International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

Parallelization of Ensemble Kalman Filter (EnKF)
for O1l Reservoirs with Time-lapse Seismic Data

Md Khairullah, Hai-Xiang Lin, Remus G. Hanea, Arnold W. Heemink

Abstract—In this paper we describe the design and implementation
of a parallel algorithm for data assimilation with ensemble Kalman
filter (EnKF) for oil reservoir history matching problem. The use
of large number of observations from time-lapse seismic leads to a
large turnaround time for the analysis step, in addition to the time
consuming simulations of the realizations. For efficient parallelization
it is important to consider parallel computation at the analysis step.
Our experiments show that parallelization of the analysis step in
addition to the forecast step has good scalability, exploiting the same
set of resources with some additional efforts.

Keywords—EnKF, Data assimilation, Parallel computing, Parallel
efficiency.

I. INTRODUCTION

HE concept of a closed-loop model-based reservoir man-
agement, depicted in fig. 1, is a proper framework for
reservoir monitoring and management [1]. It involves the use
of (uncertain) reservoir and production models and combines
them with available data from a real field. Data available
from different sources can be used in the data assimilation
loop to improve the characterization of the reservoir and
the reliability of the flow predictions. Generally, data can
be divided into two classes: sparse data, available only at
the well locations and dense data, gathered everywhere in
the reservoir. As the number of model parameters to be
estimated is very large, the production history data or sparse
data has a limited resolving power. On the other hand, due
to the developments in geophysics, especially in the field of
seismic, it is possible to track the fluids movements in the
reservoir itself. This additional information such as pressure
(p) and saturation (s), in the form of time-lapse seismic or
dense data, can be utilized together with production data,
to narrow the solution space when minimizing the mismatch
between gathered measurements and their forecasts from the
numerical model [2]. In closed-loop reservoir management
data assimilation is a vital part. The goal of this work is to
enhance the performance of the data assimilation process by
utilizing it’s inherent parallelism.
The ensemble Kalman filter (EnKF) has gained popularity
in data assimilation for non linear systems in the recent years.
However, EnKF takes large turn around time in terms of

Md Khairullah is with the Department of Computer Science and En-
gineering, Shahjalal University of Science and Technology, Sylhet, 3114,
Bangladesh(e-mail: khairullah-cse @sust.edu).

Hai-Xiang Lin is with Delft Institute of Applied Mathematics (DIAM), TU
Delft, Netherlands.(e-mail: H.X.Lin@tudelft.nl).

Remus G. Hanea is with Delft Institute of Applied Mathematics (DIAM),
TU Delft, Netherlands.(e-mail: R.G.Hanea@tudelft.nl).

Arnold W. Heemink is with Delft Institute of Applied Mathematics (DIAM),
TU Delft, Netherlands.(e-mail: A.W.Heemink @tudelft.nl).

Noise Input System Output Noise
—_— (reservoir, wells, D—
facilities)

Controllable
Sensors

Optimization
algorithms
Low order Geology,
system models | aqeencennconnn-d] .. seismics,
well logs,

well tests,
Data assimilation
L—— ' algorithms
Predicted output Measured output

fluid
properties,

Fig. 1: Reservoir management depicted as a closed loop
model-based controlled process [1]

computing, particularly to run the simulations of hundreds of
realizations. The situation worsens when we have large number
of observations, which makes the analysis step time consum-
ing. But fortunately enough, both the forecast and the analysis
parts of EnKF have inherent parallelism. The forecast step
is embarrassingly parallel as each ensemble member can run
independently in separate processing element of computers.
The analysis or update step is critical for only systems with
large number of observations and parallel implementation of
this step is not simple because of the intermediate inter process
communication requirement.

Data assimilation experiments are performed using a par-
allel ensemble Kalman filter (EnKF) in [3], [4], [5], [6],
[71, [8], and [9] for various applications of atmospheric data
analysis, oceanography and hydrology. The common feature
of these parallel implementations is that they only consider
the total parallelization of the forecast step. Parallelization of
the analysis step is either completely ignored or done partially
or incorporates some sort of domain decomposition.

