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Pattern Recognition of Partial Discharge by
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Abstract— This paper presents the effectiveness of artificial Il. CLASSIFICATION OF PARTIAL DISCHARGES

intelligent _ technique to apply for pattern recogmit and  ponia; gischarges are divided into four types:iiernal

classification of Partial Discharge (PD). Charasters of PD signal disch . disch faisehh d
for pattern recognition and classification are cated from the ischarges, (ii) corona discharges, (iii) surfatselbrges an

relation of the voltage phase angle, the discharggnitude and the (iV) discharges in electrical trees [1],[9].
repeated existing of partial discharges by usiatjsiical and fractal
methods. The simplified fuzzy ARTMAP (SFAM) is usked pattern
recognition and classification as artificial intgéint technique. PDs Internal discharges occur in inclusions of low eattic
quantities, 13 parameters from statistical methadl faactal method Strength_ These discharges usua”y occur in gmﬁja\/itiesy
results, are inputted to Simplified Fuzzy ARTMAP train system ;¢ ol _ filled cavities can also break down amdise gaseous
for pattern recognition and cl_assmcatloﬁhe results confirm the discharges afterwards. Internal discharges are béapaf
effectiveness of purpose technique. . . . . .

degrading the insulation depends on the field gtterthe kind
Plf’f material and the discharges magnitude. (Fig. 1.a

A. Internal discharges

Keywords—Partial discharges, PD Pattern recognition,
Classification, Artificial intelligent, SimplifiedFuzzy ARTMAP, . B. Corona discharges

I. INTRODUCTION Corona discharges occur at sharp points in thetridatc

ARTIAL discharge (PD) is electrical discharges tHat

not completely bridge the distance between twoteddes
under high voltage stress. Partial discharges aralls
electrical sparks that occur within the electrisulation of
electrical equipment. Although the magnitude of hsucC. Surface discharges

discharges is usually small, it cause progressetertbration Surface discharges may occur in gases or in dileife is a

and m"?lyl "3‘?‘0' ;]O uItnn_ate fallurfe [ﬁ]’[fz]' h dal strong stress component parallel to the dielecsticface.
f_lPartlaf I'SC ?‘rgle IS one o tle actor; It "?“ cae t(l)d These discharges are known to cause deterioratibn o
ailure of electrical equipment. Also, partial discges could  yieioctrics by heating the dielectric boundaryptigh charges

d;estroy :n;ule;]tlon a_nd (l:aus_e ellgelngl] qf |n§uIaMMDurre_nced trapped in the surface and through the formationheimicals
of partial discharge in electrical insulation isvays associate such as nitric acid and ozone. (Fig. 1.)

with emission of several signals (i.e. electridghal, acoustic
pulses and chemical reactions). D. Discharges by electrical treeing
Up to now, artificial intelligent techniques haveedn
adopted to many applications in electrical engimger
field[3]-[8]. The objective of this work is apphgran artificial
intelligent technique, simplified fuzzy ARTMAP (SKA, to
recognize the pattern of partial discharge. In thaper,
classification of partial discharge is given in @&t I,
characteristics of partial discharge quantities gireen in

They occur usually at the high-voltage side, bughatrp edges
at earth potential, or even at half- way the etst#s also may
cause corona discharges. (Fig. 1.b)

Electrical trees can start from defects in thedsmisulation.
After treeing has started a hollow stem and severahches
are generated. (Fig. 1.d)

Section lll, partial discharge measurement tectesqare
detailed in Section IV and following with detail &AM is
given in Section IV. In addition, experimentalukts and PDs @ ®)
pattern recognition are illustrated in Section \d &ection VI, ™~ ™

respectively. Finally, discussion and conclusian given.
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field. These discharges may occur in gases and in liquids.
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Occurrence of PDs in electrical insulation is afsva
associated with emission of several signal elesdtrgignal,
acoustic signal and chemical reactions, i.e. h&aind, light
and gas. The method to detection PD signal canrbapgd
into three categories, based on the PD manifestiiat they
measure: chemical, acoustic and electrical detes{i®].

