
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:5, 2018

293

Particle Swarm Optimization and Quantum Particle
Swarm Optimization to Multidimensional Function

Approximation
Diogo Silva, Fadul Rodor, Carlos Moraes

Abstract—This work compares the results of multidimensional
function approximation using two algorithms: the classical Particle
Swarm Optimization (PSO) and the Quantum Particle Swarm
Optimization (QPSO). These algorithms were both tested on three
functions - The Rosenbrock, the Rastrigin, and the sphere functions
- with different characteristics by increasing their number of
dimensions. As a result, this study shows that the higher the function
space, i.e. the larger the function dimension, the more evident the
advantages of using the QPSO method compared to the PSO method
in terms of performance and number of necessary iterations to reach
the stop criterion.
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I. INTRODUCTION

FUNCTION approximation is an artifice that can be used

to solve two basic types of problems: to obtain a simpler

function that can represent the original one and/or to find and

fit the best function to empirically obtained data.

Studies about the optimization of function approximation

have been developed since the 1950s, as the work initiated

by [1] in which they proposed a method for defining an

unknown function through data. Works related to Artificial

Evolution also began appearing in the 1950s with [2]. The

first algorithm conceived through evolutionary strategies was

proposed by [3]. Based on [3], Fogel et al. [4] proposed a

method of evolutionary programming and discussed it and its

approximation with simulated evolution.

In the 1980s several techniques emerged, such as Simulated

Annealing (SA) [5] and the fundamentals of Integer

Programming and the Tabu Search [6], when the expression

“metaheuristic search techniques” was introduced and defined

as “general methodologies at a higher level of abstraction

capable of guiding the modeling of solving optimization

problems”.

Metaheuristics are typically inspired by behaviors observed

in nature [7]. In the 1990s, works inspired by the observation

of ant colonies, swarms of bees and some other kinds of nature

behavior appeared. Several techniques have been developed,

such as Genetic Algorithms [8], Ant Colony Optimization [9]

and Particle Swarm Optimization (PSO) [10].
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In this work, the techniques of PSO and Quantum

Particle Swarm Optimization (QPSO) were used for function

approximation. The performance and number of iterations

were analyzed for each method when applied to different

types of functions and dimensions in order to compare the

two techniques.

Besides this first introductory section, this paper is

organized as follows: section II shows a brief about PSO

and QPSO algorithms, section III presents the results and

comparison between the two algorithms when applied to three

different kinds of functions, and Section IV approaches the

conclusions of this study.

II. OPTIMIZATION ALGORITHMS

Adaptive and evolutionary optimization techniques have

several advantages over some of the exact approaches. One

advantage is that the techniques can deal with a large number

of problem parameters and no rigid assumptions about the

problem is necessary [11].

There are many techniques based on natural behavior, such

as Genetic Algorithms, PSO, and the Shuffled Frog Leaping

algorithms. These techniques can be used in several areas as

climatology [12], control [13], [14], finance [15], acoustic [16],

and power eletronics [17].

In this work two different optimization methodologies were

compared: The classical PSO and the QPSO, these two

techniques are quite widespread for solving optimization and

functions approximation problems.

A. PSO

The PSO algorithm was originally proposed by [10]. The

swarm of particles is inspired by social behavior, observed in

flocks of birds or shoals of fish. Each individual of a population

has their own experience and is able to estimate the quality of

that experience. Because individuals are social, they also have

knowledge about how their neighbors behave. These two types

of information correspond to individual (cognitive) learning

and cultural (social) transmission, respectively. Therefore, the

probability that a particular individual makes a certain decision

will be a function of their performance in the past and the

performance of some of their neighbors [18].

In the PSO each individual of the population is represented

by a point, called a particle, these individuals move in a search

space R
n, where n is the dimension of that space. Each point

has a number of attributes, any change of these attributes
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Fig. 1 PSO serching the optimal solution

makes the particle moves in space. The main idea is that the

particles move towards one another and influence each other.

The PSO is based on two metrics. The first one, defined

as gB , is related to the behavior of all elements of the

population, so each of the particles is influenced by the

movement of the whole group. The second metric, defined as

pB , creates a neighborhood between the particle in question

and its neighboring particles. The two metrics are measured

by a fitness function that corresponds to the optimal solution

of the problem.