Parallelization of other variants of EnKF or closely related
approaches are also reported. A parallel implementation of
EnKF based on the Sherman-Morrison-Woodbury formula-
tions is presented in [10]. A parallel ensemble adjustment
Kalman filter (EAKF) has been designed and implemented
using a local least squares framework for El Nino—Southern
Oscillation (ENSQO)) forecast system in [11]. A variant of
a least squares ensemble (Kalman) filter is implemented on
parallel architectures in [12]. [13] presents a parallel imple-
mentation of Singular Evolutive Interpolated Kalman (SEIK)
filter. The scalability of different ensemble-based Kalman
filters are discussed in [14]. Again, the forecast step in the
above works is implemented by running each realization or

1201

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

ensemble member independently on each processor. How-
ever, the analysis step is enhanced by reducing inter process
communication applying some form of domain decomposition
or regionalization to avoid allocating and loading large state
vectors from each processor in most of the implementations.
Issues such as smoothness of the analysis fields across the
sub-domain boundaries is a concern in domain localization for
parallelization of the ensemble algorithms and are discussed
in [15].

In [16] and [17] parallel implementations of EnKF for
oil reservoir are presented. The first level of parallelization
is usually during the forecast step. A second level of par-
allelization is implemented by a parallel reservoir simulator
for each realization. The third level is achieved by partially
parallelizing the analysis step. A parallel framework for history
matching and uncertainty characterization based on EnKF
and ensemble smoother (ES) for the application of reservoir
simulation is presented in [18]. [19] presents development of a
high—performance grid computing environment that performs
the forecast step of the EnKF algorithm in parallel by simul-
taneous run of each simulation model.

No previous parallel EnKF is reported to attempt paral-
lelizing the analysis step as a whole. For the first time we
parallelize the total analysis step with the whole domain
in this work. Moreover, no previous parallel EnKF for oil
reservoir is found to deal with dense data. Our parallel EnKF
integrates dense data from time lapse seismic for oil reservoirs.
This paper presents a parallel EnKF for oil reservoirs data
assimilation and the experimental results. The results show that
by parallelization of the whole EnKF process, significant speed
up can be achieved utilizing the same set of parallel hardware,
which are used for the forecast step only or the forecast step
and partially for the analysis step in some previous works. In
the next section we briefly discuss data assimilation concepts
along with Kalman filter and ensemble Kalman filter. Then we
describe some implementation details. After presentation and
analysis of the results we conclude with discussion of future
research directions.

II. DATA ASSIMILATION OR HISTORY MATCHING

For any dynamic system, there are two sources of infor-
mation: the measurements of the system or observations and
the understanding of the temporal and spatial evolution of the
system or models. The state estimation problem is defined
as finding the estimate of the model state that best fits the
model equations, the initial and boundary conditions, and the
observed data in some weighted measure [20].

A. Ensemble Kalman Filter

The classical Kalman Filter (KF) updates the state estimate
whenever measurements are available, using the forecast esti-
mates, error covariance of the predicted model state, and the
measurement error covariance [21].

However, results of rigorous solutions to the non-linear
problem by Kalman filter are either too narrow in applicability
or are computationally expensive [22]. The ensemble Kalman
filter is a Monte Carlo [23] approach for approximating

Kalman filter to overcome these limitations. In the analysis
step in EnKF, updates are performed on each of the ensemble
members and is given by

Y8 =) + (05, MT(M(C5,) MT
+Ce) N dy — My, (D)
and is expressed in terms of the ensemble matrices as
A=A+ C MY (MCi ,M" +Ce)~ (D — MA), (2)

where the measurement matrix is M € N™*", These can be
further reduced [24] to the EnKF update equation

A = AX, 3)

where the matrix A is the ensemble of the forecasted state
vectors, A® is the ensemble of the updated state vectors and
X, let us call it the updating coefficient matrix, is computed in
the analysis step based on the forecast and the measurements,
to minimize the variances of the state vectors among the
ensemble members. So the EnKF analysis step consists of
construction of the update coefficient matrix X, and the matrix
multiplication of A and X in (3).

