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Abstract—We present a solution to the Maxmin u/E parameters
estimation problem of possibility distributions in m-dimensional
case. Our method is based on geometrical approach, where minimal
area enclosing ellipsoid is constructed around the sample. Also we
demonstrate that one can improve results of well-known algorithms
in fuzzy model identification task using Maxmin u/E parameters
estimation.
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I. INTRODUCTION

AMONG few papers devoted to parameters estimation of
fuzzy variables one can refer to works [1]– [3]. Cai

Kai-Yuan proposed parameters estimation method for normal
fuzzy variables in Nahmias’s sense [1]. His approach is based
on the point estimation, maximum scale likehood estimation
and interval estimation methods.

Dug Hun Hong generalized Cai’s results and in the paper
[2] introduced the parameters estimations of general T-related
not necessarily normal fuzzy variables.

Wang Xizhao and Ha Minghu introduced μ/E parameters
estimation method [3] for the family of fuzzy numbers with
two parameters, location and scale, using results from [4]– [6].
They showed that this estimator is consistent, sufficient and
maximum likehood.

In this paper we generalize the results of Wang Xizhao
and Ha Minghu to the case of m-dimensional possibility
distributions. Firstly we will briefly review the possibility
theory and set up notations needed in the paper. Secondly
we will present the μ/E parameters estimation method
for m-dimensional fuzzy variables and main properties of
this estimation. Further we will demonstrate the practical
application of the μ/E parameters estimation method on the
task of fuzzy model identification.

II. DEFINITIONS

According to [7], [8] let Γ be an abstract space of generic
elements γ ∈ Γ, P (Γ) be a class of all subsets of Γ, a scale
π be a possibility measure on P (Γ). Then, (Γ, P (Γ),π) is
named possibility space.

Definition 1: The mapping X : Γ → Rm is a fuzzy variable
with distribution function, denoted by μX and is given by:

μX(x) = π{γ ∈ Γ : X(γ) = x},x ∈ Rm.
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Definition 2: The point a ∈ Rm is a modal value of fuzzy
variable X if μX(a) = 1.
According to [9] we introduce definition of joint distribution
function.

Definition 3: Let X1, ..., Xn be fuzzy variables. Joint
distribution function μX1,...,Xn(x1, ...,xn) of X1, ..., Xn is
defined by:

μX1,...,Xn
(x1, ..,xn)

= π{γ ∈ Γ : X1(γ) = x1, ..., Xn(γ) = xn}
= π{X−1

1 (x1) ∩ · · · ∩X−1
n (xn)}, ∀xi ∈ Rm, i ∈ [1, .., n].

Fuzzy variables X1, ..., Xn are said to be mutually min-related
if for any subset {i1, ..., ik} of {1, 2, ..., n}

μXi1 ,...,Xik
(x1, ...,xk) = min{μXi1

(x1), ..., μXik
(xk)}.

Definition 4: Let ξ1, ξ2, ..., ξn be n independent identically
distributed fuzzy variables, than (ξ1, ξ2, ..., ξn) is said to be
the sample of the family, and x1,x2, ...,xn are the observed
values of the sample.

Definition 5: If any function of the sample (ξ1, ξ2, ..., ξn)
doesn’t involve unknown parameters, it is called a statistic.
Note, that statistics is a fuzzy variable.

Definition 6: The family of distributions is the set of
distributions, that depends on parameter vector θ:

{μξ(x,θ)|θ = (θ1, θ2, ..., θk) ∈ Θ},x ∈ Rm,

where Θ is parameter space (Θ ⊆ Rk).
The problem of parameters estimation of possibility

distribution is to find the appropriate parameter vector θ
on the base of the values (x1,x2, ...,xn) of the sample
(ξ1, ξ2, ..., ξn) after n observations.

III. THE PARAMETERS ESTIMATION METHOD FOR
m-DIMENSIONAL FUZZY VARIABLES

Now we are going to consider a solution of parameters
estimation problem of symmetric, strictly decreasing
possibility distributions. Generalizing results of Wang Xizhao
and Ha Minghu, we introduce μ/E parameters estimation
method for the family of fuzzy numbers in the case of
m-dimensional possibility distributions.

