS that will do the 
cooperation. OFDM modulation is applied at the transmitter 
having two antennas, and linear coordinated beamforming 
technique is applied at the receiver having three antennas. 
Then, the capacities and SINR are calculated. If the SINR of 
the micro-MIMO is low (less than 0 dB) and the SINR of the 
macro-MIMO is much greater, then the macro-diversity 
scheme is chosen. Figs. 6 and 7 illustrate the switching 
technique for both BER and capacity versus the SNR in dB, 
respectively.  

The SNR saturates when the transmitter is near the 
receivers, and as the received power increases, so does the 
power of the introduced noise because it is proportional to the 
received power. This causes a decrease in the system ergodic 
capacity. We can conclude from Figs. 6 and 7 that as the 
hybrid model is applied and switching occurs from macro- to 
micro-MIMO and vice-versa over a cut-off range of SNR 
values, an improvement (decrease) in the BER occurs at the 

cost of a deterioration in the capacity (decrease) and vice-
versa over the same range of SNR values.  
 

 

Fig. 6 BER vs. SNR of the hybrid macro-micro MIMO scheme 
 

 

Fig. 7 Capacity vs. SNR of the hybrid scheme macro-micro MIMO 
scheme 

V. CONCLUSIONS AND FUTURE WORK 

MIMO technology is adopted in 3G and 4G mobile 
communications because it increases the reliability and 
channel capacity of wireless channels. This technology has 
greatly contributed to the expansion of cellular networks and 
the improvement of its performance. In this paper, we studied 
the capacity and BER in cellular networks using MIMO 
technology. We first analysed both micro- and macro-diversity 
schemes in the case of soft handoff and observed that macro-
diversity outperforms micro-diversity MIMO in terms of 
capacity in bits per Hz and BER. Results also showed that the 
capacity grows linearly with the number of antennas at both 
the BS receiver and mobile user transmitter of a cellular 
network. 

A number of recent research [1]-[8] concluded that in some 
instances the user’s capacity and BER of systems with no 
cooperation (micro) is better than the capacity and BER of 
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systems with cooperation (macro). This drove us to study if 
switching between micro- and micro-systems can be 
conducted in the case of hard handoff and to test a proposed 
hybrid micro-macro MIMO scheme that will decide whether 
or not cooperation should be used.  

To define whether to operate under a micro-diversity or 
macro-diversity scheme, the capacities and SNRs need to be 
compared. Then, a hybrid model can be deployed to switch 
between macro- and micro-diversity based on a set of pre-
determined cut-off range of SNR values. As the hybrid model 
was applied and switching occurred from macro- to micro-
MIMO and vice-versa over a cut-off range of SNR values, we 
observed an improvement (decrease) in the BER at the cost of 
a deterioration in the capacity (decrease) and vice-versa over 
the same range of SNR values. As a result, we can conclude 
that our developed hybrid system outperforms classical MIMO 
systems as it switches between micro- and macro-diversities. 
The cost of this performance improvement is an increase in 
system’s cost due to much higher hardware and software 
complexities.  

In order to further enhance the capacity of the system, we 
need to maximize the SNR. SNR maximization is done using 
maximum ratio combining (MRC), and hence our hybrid 
micro-macro-MIMO scheme could be applied under MRC 
combining for optimal SNR and capacity results. Since MRC 
requires complicated CSI estimation techniques (in terms of 
fading amplitude and phase), this proposed scheme is left for 
future work along with the deployment of optimal CSI 
estimation schemes [9]-[20], subject to the development of 
advanced stochastic models for fading noise [21]-[36]. Such 
CSI-driven MRC scheme will constitute a sub-system within 
our proposed hybrid MIMO model. 
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