B. Parallelization of EnKF

In [16] and [17], the first two levels of parallelization work
for the construction of the matrix A and the third level is used
only for the matrix-matrix multiplication in (3).

However, the construction of the matrix X in (3) would be
very compute intensive for large number of observations. The
construction of X involves a series of singular value decom-
position (SVD) computation and matrix-matrix multiplications
and these two operations can be carried out efficiently in paral-
lel computers due to availability of efficient parallel algorithms
and corresponding libraries. Hence, also the construction of X
can be parallelized and significant reduction in assimilation
time can be obtained. Provided parallel computing resources
for running the simulations in parallel, we can exploit them for
the large computations for the analysis steps. As we said, the
matrix X is termed as the updating coefficient matrix in the
flowcharts in fig. 2. By the statement ‘update’ in the flowcharts
we mean the matrix-matrix multiplication in (3).

Fig. 2 illustrates the differences in work flows of a serial and
the proposed parallel implementation of the method. In these
examples the EnKF method works with IV realizations. In the
serial implementation, all realizations and the analysis step
are executed on a single processor P;, whereas in the parallel
counterpart each realization runs on a separate processor
independently, the analysis step run on N processors in a
mixture of coordinated and independent fashion.

III. IMPLEMENTATION

Inclusion of time-lapse seismic data makes the EnKF pro-
cess more time consuming as the analysis step becomes larger
than the forecast step in terms of execution time. In addition to
this, the analysis part is more complex than the forecast step
as it requires intermediate inter process communications. By
intelligent use and runtime configurations of the ScaLAPACK

1202

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

Run Simulator
on P,
Run Simulator
on Py

Update
J=1 on P,
Update
J=2 onP,

Compute the
updating
coefficient matrix

Y
Update
J=N-1 onP,
Update
on Py

Run Simulator
on P,
Run Simulator
on Py

()

¥

Run simulator
onP, J

I

Update
on P,
P2
Run simulator = Update
onP, J=2 onP,
|
>E> Compute
> the
updating
[coefficient |
E matrix i
Run simulator b= Update
on Py 4 J=NA on Py

Run simulator Update
on Py J=N | Py on Py

111

i 2
2

(b)

Fig. 2: Implementation of EnKF for data assimilation: (a) serial version, (b) proposed parallel version

routines we minimize the requirement of data communications
effectively and achieve very good speedup values. Even with
large number of processors, our implementation shows better
scaling.

A. Reservoir model

We work with a rectangular reservoir field with length 1980
m, width 1020 m and height 5 m. We assume all the fluid and
rock properties of the reservoir to be constant along the height
and hence we consider it as a two dimensional reservoir. For
computational purpose the field is logically divided into 5049
blocks in a 51x99 grid of square blocks of size 20 m in each
side. We have two injection wells located at the coordinates
(2, 2) and (50, 17) and two production wells located at the
coordinates (17, 62) and (41, 98)

The typical state vector for oil reservoir consists of the
variables: (i) pressure p, (ii) saturation s, (iii) bottom hole
pressures in the wells BHP, (iv) oil flow rate in the wells
qo, and (v) water flow rate in the wells q,. We consider
observations of saturations (in terms of time-lapse seismic) at
every block and bottom hole pressures, and oil and water flow
rates in the wells (in terms of measurements). We consider
the following standard deviations of the measurement noise
(Gaussian) for observations: 15% for saturation, 5% for BHP
and oil flow rate, and 10% for water flow rate. We want to
estimate the log permeability log k also. Then our state vector
has the following form.

A=[p, s, BHP, q5, qu, log k]T

We assume a constant porosity field in fig. 3 for all ensemble
members and subsequently porosity is not part of the analysis
process.

