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Abstract— This paper presents the effectiveness of artificial 
intelligent technique to apply for pattern recognition and 
classification of Partial Discharge (PD). Characteristics of PD signal 
for pattern recognition and classification are computed from the 
relation of the voltage phase angle, the discharge magnitude and the 
repeated existing of partial discharges by using statistical and fractal 
methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern 
recognition and classification as artificial intelligent technique. PDs  
quantities, 13 parameters from statistical method and fractal method 
results, are inputted to Simplified Fuzzy ARTMAP to train system 
for pattern recognition and classification. The results confirm the 
effectiveness of purpose technique. 
 

Keywords—Partial discharges, PD Pattern recognition, PD 
Classification, Artificial intelligent, Simplified Fuzzy ARTMAP, .  

I. INTRODUCTION 

ARTIAL discharge (PD) is electrical discharges that do 
not completely bridge the distance between two electrodes 

under high voltage stress. Partial discharges are small 
electrical sparks that occur within the electric insulation of 
electrical equipment. Although the magnitude of such 
discharges is usually small, it cause progressive deterioration 
and may lead to ultimate failure [1],[2]. 

Partial discharge is one of the factors that could lead to 
failure of electrical equipment. Also, partial discharges could 
destroy insulation and cause ageing of insulation. Occurrence 
of partial discharge in electrical insulation is always associated 
with emission of several signals (i.e. electrical signal, acoustic 
pulses and chemical reactions). 

Up to now, artificial intelligent techniques have been 
adopted to many applications in electrical engineering 
field[3]–[8]. The objective of this work is applying an artificial 
intelligent technique, simplified fuzzy ARTMAP (SFAM), to 
recognize the pattern of partial discharge. In this paper, 
classification of partial discharge is given in Section II, 
characteristics of partial discharge quantities are given in 
Section III, partial discharge measurement techniques are 
detailed in Section IV and following with detail of SFAM is 
given in Section IV.  In addition, experimental results and PDs 
pattern recognition are illustrated in Section V and Section VI, 
respectively. Finally, discussion and conclusion are given.  
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II. CLASSIFICATION OF PARTIAL DISCHARGES  

Partial discharges are divided into four types: (i) internal 
discharges, (ii) corona discharges, (iii) surface discharges and 
(iv) discharges in electrical trees [1],[9]. 

A. Internal discharges 

Internal discharges occur in inclusions of low dielectric 
strength. These discharges usually occur in gas–filled cavities, 
but oil – filled cavities can also break down and cause gaseous 
discharges afterwards. Internal discharges are capable of 
degrading the insulation depends on the field strength, the kind 
of material and the discharges magnitude. (Fig. 1.a) 

B. Corona discharges 

Corona discharges occur at sharp points in the electrical 
field. These discharges may occur in gases and in liquids. 
They occur usually at the high-voltage side, but at sharp edges 
at earth potential, or even at half- way the electrodes also may 
cause corona discharges. (Fig. 1.b) 

C. Surface discharges 

Surface discharges may occur in gases or in oil if there is a 
strong stress component parallel to the dielectric surface. 
These discharges are known to cause deterioration of 
dielectrics by heating the dielectric boundary, through charges 
trapped in the surface and through the formation of chemicals 
such as nitric acid and ozone. (Fig. 1.c) 

D. Discharges by electrical treeing 

Electrical trees can start from defects in the solid insulation. 
After treeing has started a hollow stem and several branches 
are generated. (Fig. 1.d) 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Types of Partial Discharges. 
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III.  PARTIAL DISCHARGES DETECTION  TECHNIQUES  

 Occurrence of PDs in electrical insulation is always 
associated with emission of several signal electrical signal, 
acoustic signal and chemical reactions, i.e. heat, sound, light 
and gas. The method to detection PD signal can be grouped 
into three categories, based on the PD manifestation that they 
measure: chemical, acoustic and electrical detections [9].  
 Chemical detection: One of the consequences of PDs is 
chemical change of material. (i.e. oil, solid and gas)[10]. 
 Acoustic detection of PD is based on the detection of the 
mechanical waves propagated from the discharge site to the 
surrounding medium. Acoustic detection has been widely used 
in diagnostics of transformers. The primary advantage of using 
acoustic detection is position information is readily available 
from acoustic systems using sensors at multiple locations [11]-
[13].  

Electrical partial discharges detection methods are based on 
the appearance of a partial discharges pulse at the terminals of 
a test object. Electrical detection includes two methods: Pulse 
Current Method and Ultra High Frequency Method (UHF).  