A. The μ/E Parameters Estimation Method for
Multidimensional Fuzzy Variables

Let us consider symmetric, strictly decreasing with distance
from zero m-dimensional possibility distribution:

μ0(x) = f̄(‖x‖) = max {0, f(‖x‖)}, (1)
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where x ∈ Rm, f is strictly decreasing on R1
+ = [0,+∞)

function, f(0) = 1.
Let Q be a family of possibility distributions, obtained from

(1) with affine transformations. Distribution functions in this
family can be represented in the form:

μξ(x, c, A) = max {0, f(
√
(x− c)TA(x− c))}, (2)

where c ∈ Rm, A is m×m positive definite symmetric matrix.
Parameter c is a location of modal value and defines translation
of μ0, so that μ(c, c, A) = 1. Rotation and scaling are defined
by matrix A, so that rotation angles are defined by eigenvectors
of A, and scale along axes is proportional to square roots of
corresponding eigenvalues.

One can see that equipotential surfaces of function μξ

defined according to (2) are ellipsoids.
Following [3] we denote a fuzziness measure of distribution

μξ by E(μξ) =
∫ · · · ∫
Rm

μξ(t
1, ..tm,θ)dt1...dtm. Here θ is a

vector of distribution parameters, θ = (c, A), θ ∈ Θ.
Suppose, that observed values (x1, ...,xn) of

multidimensional sample (ξ1, ..., ξn) of the family Q
are collected during n observations. Because observations
are min-related, joint distribution of possibility to observe
(x1, ...,xn) is:

μ((x1, ...,xn),θ) =
n∧

j=1

μξ(xj ,θ), (3)

where xj = (x1
j , ..., x

m
j ), xi

j ∈ R1.
Note that changes of values of parameters vector θ directly

influence both the possibility, that the observed sample
appears, and the value of E(μξ). So we should select θ such
that the possibility (3) is as high as possible and the value of
E(μξ) is as small as possible.

Therefore, we denote by

L(θ) =

n∧
j=1

μξ(xj ,θ)/E(μξ). (4)

Definition 7: If there exists θ̂ ∈ Θ such that L(θ̂)
= max

θ∈Θ
L(θ), then θ̂ is called Maxmin μ/E estimator of the

parameters vector θ.
The following theorem gives the method for definition the

estimators of the parameters c, A.
Theorem 1: Let:
1. f : R1

+ → R1 be strictly decreasing on [0,+∞) function,
f(0) = 1;

2. Q = {μξ(x, c, A)} be a family of distributions, where
c ∈ Rm, A is m × m positive definite symmetric matrix,
μξ(x, c, A) = max {0, f(√(x− c)TA(x− c)

)};
3. X = {x1, ...,xn} be observed sample of the family Q,

where xi ∈ Rm, i ∈ [1, ..., n];
4. W be m-dimensional ellipsoid of minimal volume,

circumscribed around the set X .
Then the Maxmin parameter estimator of θ = (c, A)

is (ĉ, Â) such that ellipsoid W is defined by equation
(x− ĉ)T Â(x− ĉ) = 1/q2, q = argmax

t≥0
tmf̄(t).

Proof: Consider the distribution μξ of
the family Q with parameters: c, A. Let
Ã = p2A, p ∈ R1. Let

∫ · · · ∫
Rm

μ0(t
1, ..., tm)dt1...dtm = I . It

is easy to compute that E(μξ) = Ib1 · ... · bm/(p)m, where
bi = 1/

√
vi, vi is i–th eigenvalue of the matrix Ã.