PARTIAL DISCHARGES DETECTION TECHNIQUES

2517-9438
No:5, 2010

The coupling capacitorCy, shall be of low inductance
design and should exhibit a sufficiently low lewal partial
discharges at the specified test voltage to alldve t
measurement of the specified partial discharge matm

The high voltage supply shall have sufficiently Itevel of
background noise to allow the specified partialckiégge
magnitude to be measured at the specified tesigmlt

Chemical detection: One of the consequences of iBDs

chemical change of material. (i.e. oil, solid ard)j10].

Acoustic detection of PD is based on the deteatibthe
mechanical waves propagated from the dischargetsithe
surrounding medium. Acoustic detection has beerelyidsed
in diagnostics of transformers. The primary advgataf using
acoustic detection is position information is réadivailable
from acoustic systems using sensors at multiplatioos [11]-
[13].

Electrical partial discharges detection methodsbased on
the appearance of a partial discharges pulse d@eth@nals of
a test object. Electrical detection includes twahuods: Pulse
Current Method and Ultra High Frequency Method (YHF

Pulse Current Method: This method gets the appatenrge
by detecting the PD current in detecting impeddi®¢g14].
Pulse Current Method is easy for quantitative mesasant
and it has high sensitivity.

Ultra High Frequency Method (UHF): UHF detectionieth
is based on the detection of electrical resonanadtrahigh
frequencies can be applied to realize not onlypthenomena
but also the location of a PD source [15] — [17].

In this paper, electrical detection technique wdgpted to
measure partial discharges signal. Most partiathdieges
detection systems are integrated into the testuitirm
accordance with schemes show in Fig. 2.
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Fig. 2. Basic partial discharge test circuit
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IV. CHARACTERISTICS OF PARTIAL DISCHARGES

Characteristics of partial discharges for pattecognition
and classification are computed from the relatidn thoee
voltage phase angle, the discharge magnitude ancefreated
existing of partial discharges by using statistiaall fractal
methods [1],[9],[14].

A. Basic quantities

Quantities of the first group will be termed bagicantities
and for their registration the momentary valuestlt# test
voltage and the discharge signal are registered. €léctrical
activity of partial discharges can be represented two
independent quantities:

(a) Discharge magnitude
(b) Discharge timing

B. Deduced quantities

Quantities of the second group will be termed deduc
guantities. For their registration the basic quagihave to be
observed during a time span that is much longen tie
duration of one voltage cycle. These quantities dmn
analyzed as a function of time and as a functiothefphase
angle.

The quantities as function of time describe thengea of
the basic quantities in the course of time.

The quantities as function of the phase angle sgmtethe
recurrence of partial discharges related to thbase angle.
The voltage cycle is divided into phase window esgnting
the angle axis (0-36Q The four quantities can be determines
in each phase window.

1. The sum of the discharge magnitudes observed in one
phase window (discharge amount).

2. The number of discharges observed in one phase
window (pulse count).

3. The average value of discharges observed in orgepha
(mean pulse height).

4. The maximum value of discharge observed in one
phase window (maximum pulse height).

C. Statistical operators

Quantities of the third group will be termed astistaal
operators. They provide the analysis of some thduck
quantities from the second group.

The pulse count distributiom ,(¢) represents the number
of the observed discharges in each phase wind@fasction
of the phase angle.