Pulse Current Method: This method gets the apparent charge 
by detecting the PD current in detecting impedance [9],[14]. 
Pulse Current Method is easy for quantitative measurement 
and it has high sensitivity. 

Ultra High Frequency Method (UHF): UHF detection which 
is based on the detection of electrical resonance at ultrahigh 
frequencies can be applied to realize not only the phenomena 
but also the location of a PD source [15] – [17]. 

In this paper, electrical detection technique was adopted to 
measure partial discharges signal. Most partial discharges 
detection systems are integrated into the test circuit in 
accordance with schemes show in Fig. 2. 

 
 
 

      
 

 
 
   
 
 
 
 
 

 
 
 

Fig. 2. Basic partial discharge test circuit  

 
U  high-voltage supply 
Zmi input impedance of measuring system 
CC connecting cable 
Ca  test object 
Ck coupling capacitor  
CD coupling device  
MI measuring instrument 
Zf  filter  

The coupling capacitor, Ck, shall be of low inductance 
design and should exhibit a sufficiently low level of partial 
discharges at the specified test voltage to allow the 
measurement of the specified partial discharge magnitude. 

The high voltage supply shall have sufficiently low level of 
background noise to allow the specified partial discharge 
magnitude to be measured at the specified test voltage.  

 

IV.  CHARACTERISTICS OF PARTIAL DISCHARGES    

Characteristics of partial discharges for pattern recognition 
and classification are computed from the relation of the 
voltage phase angle, the discharge magnitude and the repeated 
existing of partial discharges by using statistical and fractal 
methods [1],[9],[14]. 

A. Basic quantities 

Quantities of the first group will be termed basic quantities 
and for their registration the momentary values of the test 
voltage and the discharge signal are registered. The electrical 
activity of partial discharges can be represented by two 
independent quantities: 

(a) Discharge magnitude 
(b) Discharge timing 

B. Deduced  quantities 

Quantities of the second group will be termed deduced 
quantities. For their registration the basic quantities have to be 
observed during a time span that is much longer than the 
duration of one voltage cycle. These quantities can be 
analyzed as a function of time and as a function of the phase 
angle. 

The quantities as function of time describe the changes of 
the basic quantities in the course of time.  

The quantities as function of the phase angle represent the 
recurrence of partial discharges related to their phase angle. 
The voltage cycle is divided into phase window representing 
the angle axis (0–360°). The four quantities can be determines 
in each phase window. 

1. The sum of the discharge magnitudes observed in one 
phase window (discharge amount). 

2. The number of discharges observed in one phase 
window (pulse count). 

3. The average value of discharges observed in one phase 
(mean pulse height). 

4. The maximum value of discharge observed in one 
phase window (maximum pulse height). 

C. Statistical operators 

Quantities of the third group will be termed as statistical 
operators. They provide the analysis of some the deduced 
quantities from the second group. 

The pulse count distribution )(ϕnH  represents the number 
of the observed discharges in each phase window as a function 
of the phase angle. 

The mean pulse height distribution )( ϕnqH  represents the 
average amplitude in each phase window as a function of the 
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phase angle. )( ϕnqH  is derived from the total discharge 
amount in each phase window divided by the number of 
discharges in the same phase window. 

In the case of a single defect, discharge quantities can be 
fairly well described by a normal distribution process. 
Therefore to get a better evaluation of  )( ϕnqH  and )(ϕnH  
quantities, several statistical parameters can be used. They are 
here termed as statistical operators. For a discrete distribution 
function, )(xf , let’s  

 

ii pxXPxf === )()(                             (1) 
 

where P is the probability: ix is the discrete value: ip is the 
probability value for ix . The following moments ku  of a 
distribution can be defined: 
 

∑ ⋅−= i
k

ik paxu )(                               (2)       

First moment: u - mean value of a distribution; k=1, a=0 
 

∑ ⋅= ii pxu                                         (3) 

Second moment: 2σ - variance value of a distribution;  
k=2, a=u  

∑ ⋅−= ii pux 22 )(σ                               (4) 

Third moment: skewness kS  - indicator of the asymmetry of a 
distribution as compared to a normal distribution; k=3, a = u  

∑
⋅−

= 3

3)(

σ
ii

k

pux
S                                 (5) 

Fourth moment: kurtosis uK  - indicator of the sharpness of a 
distribution as compared to a normal distribution; k=4, a = u  

3
)(
4

4

−
⋅−

= ∑
σ

ii pux
Ku                           (6) 

The third moment and the fourth moment about the mean 
are significant with respect to the shape of the distribution. 