Our measurement network excludes pressure values and
permeability values. Then for computations in the analysis
steps, we use the following portion (with length 5061) of the

Fig. 3: Assuming constant porosity field for all ensemble
members

state vector:
A=[s, BHP, 5, qu |

And as estimating the log permeability values (log k) is
our primary goal of the assimilation and updating other state
values are of minor importance (and we neglect them) and
hence in the update statement in (3) we use only the following
portion (of length 5049) of the state vector.
A:[log k]

B. Software structure

For the forecast or simulation step we used simsim (sim-
ple simulator), written in MATLAB, developed by Prof. Jan
Dirk Jansen at TU Delft. For parallel communication in data
assimilation algorithms we used MPI in C language. To inter-
face with simsim we developed a driver named simsimdriver
which contains all data assimilation computations as well
as function calls for running the simulator for the forecast
step. Two wrapper functions were developed in MATLAB:
(1) initSimsim, which initializes and prepares all the required
resources such as model, control and parameter informations
on each processor and provides assumed permeabilities of the
ensemble, and (ii) runSimsim, which works with the updated

1203

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

assumption of permeabilities for a defined time period and
returns the seismic data for saturation and measurement data
of bottom hole pressure, and oil and water flow rates measured
in the wells. These wrapper functions and the original simsim
functions are compiled to a library, usable in C programming,
by the MATLAB compiler mcc tool with appropriate settings.
The driver program in C and the compiled library needs to be
compiled to an executable with the MATLAB compiler mbuild
utility.

C. Optimization

We adopt the two most common ways to optimize parallel
algorithms, load balancing and communication minimization,
and discuss below.

We statically distribute equal number of realizations to
each processor to run the simulation. There is no processor-
to-processor communication during the forecast step, but it
requires a very complex dynamic load balancing in this step.
In order to obtain good load balancing in the analysis step
we choose small block sizes of the operand matrices for
ScaLAPACK operations. ij:v choose block size 64 in case of

the long dimensions and in case of short dimensions,

where nproc is the numbgrpof processes. In fact the smallest
possible block size 1 ensures 100% load balancing, but then
the number of communications for ScaLAPACK operations
is large, leading to bad performance. ScaLAPACK suggests a
64 %64 two dimensional blocks for a balanced load as well as
tolerable communication overhead for optimum performance.

Other than the internal communications of the ScaLAPACK
operators, we put significant efforts to minimize data com-
munication by two ways: (i) construction and computations
of the local matrices locally and (ii) using non blocking
communication where possible.

IV. RESULTS AND DISCUSSIONS

We tested our implementation on two different clusters, first
one is in a local area network (LAN) with heterogeneous hard-
ware and the other one is the SARA Lisa high performance
compute cluster. In both clusters, we used a single core of each
processor to have homogeneous data communication among
all the processing elements.

A. Verification

The main goal of data assimilation is to minimize the
difference between the predictions and the true values for the
reference variables or parameters. With time (or assimilation
steps) the difference should reduce in general. Root mean
square (rms) difference between the assimilated parameters
with the true values is a good tool to perceive the result.

In our experiments, the models simulate the reservoir op-
erations for ten years, whereas data assimilations take place
in the first three years at six months interval, resulting in
six assimilation steps. Fig. 4 shows the rms difference of
the assimilated log permeability and true log permeability
when executed on four processors with 16, 48, 96, 144 and
288 realizations. With large number of realizations, the EnKF

0.6 T T
16 realizations —+—
48 realizations ---x---
96 realizations ---*---
144 realizations & -

0.55 &
<, 288 realizations

05 -

rms difference

04} . 1
035 [Ty

03 [B

0.25 I I I
0 0.5 1 1.5 2 25 3

assimilation time (year)

Fig. 4: rms differences of log permeability over time

performs better. Additionally we observe that with increased
number of realizations the performance of the EnKF does not
improve linearly.

Fig. 5 presents the log permeability graphs for visual
comparison.

B. Performance of the parallel algorithm

Initial tests and measurements were carried out in a LAN
cluster with heterogeneous processing speed (2.20-3.33 GHz)
and memory size (2-6MB cache memory and 4-8 GB main
memory) configurations. For the single processor run we used
the 2.66 GHz Intel(R) Core(TM)2 Quad CPU Q8400 machine
with 6MB cache and 4 GB main memory (i.e. roughly the
average configuration). The LAN has a data rate of 100 Mbps.
Then measurements were taken in the SARA Lisa cluster
having 8 core processors with 2.26 GHz speed, 8 MB cache
and 24 GB main memory, and 4x DDR Infiniband network
with bandwidth 1600 MB/sec and Latency < 6 usec.

