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Abstract—Given a large sparse signal, great wishes are to 

reconstruct the signal precisely and accurately from lease number of 

measurements as possible as it could. Although this seems possible 

by theory, the difficulty is in built an algorithm to perform the 

accuracy and efficiency of reconstructing. This paper proposes a new 

proved method to reconstruct sparse signal depend on using new 

method called Least Support Matching Pursuit (LS-OMP) merge it 

with the theory of Partial Knowing Support (PSK) given new method 

called Partially Knowing of Least Support Orthogonal Matching 

Pursuit (PKLS-OMP). 

The new methods depend on the greedy algorithm to compute the 

support which depends on the number of iterations. So to make it 

faster, the PKLS-OMP adds the idea of partial knowing support of its 

algorithm. It shows the efficiency, simplicity, and accuracy to get 

back the original signal if the sampling matrix satisfies the Restricted 

Isometry Property (RIP). 

Simulation results also show that it outperforms many algorithms 

especially for compressible signals. 

 

Keywords—Compressed sensing, Lest Support Orthogonal 

Matching Pursuit, Partial Knowing Support, Restricted isometry 
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I. INTRODUCTION 

OMPRESSED SENSING (CS) stands for a linear 

underdetermined problem, where the underlying sampled 

signal is sparse. The challenge in CS is to reconstruct this 

sparse signal from few measurements as possible as it could.  

The standard CS theorem is based on a sparse signal model 

and uses an underdetermined system of linear equations [1]. 

Linear Programming techniques are good for designing 

computationally CS decoders, but It show kind of complexity 

for many applications. So, the need for faster decoding 

algorithms is necessary, even if a procedure raises the 

measurement number. Several low complexity reconstruction 

methods are used today as an alternative method for linear 

programming recovery, which contains a collection of 

methods and algorithms used for testing [2]. 

Several algorithms exist for performing the signal 

reconstruction problem. Some of these include: Convex 

Optimization: like {Basis Pursuit (BP) and Basis Pursuit De-

Noising (BPDN). Iterative Greedy Algorithms like Matching 

Pursuit (MP) Orthogonal Matching Pursuit (OMP), the 

Regularized OMP (ROMP), and compressive sampling 

matching pursuit CoSaMP [3]. 

The simple idea behind use greedy methods is to find the 

support for unknown signal sequentially. The support set is 

 
Israa Sh. Tawfic, PhD Student, and Sema Koc Kayhan are with the Electric 

and Electronic Engineering Department, Gaziantep University, Turkey (e-
mail: isshakeralani@yahoo.com, skoc@gantep.edu.tr).   

containing of indices that are non-zero elements of a sparse 

vector. To evaluate the support set, iterative greedy search 

methods use some linear algebraic tools such as the matched 

filter and least square solution [2]. 

Greedy algorithms used at each iteration, one or several 

coordinates of input signal vector x which it elected depend on 

the maximum correlation value between the columns ofΦ and 

the measurement vector. The candidates will be added to the 

currently estimate support set of x. The pursuit algorithm 

repeats this procedure several times until all the coordinates 

arrange in the evaluated support set [2], [4]. 

II. BACKGROUND 

A.  OMP Algorithm 

Notations: let x be a sparse signal, the arbitrary vector 

x � �x�, x� … . . , x
��, let the support set T �  �1,2 … . , N� denote 

the set of nonzero component indices of x (i.e up�x� � �i|x� �
0� ), A� � �� |�| consists of the columns of A with indices i � I, 
A" denote the transpose of A, and A# denote the pseudo-

inverse {�A"A�$�A" }. 

Let us declare the standard CS problem, which achieve a 

signal x � �
 have a K sparse input, via the linear 

measurements 

 

y � Φx                                            (1) 

 

whereφ � �' 
 represents a random measurement (sensing) 

matrix, and y � �� represent the compressed measurement 

signal. A K sparse signal vector consists of most K nonzero 

indices. With the setup of K ( ) ( *, the task is to reconstruct 

x from y as x+ .The aim is to reconstruct sparse signal from a 

small number of measurements in addition to achieve good 

reconstruction qualification [4], [5].  

Wei Dai and Parichat notes that the compressed 

measurement signal y is the linear combination of most K 

atoms (atom means a column of). 

One condition for sparse signal recovery is to use the 

Mutual Incoherence Property (MIP) [6]. The MIP requires the 

correlations among the column vectors Φ to be small. 

The coherence parameter µ of sensing matrix is defined as, 

 

µ � max�./ 0φ�, φ/1                               (2) 

 

where φ�, φ/ Are two columns of Φ with unit norm.  

For the noiseless case when Φ is a series of two square 

orthogonal matrices, that 
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µ2��                                            (3) 

 

is guarantee the exact recovery of x+ when x+ has at most 

nonzero entries (such a signal is called k-sparse) [7]. Based on 

OMP algorithm in [8], [9], LS-OMP also selects one atom in 

each iteration., but the operation of choosing an index in the 

current iteration is executed according to its future effect on 

minimizing the residual norm. 