The skewness,Sk, indicates the asymmetry of the 
distribution. Sk will be zero for asymmetric distribution, 
positive when the distribution is asymmetric to the left and 
negative when the distribution is asymmetric to the right. 

The kurtosis,Ku , indicates the degree of sharpness of the 
distribution. Kurtosis Ku will be zero for a normal distribution. 
For a sharper then normal distribution Ku is positive, and if 
the distribution is flatter than a normal distribution theKu is 
negative.  

The discharges during a voltage cycle occur in two 
sequences. For each half of the voltage cycle separate discharge 
patterns can be found. Thus, the )( ϕnqH  and )(ϕnH quantities 
are characterized by two distributions. For the positive half of 
the voltage cycle )(ϕ+

qnH , )(ϕ+
nH  and for the negative half of 

the voltage cycle )(ϕ−
qnH , )(ϕ−

nH .  

Both the )( ϕnqH and )(ϕnH quantities can be described by 

two skewness, +Sk , −Sk  and two kurtosis +Ku , −Ku . The 
distributions )( ϕnqH and )(ϕnH are also characterized by their 
mean value, their inception phase and the number of peaks. 

Therefore more statistical parameters can be defined, enabling 
us to compare the mean value, the inception phase and the 
number of peaks in the both positive and the negative half of 
the voltage cycle. The distributions )( ϕnqH and )(ϕnH  both 
positive and negative half of the voltage cycle the following 
statistical operators have been introduced by discharge 
asymmetry, Q , as the quotient of the mean discharge level in 
the positive and in the negative half of the voltage cycle. 

++

−−

=
qs

qs

NQ

NQ
Q                                     (7) 

 
The cross-correlation factor cc, the formula is used to 

calculate the cross-correlation factor cc: 

( )[ ] ( )[ ]∑ ∑∑ ∑

∑ ∑∑
−−

−
=

nyynxx

nyxyx
cc

iiii

iiii

2222
                    (8) 

 
The modified cross-correlation factor, mcc, to evaluate the 

difference between discharge patterns in the positive and the 
negative half of the voltage cycle is given in (9).    

ccQmcc ⋅=                                  (9) 

V. SIMPLIFIED FUZZY ARTMAP    

  Adaptive Resonance Theory (ART) was invented by 
Grossberg, in 1976, as a theory of human cognitive 
information processing [18]. Carpenter and Grossberg 
introduced the ART family in the form of a wide variety of 
supervised and unsupervised NNs [19]–[22]. The most 
advanced model of the ART family, fuzzy ARTMAP (FAM), 
could handle both binary and analogue data in a supervised 
manner [23]. The main drawback to the ART family networks, 
which prevented others from using them, was their intricacy: 
the inventors had introduced complicated architectures for 
their networks instead of presenting them as simple algorithms. 
This problem later was recognized by the inventors and they 
presented modified model or simplified model of ART family 
networks [24],[25].  

Originally, ART networks were defined in terms of 
differential equations, but in practice they are implemented 
using approximations or analytical solutions to these 
equations, in the limit. ART networks have their own special 
terminology. The main idea of unsupervised ART networks is 
as follows: 

(1) Find the nearest cluster prototype that ‘resonates’ with 
the input pattern. 

(2) Update this cluster prototype to be closer to the input. 
The simplified fuzzy ARTMAP (SFAM) was developed by 

removing redundancies. Details are illustrated in [25].  So, the 
SFAM is much faster than the FAM and easier to understand 
and simulate. However, it should be made clear that the SFAM 
can be used only for classification. The SFAM is essentially a 
two layer net containing an input and an output layer. Fig. 3 
illustrates the architecture of simplified fuzzy ARTMAP. 
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Fig. 3. Architecture of SFAM Network  
 

The main idea of SFAM is as follows[25]: 
(1) Find the nearest subclass prototype that ‘resonates’ with 

the input pattern (winner). 
(2) If the labels of the subclass and the input pattern match, 

update the prototype to be closer to the input pattern. 
(3) Otherwise, reset the winner, temporarily increase the 

resonance threshold (r), and try the next winner. 
(4) If the winner is uncommitted, create a new subclass 

(assign the input vector to be the prototype pattern of the 
winner, and label it as the class label of the input). 