In following discussion the forecast time, analysis time and
the total time are related as

total time = initialization time

+ forecast time + analysis time. (4)

Table I and II show the time measurements, corresponding
speedup and parallel efficiency information on with 48 and 96
realization respectively. Fig. 6 and fig. 7 depict the speedup
on both the clusters.

1) Difference in speedup: forecast vs analysis step: The
forecast step need no intermediate inter process communica-
tion and hence the interconnection network has no role at
all in the speedup of this step and the speedup follows the
ideal case. On the other hand in the computation of SVD and
matrix-matrix multiplication, naturally we need a huge number
of intermediate inter process communication and this implies
that the speedup in the analysis step will be less than that of
the forecast step.

1204

Fig. 5: log permeability fields with 16 (top row), 48 (middle row) and 288 (bottom row) realizations: initial (left column), after

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:7, No:7, 2013

.
LW L
Y " i "|._ ."'l

. *‘u e

- &7
r -4

6 assimilation steps in 3 years (middle column), the true log permeability (right column)

Fig. 6: Speedup of the parallel implementation for 48 realization on (a) LAN cluster and (b) SARA Lisa cluster for different

parts

speedup

TABLE I: Performance of the parallel implementation with 48 realizations

processors 1 4 8 16 48
cluster LAN | Lisa LAN Lisa LAN Lisa LAN Lisa Lisa
forecast time (h) | 2.604 | 2.99 0.75 0.75 0.37 0.39 0.19 0.2 0.06
analysis time (h) 4.62 3.84 1.31 0.94 0.85 0.44 0.58 0.21 0.09
total time (h) 7.66 6.85 2.16 1.71 1.29 0.84 0.81 0.42 0.20
Sp (forecast) 1 1 4.06 3.97 8.11 7.73 16.23 15.34 47.86
Sp (analysis) 1 1 3.53 4.1 5.46 8.76 7.95 17.97 42.17
Sp (total) 1 1 3.54 4 5.96 8.19 9.51 16.22 34.43
Ep (forecast) % 100 100 101.48 99.14 101.36 96.66 101.46 95.85 99.70
FEp (analysis) % 100 100 88.13 102.47 68.25 109.47 49.69 112.31 | 87.85
FEp (total) % 100 100 88.59 99.91 74.51 102.37 59.41 101.36 | 71.72

T T T
forecast —+—
analysis -
16 F total
ideal

VI

speedup

0 2 4 6 8

10

of processors

()

50

T T T

forecast —+—

analysis ---x-
total ------
ideal

20 25 30 35

of processors

(b)

50

1205

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:7, 2013

TABLE II: Performance of the parallel implementation with 96 realizations

processors 1 4 8 16 48
cluster LAN | Lisa LAN Lisa LAN Lisa LAN Lisa Lisa
forecast time (h) 6.22 6.1 1.52 1.54 0.98 0.8 0.49 0.37 0.12
analysis time (h) 4.13 3.72 1.41 1 0.78 0.43 0.55 0.21 0.09
total time (h) 10.37 | 9.84 3.15 2.608 1.77 1.24 1.06 0.62 0.24
Sp (forecast) 1 1 4.09 3.97 6.37 7.63 12.68 | 16.43 49.93
Sp (analysis) 1 1 2.92 3.74 5.30 8.76 7.46 17.44 | 41.09
Sp (total) 1 1 3.29 3.81 5.84 791 9.76 15.8 41.67
Ep (forecast) % 100 100 | 102.31 | 99.26 | 79.68 9533 | 79.25 | 102.7 | 104.02
Ep (analysis) % 100 100 | 72.602 | 93.5 66.23 109.5 | 46.65 109 85.61
FEp (total) % 100 100 82.37 | 95.19 | 72.605 | 98.81 | 60.98 | 98.75 86.82

T T T
forecast —+—
analysis ---x---

total

e

50

45

T T T
forecast —+—
analysis ---x---

total

ideal

speedup
©
T

0 2 4 6 8 10 12 14 16
of processors

(a)

ideal

speedup

0 5 10 15 20 25 30 35 40 45 50
of processors

(b)