The mean pulse height distributiod, ,(¢) represents the

average amplitude in each phase window as a funcfighe
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phase angle.Hg,(p) is derived from the total discharge Therefore more statistical parameters can be dgfieeabling

amount in each phase window divided by the numter §S t0 compare the mean value, the inception phadette
discharges in the same phase window. number of peaks in the both positive and the negdtalf of

In the case of a single defect, discharge quastiten be the voltage cycle. The distributionsy,(¢) and Hy(¢) both
fairly well described by a normal distribution pess. positive and negative half of the voltage cycle tbdowing
Therefore to get a better evaluation a¢i,,(¢) and H,(p)  statistical operators have been introduced by diggh
quantities, several statistical parameters cansed.uThey are aSymmetryQ , as the quotient of the mean discharge level in
here termed as statistical operators. For a disafistribution e Positive and in the negative half of the vaitagcle.
function, f (x), let's o

- &/MN ™
F)=P(X=x)=p ) Q/Ng
where P is the probabilityX is the discrete valuepi is the  The cross-correlation factocc, the formula is used to

probability value for;. The following momentsty of a cgiculate the cross-correlation factor cc:
distribution can be defined:

2XY =2 %W/
u =X (x-a)p, (2) cc= ®)
JEx - (Ex P /n[S v - (S F /o]

First moment:u - mean value of a distribution; k=1, a=0

u=Yx-p (3) The modified cross-correlation factancg to evaluate the

difference between discharge patterns in the pesdind the

Second momentz2 - variance value of a distribution; negative half of the voltage cycle is given in (9).
k=2, a=u

o =X -w’p (@) mee= Q- ce ©
Third moment: skewnes§ - indicator of the asymmetry of a
distribution as compared to a normal distributiles8, a= u V. SIMPLIFIED FUZZY ARTMAP

Adaptive Resonance Theory (ART) was invented by
®) Grossberg, in 1976, as a theory of human cognitive
information processing [18]. Carpenter and Grosgber
introduced the ART family in the form of a wide ey of
supervised and unsupervised NNs [19]-[22]. The most

Ku=y (x —u)*-p, 3 ®) advanced model of the ART family, fuzzy ARTMAP (.FAJ\/I
ot could handle both binary and analogue data in &rsiged
) manner [23]. The main drawback to the ART familywaks,

The third moment and the fourth moment about tharme ynich prevented others from using them, was theficacy:
are significant with respect to the shape of tisrithiution. the inventors had introduced complicated architestufor

The skewnessk, indicates the asymmetry of thetnejr networks instead of presenting them as siralgerithms.
distribution. Sk will be zero for asymmetric diStribUtion, This prob|em later was recognized by the inventmd they
positive when the distribution is asymmetric to feét and presented modified model or simplified model of ARinily
negative when the distribution is asymmetric toright. networks [24],[25].

The kurtosisKu, indicates the degree of sharpness of the Originally, ART networks were defined in terms of
distribution. Kurtosisku will be zero for a normal distribution. differential equations, but in practice they arepliemented
For a sharper then normal distributidtuis positive, and if using approximations or analytical solutions to sthe
the distribution is flatter than a normal distrilont thekuis  equations, in the limit. ART networks have theirrospecial

(x-uw’-p

S=X"—F%—
O

Fourth moment: kurtosid{;, - indicator of the sharpness of a
distribution as compared to a normal distributilesd, a= u

negative. terminology. The maimdea of unsupervised ART networks is
The discharges during a voltage cycle occur in twas follows:
sequences-or eachhalf of thevoltagecycleseparatelischage (1) Find the nearest cluster prototype that ‘resesiawith

patterns can be found. Thus, thg,(¢) and Hy(p) quantities  q input pattern.

are characterized by two distributions. For theitp@shalf of (2) Update this cluster prototype to be closehminput.

the voltage cyclei,, (), H;(¢) and for the negative half of  The simplified fuzzy ARTMAP (SFAM) was developed by

the voltage cyclelg,(¢) , Hy (9) - removigg redundancies. Details are iIIustrateq251].[ So, the
Both the H. (#) and Hp(¢) quantities can be described IDySFAM is much faster than the FAM and easier to wstded

an ni® and simulate. However, it should be made clearttt@SFAM

two skewness,Sk’, sk and two kurtosisku®,Ku™. The can be used only for classification. The SFAM isegsially a

distributions H, () and Hy, (p) are also characterized by theirtwo |ayer net containing an input and an outpuetafig. 3

mean value, their inception phase and the numbegreaks. illustrates the architecture of simplified fuzzy ARAP.
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Fig. 3. Architecture of SFAM Network

The main idea of SFAM is as follows[25]:

(1) Find the nearest subclass prototype that ‘ratss with
the input pattern (winner).