The direction of motion of a particle pi is a function of the

current position xi of this particle, the velocity of this particle

vi(t + 1), the position in which the particle found its best

performance thus far (pB), and the best overall performance

of the system so far (gB). The speed of the particle is defined

by

vi(t+1) = vi(t)+ϕ1× (pB−xi(t))+ϕ2× (gB−xi(t)) (1)

In which ϕ1 and ϕ2 are constants defined by [10] as the

”cognitive” and ”social” components, respectively.

The position of each particle is defined as the sum of the

influence of the previous position and the calculated speed,

being defined by

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

The algorithm is repeated in loopd until a stop criterion is

reached or the change rate of the particles is close to zero.

A simplified representation of individuals seeking the optimal

solution on the PSO is shown in Fig. 1.

The PSO continues to be widely used in a wide range of

areas, including control [19]; power systems [20]; photovoltaic

systems [21], [22]; image processing [23]; vehicle routing [24]

and computer science [25], [26].

B. QPSO

The quantum PSO was introduced by [27] inspired by

fundamentals of physics and quantum mechanics. In classical

mechanics, used to define the PSO, a particle has its position

vector xi and the velocity vector vi defined. These vectors

determine the trajectory of this particle. The concept of

trajectory exists in Newtonian mechanics, but it is not defined

in quantum mechanics.

In quantum mechanics, by the uncertainty principle it is not

possible to determine the position xi and the velocity vi of

the particle.In the QPSO the particles have the wave behavior,

being governed by the function ψ(x, t), defined in terms of

iterations by

ψ(Y j
i,n+1) =

1√
Lj
i,n

exp(
−Y j

i,n+1

Lj
i,n

), (3)

where Y j
i,n+1 = |Xj

i,n+1 − pji,n| with pji,n the stochastic

attractor of particle from the classical PSO and Lj
i,n the

characteristic leght of que wave function. By the definition

of wave function, the probability distribution function is

F (Y j
i,n+1) = 1− exp(

−2Y j
i,n+1

Lj
i,n

). (4)

The QPSO presents some advantages over classical PSO,

in a quantum system the number of states is greater than in

a linear system. Moreover, by the uncertainty principle, the

particle can appear anywhere in the solution search space,

according to the probability distribution.

As the PSO algorithm, QPSO still widely used for example

in the areas of image processing [28], the energy market [29]

and power systems [30].

III. PSO AND QPSO RESULTS

In this work, simulations were performed comparing the

performance and number of iterations necessary for the

convergence of the PSO and QPSO algorithms. The functions

of Rosenbrock, Rastrigin and the Sphere function were used

for performance evaluation. In all cases, the algorithms have

been tested in R
2, R5 and R

10 space.

A. Rosenbrock Function

The Rosenbrock function is a non convex function used as a

performance test for optimization problems. This function has

only a global minimum, at the point (1,1) for two dimensions.

The function is defined by (5)

f(x, y) = (a− x)
2
+ b(y − x2)

2
(5)

Fig. 2 represents the two-dimensional Rosenbrock function

in 3D.

The PSO and QPSO algorithms were parameterized to

find the minimum of the Rosenbrock function. The same

parameters were maintained for the two algorithms. The

parameters are shown in Table I.

TABLE I
PARAMETERS OF THE PSO AND QPSO ALGORITHMS

Number of particles to be optimized 100
Maximum number of steps in the algorithm 5000
Social Parameter 2
Cognitive Parameter 2
Stop Criterion (Error) 10−5

Initially, a simulation was performed maintaining all the

parameters listed in Table I for the PSO and QPSO algorithms.
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Fig. 2 Two-dimensional Rosenbrock function in 3D

Fig. 3 PSO response to the two-dimensional Rosenbrock function

The first case analyzes the responses of algorithms for

Rosenbrock function in R
2 space, the results are shown in

Figs. 3 and 4.

In Fig. 3 it is possible to observe a greater spread of the

particles in the case of PSO. The average particle is fast

approaching the optimal solution, but the algorithm takes more

iterations to reach the stopping criterion. Fig. 4 is is noted that

in QPSO particles are more concentrated and the stop criterion

is reached sooner.

The PSO required 1229 iterations for convergence, while

the QPSO required only 129. Although there was a significant

difference in computational effort between the two algorithms,

the two reached the stopping criterion. The PSO found the

value 9.35 · 10−6 and the QPSO is 4.11 · 10−6. The closer to

zero, the better the performance of the algorithm, it is observed

that the QPSO obtained better performance.