B. OMP-PKS  

It’s derived from classical Orthogonal Matching Pursuit 

(OMP). In sparse signals some component is more important 

for others and should be kept as nonzero value. If it compared 

with OMP, PKS can recover4 even when used low 

measurement rate �)/*� . 

While sparse signal can be produced by using wavelet 

transformer, all the coefficient of LL sub band is selected to be 

nonzero components without interring it to be tested for 

correlation [10]. 

The algorithm for OMP-PKS when using wavelet transform 

to make the signal sparse, can be found in [10], [11]. 

C. Preliminaries 

Lemma 1 [7]: (Consequences of RIP) 6 � Ω, 78 9|:| ( 1 then 

for any ; � <|:|, 
 

=1 > 9|:|?@;@� A BΦ:
′ Φ:;B� A =1 C 9|:|?@;@�           (4) 

1
=1 C 9|:|?

@;@� A D=Φ:
′ Φ:?$�;D

�
A 1

=1 > 9|:|?
@;@� 

 

Lemma 2 [7]: for disjoint sets 6�, 6� � Ω, 78 9|:E|2|:F| ( 1  
then, 

 

BΦ:E
′ ΦvB � B=Φ:E

′ Φ:FH:F?B A 9|:E|2|:F|@H@            (5) 

 

Lemma 3 [12] (Consequence of restricted orthogonality 

constant): For two disjoint sets I�, I� � Ω , let δ|�E|,|�F| be the 

|I�|, |I�|-restricted orthogonality constant of Φ.If |I�| C |I�| A n, 

δ|�E|,|�F|M, is the smallest number that satisfies 

 

BΦ�E
′ Φ�Fx�FB A 9|�E|,|�F|@x@.                            (6) 

 

Lemma 4 [12]: If Φ satisfies the RIP of both orders N1 and 

N2, then 9OE A 9OF for any N� A N�. This property is referred as 

the monotonicity of the isometry constant. 

Lemma 5 [12]: for two disjoint sets I�, I� � Ω with |I�| C
|I�| A n, θ|�E|,|�F| A δ|�E|,|�F| 
Definition 1 [4]: Let y � R' and Φ� � R'Q|�|, let Φ�

"Φ� be 

invertible matrix , the projection of y onto span (Φ�) Can be 

defined as  

 

yR � proj�y, Φ�� � Φ�Φ�
#                          (7) 

Φ�
# � �Φ�

"Φ��$�Φ�
" 

 

whereΦ�
# is the represent the Pseudo inverse of matrix Φ� and * 

denote the transpose of Φ�. Residue vector of the projection 

can be found as: 

yV � resid�y, Φ�� � y > yR.                      (8) 

 

Lemma 6 [1]: Residue Orthogonality: if a vector y � R' and 

Φ� � R'QZ represent sampling matrix which has full column 

rank, if yV � resid�y, Φ��, then 

 

Φ�
"yV � 0 

 

Approximation of Projection Residue: consider Φ� � R'Q
 , 

if I, J �  �1 … …  N� are two disjoint set (i.e. I \ ] � ^) and let 

9|:|2|_| ( 1 suppose 4 � `abc �Φ:�, 4d � aefg�4, Φ_�, 4h �
ei`7j�4, Φ_�, then   

 

ByRB� A δ|k|l|m|
�$δnop �|k|,|m|�

@y@�.                           (9) 

III. LS-OMP 

In LS-OMP, the elect of an atom for the current iteration is 

done by testing its influence on the future iterations. An 

element is chosen at the beginning of the calculation by 

finding a set of maximum correlation between q and whole 

signal matrix. This way is faster since it requires less 

computational complexity.  

According to the new stop condition, and compared with 

OMP, LS-OMP achieves better assessment for underlying 

support set through iterations without need to test each 

potential independently. 

Theorem 1. For any N-sparse vector r, where x � �
 and 

measurement matrix Φ � �' 
, and y � �� represent the 

measurement vector matrix, the LS-OMP algorithm perfectly 

recovers rfrom y � Φx (depending on Fig. 1),if  

 

By > yVℓB� A δFs
�$�δFs

ByVℓ$�B�                         (10) 

 

Assume  0.4 A δ�u A 0.497 

 

 

Fig. 1 Illustration of support sets for our theorem 1 

IV. PKLS-OMP 

The prior signal information is incorporated in the recovery 

process. A Discrete Wavelet Transform (DWT) is used to 

sparsify the signal and all the components in low sub band are 

selected as nonzero components. The PKLS-OMP algorithm 

for the data represented in the wavelet domain is shown in 

Algorithm 1: 

Theorem 2: If r is sparse signal and x � �
, 4 is 

measurement vector y � Φx, Φ is sampling matrix satisfies 

RIP condition, then r can be recovered if 

 

@4h@� x δFy
��$δFz� @4{@,                           (11) 

L 
| > |ℓ 

 

| 

|ℓ 
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for 0.005 A δ�u A 0.025. 

Fig. 2 shows the necessary support set need it for driving 

(11) of theorem 2. 