(2) If the labels of the subclass and the inputgpatmatch,
update the prototype to be closer to the inpuepadtt

(3) Otherwise, reset the winner, temporarily inseedhe
resonance threshold)( and try the next winner.

(4) If the winner is uncommitted, create a new $afx
(assign the input vector to be the prototype patief the
winner, and label it as the class label of the fhpu

The input to the network flows through the complame
coder where the input string is stretched to dotidesize by
adding its complement also. The complement codgdtithen
flows into the input layer and remains there. Wesdghv) from
each of the output category nodes flow down tarpet layer.
The category layer merely holds the names of theumber of
categories that the network has to learn. Vigilapaeameter
and match tracking are mechanisms of the netwathitecture
which are primarily employed for network training.

p is the vigilance parameter which can range from 0. It
controls the granularity of the output node encgdifihus,
while high vigilance values makes the output nodechn
fussier during pattern encoding, low vigilance rersd the
output node to be liberal during the encoding dferas.

The match tracking mechanism of the network isoasijble
for the adjustment of vigilance values. Thus, anreoccurs in
the training phase during the classification otgyais.

The SFAM algorithm is as follows [25]:

(1) Set the vigilance factor equal to its baselialue :

p=p oj1
(2) Insert input, and calculate second layer atisi
TI(,):\'AWJ\ forj=1,..,N-19 (11)
a +\wj\
and for the uncommitted neurchy = Ty
(3) Find the winner
12)

;- a,g[Mw;(T; )}

If the winner neuron is uncommitted, go to step 7.
(4) Check the resonance condition, i.e. if the tipsimilar
enough to the winner’s prototype:

|/\Wi‘ ‘I/\Wi‘
w7

M
If this condition is fulfilled, go to step 5.
If this condition is not fulfilled, reset the winngT; = -1), go to
the step 3, and check the next winner.
(5) If the class label of the winner matches wiit tlass
label of input, update the prototype pattern teloser to the
input pattern:

(13)

Mnevw :ﬂ(l /\W}om))Jr (17 ﬂ)MOId) (14)

and go to step 9, otherwise reset the winiier (1),
temporarily increase the vigilance factor so agtate the
condition of Equation (9), i.e. sptequal to :

‘I/\Wi‘
=—lie
M

(15)

(wheregis a small positive number, i.e= 0.001).

(6) If p> 1, terminate the training for this input pattérn
the current epoch (data mismatch), and go to stefh@rwise
go to step 3, and try the next winner.

(7) Create a new subclass, i.e. assign the inpubras the
prototype pattern of the winner neuron:

wy =1 (16)

and set the class label of the winner neuron tasithe class
label of input pattern.

(8) Create a new uncommitted neuron, ahe:-N + 1.

(9) Go to the step 1, and repeat the Algorithntliernext
input.

The flow chart of the SFAM Algorithm is presentedrig.
4,

VI.

In this study, test arrangement is shown in Fig.a4.
illustrated in Fig 5., there types of partial diagie generation
source, corona discharge, surface discharge arsrnait
discharge, were used. Partial discharge signahwessured by
using partial discharge detector (OMICRON, model
MPD600). Typical measurement results of each partia
discharge generation source are illustrated in &idrig. 7 and
Fig. 8, respectively.