The Rosenbrock function can also be set to more than two

dimensions. Its representation for the space R
N is shown in

(6).

N−1∑
i=1

100(xi+1 − xi
2)

2
+ (1− xi)

2
(6)

with x = [xi, ..., xN ] ∈ R
N .

A second simulation was performed by increasing the

dimension of the Rosenbrock function to five, the results are

shown in Figs. 5 and 6.

Fig. 4 QPSO response to the two-dimensional Rosenbrock function

Fig. 5 PSO response to the five-dimensional Rosenbrock function

In the case of the function defined in R
5, Fig. 5 shows there

is still a greater spread of the particles in the use of the PSO,

but for a higher dimension the QPSO approaches the optimal

solution faster, as can be seen in Fig. 6.

Both algorithms did not reach the stopping criterion before

5000 iterations, but it can be observed that the convergence

tendency of the QPSO is much faster than the PSO and

the QPSO algorithm obtained a better performance, reaching

0.0047, compared to 0.0111 of PSO.

The complexity of the model was increased, raising the

function to the tenth dimension. The results are shown in Figs.

7 and 8.

For the ten-dimensional function, it is possible to notice a

divergence in the response of the PSO in Fig. 7, which does

not occur for the QPSO whose number of iterations necessary

to approximate the optimal response is smaller, as shown in

Fig. 8.

For the ten-dimensional Rosenbrock function the

performance of the QPSO becomes evident. With five

thousand iterations the QPSO found the value 0.1696 while

the PSO 3.4607. Making it clear the best performance and
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Fig. 6 QPSO response to the five-dimensional Rosenbrock function

Fig. 7 PSO response to the ten-dimensional Rosenbrock function

Fig. 8 QPSO response to the ten-dimensional Rosenbrock function

Fig. 9 Two-dimensional Rastrigin function in 3D

speed of convergence.

B. Rastrigin Function

The Rastrigin function is a non-convex function used as a

performance test problem for optimization algorithms.It was

proposed by Rastrigin [31] as a 2-dimensional function and

generalized by Muhlenbein et al. [32]. Finding the minimum

of this function it’s a difficult problem due to its large search

space and its large number of local minima.

Fig. 9 represents the two-dimensional Rastrigin function in

3D.

The Rastrigin function it’s defined in two dimensions but

can also be set to more than two. Its representation for the

space R
N is shown in (7).

N−1∑
i=1

(10 + xi
2 − 10 · cos (2 · π · xi) (7)

with x = [xi, ..., xN ] ∈ R
N .

The PSO and QPSO algorithms were parameterized to find

the minimum of the Rastrigin function. The same parameters

were maintained for the two algorithms. The parameters are

shown in Table II.

TABLE II
PARAMETERS OF THE PSO AND QPSO ALGORITHMS

Number of particles to be optimized 100
Maximum number of steps in the algorithm 5000
Social Parameter 2
Cognitive Parameter 2
Stop Criterion (Error) 10−10

The first simulation performed analyzes the responses of

algorithms for the Rastrigin function in R
2 space, the results

are shown in Figs. 10 and 11.

In the case of the Rastrigin function defined in R
2, it is

possible to notice in Fig. 10 the quick approximation of the

optimal solution of the PSO algorithm, but it needs a high

number of iterations to reach the stop criterion.

The PSO required 3174 iterations for convergence, while the

QPSO required 75. The PSO found the value 1.43 ·10−11 and
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Fig. 10 PSO response to the two-dimensional Rastrigin function

Fig. 11 QPSO response to the two-dimensional Rastrigin function

the QPSO is 1.28 ·10−12. A second simulation was performed

by increasing the dimension of the Rastrigin function to five,

the results are shown in Figs. 12 and 13.

As in the example of the Rosenbrock function defined in R
5,

the QPSO algorithm requires a smaller number of iterations

to approximate the optimal solution for the Rastrigin function,

this result it’s observed in Figs. 12 and 13.

The PSO algorithm did not reach the stopping criterion

before 5000 iterations and as result reached 0.995. The QPSO

algorithm just needed 755 iterations to reach 7.10 ·10−11. The

results for R10, are shown in Figs. 14 and 15.

For the function defined in R
10, the number of iterations to

approximate the solution is smaller, as observed in Fig. 15 .