 

 

Fig. 2 Illustrations of support set for Theorem 2 
 

Algorithm 1: PKLS-OMP Algorithm for Signal Recovery  

Input: 

• *r) measurement matrix Φ 

• * Q 1 compressed measurement vector, 4 

• Sparsity level N of the sparse signal 

• ~ Least Support Parameter 

• |{Set of indexes of LL� 

Output: 

An ���Q� reconstructed signal, new set of nonzero Aug_p��Qu� 
Procedure: 

1) Initialize the residual, res{ � y , 

support set: |{ � �|{�, |{� … |{|��|� 
least Support set: ]{ � � 

number of Iteration: ℓ =0 

2) support size: Sup_size=||{| 
3) φ� � �φ�φ�. . φ|��|� 
4) find ei`ℓ � 4 > φ� #y 

5) index=|{, 6{ � φ� 

6) increment ℓ =ℓ +1 

7) find the maximum value of auto correlation between ei`ℓ 

and Φ, 
 

]ℓ � arg maxℓ��…u�φ
ℓ

"resℓ$�� 
 

8) Augment the index set and matrix of choosing atoms 

indexed by J, Iℓ � �Iℓ$� � Φ��, 
9) find the new augment value �;�_a � 6ℓ

# Q 4 ( Iℓ
#
 denotes 

the pseudo-inverse operators of set Iℓ) 

10) find new residual value ei`ℓ � 4 > �;�_a Q Iℓ 

11) update index, 7cjir�||{| C ℓ� � J�ℓ� 

12)  if the termination condition @4h@� A �Fy
��$�Fz�

@4@�, update 

the position set from [1,L] to [1,ℓ ] and go to step (15 ), 

13) upgrade the value of ei`ℓ$� � ei`ℓ and Iℓ$�=Iℓ, 
14)  return to step (6) if iteration number ℓ ( N,  

15) the reconstructed sparse signal ���Q� has nonzero indices 

at the index listed in Aug_p��Qu�, arrange the value of 

Aug_p in the position listed by J. 
 

���Q��7cjir � 1 �  ||{| C ℓ �� � Aug_p��Qu� 

V. EXPERIMENTAL RESULTS 

In this section, numerical experiments that explain the 

effectiveness of PKLS-OMP will be presents.  

Signal characteristic used to experiment as follows: ECG 

signal with length is set to c � 1024, amplitude=200, four 

level wavelet transformer filter type Symlets8, sparisty level 

N�br � 128 and Least Support Parameter(L)=60. 

To sample a vector sensing matrices Φ had been used, that 

have i.i.d (Independent & Identically Distributed) entries 

drawn from a standard normal distribution with normalized 

columns. The R-SNR is used to measure performance of 

reconstructed original signal. 

A study of the effect of using partially knowing support 

with LS-OMP method based on knowing support of 

approximation of DWT with size of prior |{  � 32, are 

presents using Theorem 2 for termination condition. The 

results show that the new method gives fast and good results 

to reconstruct the original signal as shown in Fig. 3. 

Fig. 4 shows the behavior of the two new methods and 

OMP-PKS by considering the reconstructed signal to noise 

ratio for the different measurement rate. As shown in Fig. 4 

theorem 1 and 2 give convergent best results for recovering 

signal as they compared with the OMP-PKS method for the 

same ECG signal mention above. 

Also a comparison is made between two new theorems 

explain earlier and OMP-PKS method as shown in Fig. 5 to 

study the effect of these conditions in term of time consumed 

to recover signal with different measurement rate value, size 

of known support set |{  � 32. 

Finally, a comparison made between many methods used 

for compressive sensing and two suggested theorems to 

summarize the performance of the new algorithm that used in 

this paper. In Fig. 6 a comparison made for the performance of 

some method like: OMP, CoSaMP, OMP-PKS, CoSaMP-

PKS, MP--PKS, LS-OMP, and our PKLS-OMP. Size of 

known support set=32. From the Fig. 6, it can be seen that, the 

best performance is given by the new PKLS-OMP, LS-OMP 

and CoSaMP-PKS. CoSaMP gives good results but only when 

the measurement rate is high (0.38) that’s meant its need more 

measurement to produce good recovering signal. 
 

 

(a) Input ECG signal 
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(b) ECG in wavelet domain 

 

 

(c) Reconstructed signal using PLSK-OMP with theorem 2 for 

Iteration=64 and R-SNR=32.2231 

Fig. 3 (a)-(c) Decomposition of input EGC signal after using PLSK 

 

 

Fig. 4 Comparison between our two proved theorem for PKLS-OMP 

and PSK-OMP 

 

 

Fig. 5 Time consumes of the two theorems compeer with OMP-PKS 

method 

 

 

Fig. 6 Comparison between seven methods used for experiments test 

VI. CONCLUSIONS 

In this paper, we try to produce two new methods for 

recovering signal by using compressive sensing greedy 

method, by improving new method depend on classic OMP 

procedure, this new method called LS-OMP. Also we produce 

a new method depend on partial knowing support, called 

PKLS-OMP. This new method improves some old method 

like PSK-OMP. We try to prove our new methods 

mathematically and then used these new methods in real signal 

like an ECG. 

Experiment results show that new theorems improved the 

interpretation of some iterative algorithms like MP, OMP, and 

CoSaMP by producing faster calculation to get better 

approximate recovering original signal.  
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