EXPERIMENTALS

i

il

\¢

7

p Testing Chamber Coupling Capacitor

Fig. 5. Test Arrangement.
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Obviously, differences in pattern of partial disde
measurement results were obtained. Each partizhalige
generation source generated individual partial hdisge
pattern. Then, these measurement data are useskttdhe
purpose technique. Characteristics of partial dispd data
were calculated by using statistical tools to apfply pattern
recognition and classification. These characterisfi partial
discharges include skewness, kurtosis, dischargmrastry,
the cross-correlation factor and modified crosselation
factor. Characteristics of corona discharge, charistics of
surface discharge and characteristics of interishdrge are
showed in Table I, Table Il and Table Ill, respeely. These
results were used for pattern recognition and ifileason.

TABLE | CHARACTERISTICS OF CORONA DISCHARGES
No. Hagn Hn
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku-
1 1.150 1.010 -1.680 -1.946 1.156 1.129 -1.710 -1.884
2 1.034 1.022 -1.514 -1.953 1.120 1.092 -1.455 -1.781
3 1.061 1.012 -1.950  -1.970 1.108 0.089 -1.638 323

TABLE II CHARACTERISTICS OF SURFACE DISCHARGES
No. Hgn Hn
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku-
1 1.525 1.473 -0.390 -0.840 1.976 -0.120 1.597 -2.070
2 1.511 1.302 -0.570 -0.560 1.977 -0.690 1.923 -2.390
3 1.459 1.302 -0.400 -1.000 1.945 -0.630 1.647 -2.360

TABLE Il CHARACTERISTICS OF INTERNAL DISCHARGES

No. Hagn Hn
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku-
1 1.206 1.200 -1.470  -1.490  1.307 -0.220  -0.960 -2.38
2 1.170 1.154 -1.570  -1.610  1.168 -0.680  -1.560 -2.33
3 1.142 1.100 -1.630 -1.750 1.125 0.500 -1.640 -2.370

The existing characteristics of partial discharggna,
illustrated in [4], were used as reference databageain the
simplified
reference partial discharge measurement signal orfeor
discharges, surface discharges and internal digekprare
illustrated in Table IV, Table V and Table VI, respively.

fuzzy ARTMAP system. Characteristics of
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No. Hagn Hn
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku-
1 1.031 1.018 -1.92 -1.95 1.077 0.947 -1.8 2.08
2 1.031 10.15 -1.92 -1.96 1.089 1.012 -1.77 -1.9
3 1.028 1.006 -1.93 -1.98 1.062 0.951 -1.84 -0.72

TABLE V CHARACTERISTICS OF SURFACE DISCHARGES

No. Hagn Hn
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku-
1 1.493 1471 -0.26 -0.28 1918  -0.46 1.451 2.3
2 1.496 1.45 -0.27 -0.39 1.954  -0.59 1702  -2.35
3 1.486 1454  -0.34 -0.41 1919  -0.54 1408  -2.35

system. Correctly classification results were olsei The
obtaining results confirmed the effectiveness & purpose
technique, the simplified fuzzy ARTMAP system, faply for
pattern recognition and classification of partidkctiarge
generation source from measurement signal.
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TABLE VI CHARACTERISTICS OF INTERNAL DISCHARGES

No. Hagn Hn
Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku-
1 1.115 1.153 -1.71 -1.6 111 -0.37 -1.73 -2.39
2 1.141 1.152 -1.63 -1.6 1.113 -0.43 -1.71 -2.39
3 1.133 1.153 -1.66 -1.58 1.124 -0.63 -1.68 -2.34

VII.

After well training the simplified fuzzy ARTMAP stam by
our reference PD characteristics, then PD chaiiatitsr from
the experimental results were inputted to the SFA&tem for
classify partial discharge generation source. Théining
results confirmed the effectiveness of purposertegte. The
SFAM could correctly recognize and classify partischarge
generation source from PD measurement signal deaistecs.
The results are showed in table VII.

RESULTS AND DISCISSION

TABLE VII CLASIFICATION RESULTS BY THE SFAM SYSTEM
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