For the ten-dimensional Rastrigin function both algorithms

did not reached the stopping criterion. With 5 thousand

iterations the QPSO found the value 0.0025 while the PSO

4.97. Making it clear the best performance and speed of

convergence of the QPSO algorithm.

Fig. 12 PSO response to the five-dimensional Rastrigin function

Fig. 13 QPSO response to the five-dimensional Rastrigin function

Fig. 14 PSO response to the ten-dimensional Rastrigin function
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Fig. 15 QPSO response to the ten-dimensional Rastrigin function

C. Sphere Function

The Sphere function is a function frequently used as a

performance test problem for optimization algorithms. The

Sphere function has no local minima except for the global

one. It is continuous, convex and unimodal.

Fig. 16 represents the two-dimensional Sphere function in

3D.

Fig. 16 Two-dimensional Sphere function in 3D

The Sphere function can also be set to more than two

dimensions. Its representation for the space R
N is shown in

(8).

f(x, y) =

n∑
i=1

(x2
i ) (8)

with x = [xi, ..., xN ] ∈ R
N .

The PSO and QPSO algorithms were parameterized to find

the minimum of the Sphere function. The same parameters

were maintained for the two algorithms. The parameters are

shown in Table III.

Fig. 17 PSO response to the two-dimensional Sphere function

Fig. 18 QPSO response to the two-dimensional Sphere function

TABLE III
PARAMETERS OF THE PSO AND QPSO ALGORITHMS FOR THE SPHERE

FUNCTION

Number of particles to be optimized 100
Maximum number of steps in the algorithm 5000
Social Parameter 2
Cognitive Parameter 2
Stop Criterion (Error) 10−12

Initially, a simulation was performed maintaining all the

parameters listed in Table III for the PSO and QPSO

algorithms. The first case analyzes the responses of algorithms

for the Sphere function in R
2 space, the results are shown in

Figs. 17 and 18.

Despite the PSO algorithm reach the stopping criterion, it

needs a high number of iterations when compared to the QPSO

algorithm, as observed in Figs. 17 and 18.

The PSO required 2925 iterations for convergence, while the

QPSO required only 20. The PSO found the value 6.58 ·10−13

and the QPSO is 3.53 · 10−15.

A second simulation was performed by increasing the

dimension of the Sphere function to five, the results are shown
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Fig. 19 PSO response to the five-dimensional Sphere function

Fig. 20 QPSO response to the five-dimensional Sphere function

in Figs. 19 and 20.

The PSO algorithm reached the stopping criterion with 4062

iterations and the QPSO just needed 205. PSO reached 8.07 ·
10−13 and QPSO 6.32 · 10−13. The complexity of the model

was increased, raising the function to the tenth dimension. The

results are shown in Figs. 21 and 22.

As in the case of the other functions, for a higher dimension

the QPSO algorithm obtained an approximation of the optimal

solution with a smaller number of iterations for the case of the

sphere function as observed in Figs. 21 and 22.

For the ten-dimensional Sphere function the better

performance of the QPSO becomes evident. With 842

iterations the QPSO found the value 2.83·10−13 while the PSO

needed 4575 iterations to reach 7.78·10−13, making it the best

scenario in terms of performance and speed of convergence for

the QPSO algorithm.

IV. CONCLUSION

This article presented a comparison between two

optimization algorithms, the PSO and the QPSO. Three types

of functions were chosen for comparing the optimization

Fig. 21 PSO response to the ten-dimensional Sphere function

Fig. 22 QPSO response to the ten-dimensional Sphere function

algorithms because of their different characteristics. The

Rosenbrock function, which has only a global minimum

and some local minimums, the Rastrigin function, which is

widely used in optimization problems because it contains

a high number of local minimum, and the sphere function,

which has a single global minimum.

For all three tested functions the optimization by QPSO

presented advantages against the classical PSO, especially

when the function was optimized for a larger space

dimensions. In all cases, the QPSO algorithm required fewer

iterations to achieve the stopping criterion or got closer to it

when the maximum number of iterations was reached, and

also the QPSO presented a smaller approximation error when

compared to the classic PSO algorithm.
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University of Itajubá, having completed a sandwich
period at the University of Tennessee in the USA.
He is currently in the postdoctoral program in
Computer Science at the Federal University of
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of Itajubá (2006). He is currently an associate
professor at the Federal University of Itajubá. He
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