The input to the network flows through the complement 
coder where the input string is stretched to double the size by 
adding its complement also. The complement coded input then 
flows into the input layer and remains there. Weights (w) from 
each of the output category nodes flow down to the input layer. 
The category layer merely holds the names of the M number of 
categories that the network has to learn. Vigilance parameter 
and match tracking are mechanisms of the network architecture 
which are primarily employed for network training. 

ρ  is the vigilance parameter which can range from 0 to 1. It 
controls the granularity of the output node encoding. Thus, 
while high vigilance values makes the output node much 
fussier during pattern encoding, low vigilance renders the 
output node to be liberal during the encoding of patterns. 

The match tracking mechanism of the network is responsible 
for the adjustment of vigilance values. Thus, an error occurs in 
the training phase during the classification of patterns. 

The SFAM algorithm is as follows [25]: 
  (1) Set the vigilance factor equal to its baseline value :  

ρρ =                                                  (10) 

(2) Insert input, and calculate second layer activities:  

j

j

j
w

wI
IT

+

∧
=
α

)( for j = 1,…, N-19                        (11) 

and for the uncommitted neuron: TN = T0 
(3) Find the winner  

( )








=

j

TMax
J jarg                                        (12) 

If the winner neuron is uncommitted, go to step 7. 
(4) Check the resonance condition, i.e. if the input is similar 

enough to the winner’s prototype: 

ρ≥
∧

=
∧

M

wI

I

wI jj                                 (13) 

If this condition is fulfilled, go to step 5. 
If this condition is not fulfilled, reset the winner (Tj = -1), go to 
the step 3, and check the next winner. 

(5) If the class label of the winner matches with the class 
label of input, update the prototype pattern to be closer to the 
input pattern: 

)()()( )1()( old
j

old
j

new
j wwIw ββ −+∧=                    (14) 

and go to step 9, otherwise reset the winner (Tj = -1), 
temporarily increase the vigilance factor so as to violate the 
condition of Equation (9), i.e. set ρ equal to : 

ερ +
∧

=
M

wI j                                          (15) 

(where ε is a small positive number, i.e. ε ≈ 0.001). 
(6) If ρ > 1, terminate the training for this input pattern in 

the current epoch (data mismatch), and go to step 9, otherwise 
go to step 3, and try the next winner. 

(7) Create a new subclass, i.e. assign the input vector as the 
prototype pattern of the winner neuron: 

IwN =                                               (16) 

and set the class label of the winner neuron to be as the class 
label of input pattern. 

(8) Create a new uncommitted neuron, and: N ←N + 1. 
(9) Go to the step 1, and repeat the Algorithm for the next 

input. 
The flow chart of the SFAM Algorithm is presented in Fig. 

4. 
 

VI.  EXPERIMENTALS    

In this study, test arrangement is shown in Fig. 4. as 
illustrated in Fig 5., there types of partial discharge generation 
source, corona discharge, surface discharge and internal 
discharge, were used. Partial discharge signal was measured by 
using partial discharge detector (OMICRON, model 
MPD600). Typical measurement results of each partial 
discharge generation source are illustrated in Fig. 6, Fig. 7 and 
Fig. 8, respectively.   
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Fig. 5.   Test Arrangement.  
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Fig. 4.   Flow Chart of the SFAM Training Algorithm for One Input Pattern in One Epoch of Training. 

 
 

 
 
 
 
 
 
 
 
 

 
 
  
                   (a)   Corona  Discharge                                              (b)  Surface Discharge                                                 (c)  Internal Discharge 

Fig. 6.   Electrode Configuration for Partial Discharge Generation Source. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Display on Sinusoidal                                                                              (b) Display on Elliptical  

Fig. 7.  Partial Discharge Measurement Result from Corona Discharge 
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(a) Display on Sinusoidal                                                                              (b) Display on Elliptical  

Fig. 8.  Partial Discharge Measurement Result from Surface Discharge 

 

 

 

 

 

 

 

 

 

 

 

(a) Display on Sinusoidal                                                                              (b) Display on Elliptical  

Fig. 9.  Partial Discharge Measurement Result from Internal Discharge 

 

Obviously, differences in pattern of partial discharge 
measurement results were obtained. Each partial discharge 
generation source generated individual partial discharge 
pattern. Then, these measurement data are used to test the 
purpose technique. Characteristics of partial discharge data 
were calculated by using statistical tools to apply for pattern 
recognition and classification. These characteristic of partial 
discharges include skewness, kurtosis, discharge asymmetry, 
the cross-correlation factor and modified cross-correlation 
factor. Characteristics of corona discharge, characteristics of 
surface discharge and characteristics of internal discharge are 
showed in Table I, Table II and Table III, respectively. These 
results were used for pattern recognition and classification. 