According to (4), we have:

L(c, A) =
n∧

j=1

(p)mf̄(
√
u )

Ib1 · ... · bm , (5)

where u = (x− c)TA−1(x− c).
Consider Z = {xz1 , ...,xzk} is the set of points

of distribution, where (5) attains its minimum. Suppose
the following equation is fulfiled for the points in Z:
μξ(xzi) = μZ(X,θ) = min

x∈X
μξ(x), i ∈ [1, .., k]. Then

L(c, A) =

n∧
j=1

(p)mf̄(
√
u )

Ib1 · ... · bm =
(p)mμZ(X,θ)

Ib1 · ... · bm . (6)

Equipotential surfaces for distribution, defined according
to (2), are ellipsoids. Therefore, all points of the set Z are
situated on the one of such ellipsoids (the ellipsoid U ) and
the other points are inside this ellipsoid. Let c̃ = (c̃1, ..., c̃m)
and the matrix Ã defines the ellipsoid U .

To find μZ(X,θ) we consider the point H = (h1, ..., hm)
on the end of the longest axis of ellipsoid U .
We obtain μZ(X,θ) = μξ(H) = f̄(p). Then
L(c̃, Ã) = (p)mf̄(p)/Ib1 · ... · bm.

Considering that the volume of ellipsoid U is

VU =
2π

m
2

mΓ(m2 )
b1 · ... · bm,

where Γ is gamma-function [10].
Then

L(c̃, Ã) =
2π

m
2 (p)mf̄(p)

mΓ(m2 )IVU
.

As we are seeking for parameters to maximize L(c, A), we
should take p = q, that maximizes the function (p)mf̄(p), and
minimal-volume ellipsoid W as ellipsoid U .

W is defined by equation (x − ĉ)T Ã(x − ĉ) = 1.

Considering that A =
1

p2
Ã, we obtain (x − ĉ)T Â(x − ĉ)

= 1/q2.This completes the proof of the theorem.
Example 1: Consider μ/E parameters estimation of

2-dimensional distribution of the family Qμ(c, A). We will
use f(t) = e−t2 for normal distribution, here parameter
q = argmax

t≥0
t2f̄(t) = 1.

Fig.1 shows a plot of distribution function μ(ĉ, Â), where: ◦
denote the observed values of the fuzzy variable; −− denotes
W (circumscribed minimal value ellipse); • denotes the center
of W ; ellipses shown at the base of the graphs demonstrate
the equipotential lines of distribution function μ.

B. Properties of Parameters Obtained with μ/E Estimation

To show the μ/E parameters estimation deserves attention,
we investigate its properties. Let’s start with extending
definitions from [3] to multidimensional case.
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Fig. 1. Parameters estimation of normal distribution

Definition 8: Let F be a family of distribution functions,
ξ̄ = (ξ̄1, ξ̄2, ..., ξ̄n) be a sample, ξ̄i = (ξ̄1i , ...,

¯ξmi ), i = 1, n,
and let T (ξ̄) be a statistic whose distribution function belongs
to F. We say T (ξ̄) is sufficient with respect to F if the joint
distribution function of (T (ξ̄), ξ̄), G(t,x), does not depend
on x.

Note 1: Every sample includes a certain amount of
information on the family. Definition (8) shows that a sufficient
statistic contains same amount of information as the sample
with respect to the family. It follows that a sufficient statistic
may be used to simplify a sample without losing information.

Definition 9: Let F be a family denoted by
F = {F (x,θ)|x = (x1, ..., xm), θ = (θ1, θ2, ..., θk) ⊂ Rk},
ξ̄ = (ξ̄1, ξ̄2, ..., ξ̄n) be a sample of the family and T (ξ̄) be a
statistic. We say:
1) T (ξ̄) is a sufficient estimator of θ, if T (ξ̄) is sufficient
with respect to F;
2) T (ξ̄) is a consistent estimator of θ, if π({T (ξ̄) = θ}) = 1.
3)T (ξ̄) is a maximum likehood estimator of θ if:

M(x1, ...,xn, T (ξ̄)) = max
θ∈Θ

M(x1, ...,xn,θ),

where
M(x1, ...,xn,θ) =

n∧
j=1

F (x1
j , ..., x

m
j ,θ),

xi = (x1
i , ..., x

m
i ), i ∈ [1, n].