 
 

TABLE I   CHARACTERISTICS OF CORONA DISCHARGES  

Hqn Hn 
No. 

Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.150 1.010 -1.680 -1.946 1.156 1.129 -1.710 -1.884 

2 1.034 1.022 -1.514 -1.953 1.120 1.092 -1.455 -1.781 

3 1.061 1.012 -1.950 -1.970 1.108 0.089 -1.638 -2.331 

 

TABLE II   CHARACTERISTICS OF SURFACE DISCHARGES  

Hqn Hn 
No. 

Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.525 1.473 -0.390 -0.840 1.976 -0.120 1.597 -2.070 

2 1.511 1.302 -0.570 -0.560 1.977 -0.690 1.923 -2.390 

3 1.459 1.302 -0.400 -1.000 1.945 -0.630 1.647 -2.360 

 
TABLE III  CHARACTERISTICS OF INTERNAL DISCHARGES 

Hqn Hn 
No. 

Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.206 1.200 -1.470 -1.490 1.307 -0.220 -0.960 -2.38 

2 1.170 1.154 -1.570 -1.610 1.168 -0.680 -1.560 -2.33 

3 1.142 1.100 -1.630 -1.750 1.125 0.500 -1.640 -2.370 

 

The existing characteristics of partial discharge signal, 
illustrated in [4], were used as reference database to train the 
simplified fuzzy ARTMAP system. Characteristics of 
reference partial discharge measurement signal (corona 
discharges, surface discharges and internal discharges) are 
illustrated in Table IV, Table V and Table VI, respectively.   
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TABLE IV   CHARACTERISTICS OF CORONA DISCHARGES  

Hqn Hn 
No. 

Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.031 1.018 -1.92 -1.95 1.077 0.947 -1.8 2.08 

2 1.031 10.15 -1.92 -1.96 1.089 1.012 -1.77 -1.9 

3 1.028 1.006 -1.93 -1.98 1.062 0.951 -1.84 -0.72 

   
TABLE V   CHARACTERISTICS OF SURFACE DISCHARGES  

Hqn Hn 
No. 

Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.493 1.471 -0.26 -0.28 1.918 -0.46 1.451 -2.3 

2 1.496 1.45 -0.27 -0.39 1.954 -0.59 1.702 -2.35 

3 1.486 1.454 -0.34 -0.41 1.919 -0.54 1.408 -2.35 

 
TABLE VI CHARACTERISTICS OF INTERNAL DISCHARGES 

Hqn Hn 
No. 

Sk+ Sk- Ku+ Ku- Sk+ Sk- Ku+ Ku- 

1 1.115 1.153 -1.71 -1.6 1.11 -0.37 -1.73 -2.39 

2 1.141 1.152 -1.63 -1.6 1.113 -0.43 -1.71 -2.39 

3 1.133 1.153 -1.66 -1.58 1.124 -0.63 -1.68 -2.34 

 
 

VII.  RESULTS AND DISCISSION    

After well training the simplified fuzzy ARTMAP system by 
our reference PD characteristics, then PD characteristics from 
the experimental results were inputted to the SFAM system for 
classify partial discharge generation source. The obtaining 
results confirmed the effectiveness of purpose technique. The 
SFAM could correctly recognize and classify partial discharge 
generation source from PD measurement signal characteristics. 
The results are showed in table VII.  

 

TABLE VII  CLASIFICATION RESULTS BY THE  SFAM SYSTEM  

No. 

test data 
Results of classification  

1 corona correct 

2 corona correct 

3 corona correct 

4 surface correct 

5 surface correct 

6 surface correct 

7 internal correct 

8 internal correct 

9 internal correct 

 
 

VIII.  CONCLUSIONS    
The experimental for partial discharge measurement was 

conducted. Differences in partial discharge generation source 
were used in order to characterize partial discharge 
measurement signal. Characteristics of partial discharge signal 
were analyzed by using statistical tool and were used to 
classify partial discharge generation source using the SFAM 

system. Correctly classification results were obtained. The 
obtaining results confirmed the effectiveness of the purpose 
technique, the simplified fuzzy ARTMAP system, to apply for 
pattern recognition and classification of partial discharge 
generation source from measurement signal. 
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