Note 2: Consistency illustrates the possibility that the
estimator takes true value is maximum. Maximum likelihood
explains the possibility that the sample appears attains
maximum. Therefore, definition (9) may be regarded as a
criterion for judging reasonableness of an estimator.

We have proved the following theorem about properties of
maxmin μ/E estimation in multidimensional case:

Theorem 2: The estimation θ̂ = (ĉ, Â) as given by the
theorem 1 is:
1. a sufficient estimator of parameters c, A
2. a consistent estimator of the parameter c and eigenvectors
of A if eigenvalues of A are fixed.
3. a maximum likehood estimator of the parameter c and
eigenvectors of A if eigenvalues of A are fixed.

We present some practical application of considered theory
in the next section.

IV. THE MAXMIN μ/E PARAMETERS ESTIMATION IN
FUZZY MODEL IDENTIFICATION TASK

To verify practical usefulness of the proposed parameters
estimation method we evaluate it on the task of fuzzy
model identification. Consider clustering-based fuzzy model
identification method presented in [11] by Stephen L. Chiu.

This method is summarized in the following four steps:
1. Cluster data points using modification of Mountain

clustering method and obtain cluster centers.
2. Consider each cluster center as a prototype of a fuzzy

rule. Use appropriate part of center coordinates as a modal
value of fuzzy term for the rule premise.

3. For a first estimate of rule consequent use a remainder
of cluster center coordinates.

4. Use least-squares estimation to optimize rules
consequents and obtain Sugeno order 0 or order 1 model.

Modified Mountain Method used on step 1 requires manual
selection of parameter ra (it defines neighborhood radius of
points). The same parameter is used on step 2 to define the
width of fuzzy terms for rule premises.

We propose to use the same general strategy for fuzzy model
identification, but use Maxmin μ/E parameters estimation to
define parameters of terms for rule premises.

We will evaluate this algorithm on chaotic time series
prediction as in [11] to verify algorithm performance.

A. Chaotic Time Series Prediction

Let us consider prediction of time series generated by
chaotic Mackey-Glass differential delay equation:

ẋ(t) =
0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t).

The task is to use past values of x up to the
time t to predict future value of x at t + Δt.
The standard settings [12] is to predict x(t + 6)
based on x = {x(t − 18), x(t − 12), x(t − 6), x(t)}.
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TABLE I
RESULTS OF DIFFERENT METHODS ON CHAOTIC TIME SERIES PREDICTION

TASK

Method Error Measure

ANFIS 0.007
Mountain Method & μ/E-estimation 0.010

Cluster Estimation 0.014
Back-Prop NN 0.02

6-order polynomial 0.04

The dataset consists of 1000 data points extracted from
t = 118 to t = 1117. The first 500 points were used for
training and last 500 data points were used for checking
generalization ability of the model. The error measure used
is RMS error divided by standard deviation of time series.

We use modified Mountain Method implemented by Matlab
subclust command. After receiving cluster centers from
subclust algorithm, we divide dataset points between clusters,
selecting cluster with nearest center.

Improved algorithm allows us to obtain better results, than
from [11]. It is interesting to note, that while authors of
Cluster Estimation method have found that their model overfits
data if ra parameter of clustering algorithm is less than 0.3
and number of clusters and rules is 35, we were able reduce ra
to 0.18 and get a model with 53 rules without overfitting. At
lower ra our algorithm was not able to estimate distribution
parameters due to singular matrices during calculation of
minimal volume ellipsoids.

Table I shows results obtained by different algorithms on
this task. Rows 1 and 8 are from Jang [13]; row 3 is from
Chiu [11]; rows 4, 5 are from Crowder [14].

V. CONCLUSION

This paper is concerned with finding a solution to the
Maxmin μ/E estimation for the family of m-dimensional
possibility distributions. The solution for symmetric unimodal
distributions with parameters of location, rotation and scale
was found. Described estimator is sufficient, consistent and
maximum likelihood.

We have studied the practical application of Maxmin μ/E
estimation on the task of fuzzy model identification and have
found that it improves models created by other methods.
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