Fig. 7: Speedup of the parallel implementation for 96 realization on (a) LAN cluster and (b) SARA Lisa cluster for different

parts

2) Super-linear speedup: In both the clusters super-linear
speedup is observed for the forecast step. In the SARA Lisa
cluster we observe this also for the analysis step. This occurs
when number of processors becomes large enough such that
their combined cache memory size is enough to hold the
required data which is impossible for a single or small number
of processors. In the Lisa cluster every processor has a cache
memory of 8§ MB, whereas in the LAN cluster the maximum
available cache memory size is 6 MB and the minimum is 2
MB. The shortfall in the cache memory size and the mentioned
slow interconnection network do not allow speedup to be
super-linear for the analysis step in the LAN cluster.

3) Parallel scalability: For both 48 and 96 realizations on
both the clusters, the efficiencies of the forecast steps almost
always follow the linear speed up. This implies that the fore-
cast step is strongly scalable regardless of the interconnection
network of the cluster. In the forecast step with 96 realization
the problem size is double of that with 48 realizations. This
means the forecast step is also weakly scalable. However, for
both 48 and 96 realizations on both the cluster the efficiencies
of the analysis steps gradually decrease with increased number
of processors. This implies that the analysis step is not
strongly scalable. For proper scaling of SVD computation and
matrix-matrix multiplication, ScaLAPACK suggests at least a
1000x 1000 matrix per processor after data distribution. By

this formulation, 25 is the roughly calculated upper limit of
number of processors for the model we are working with to
get good efficiency for the analysis step. We observe both for
48 and 96 realizations, on the SARA Lisa cluster the efficiency
is well above 90% for up to 24 processors.

4) Difference in performance: 48 realizations vs 96 realiza-
tions: With more number of realizations the problem size for
the forecast step increases proportionally. These are observed
in fig. 8. In both cases, the forecast time for 96 realizations is
almost double of that for 48 realizations. On the other hand,
the problem size for the analysis part remains almost the same
for varying number of realizations, as the dimension of matrix
in the SVD computation and the large matrix multiplication
immediately after this remain the same (mxm or 5061 x5061
for our working model).

5) Difference in speedup and performance: LAN cluster vs
SARA Lisa cluster: The forecast step needs no intermediate
inter process communication. So the speedup of this step
should not be affected by the interconnection network of
the used cluster. We see in the figures, for both clusters the
speedup of the forecast step follows almost the ideal case.
However, as SARA Lisa uses faster interconnection network,
the effect of the intermediate inter process communications
at the analysis step should be less severe to it, compared
to the LAN cluster and the figures show that for the SARA

1206

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

forecast (48 rea) m——m
6} forecast (96 rea) mm—
analysis (48 rea) m—
analysis (96 rea) m—

time (hr)

1 2 4 8 12 16
of processors
()

cluster

forecast (LAN) s
forecast (SARA Lisa) s
analysis LAN) s
analysis (SARA Lisa) s

time (hr)

#of processors

Fig. 9: Comparison of execution time of the forecast and
analysis step for 48 realizations on different clusters

Lisa cluster, the analysis step speedup is slightly less than the
forecast step speedup. We see in the fig. 9 the forecast time
is almost equal in both clusters, but as the SARA Lisa cluster
uses faster interconnection network, it requires very less time
for analysis step compared to the LAN cluster.

6) Effect of ScaLAPACK process grid: Process grid ar-
rangement of the available processors is an important perfor-
mance issue for ScaLAPACK operations. ScaLAPACK sug-
gests a square grid or in case it is impossible to construct a
square grid then very close to a square grid arrangement. The
performance issue of the process grid arrangement is more
vital for slow interconnection networks due to communication
requirements. Table III lists the various analysis times for
possible 3 process grid arrangements of 16 processors on both
clusters. Fig. 10 depicts the data in the table. We observe
that the 1x16 grid, which is the worst arrangement compared
to a square grid arrangement, shows the worst performance
whereas the 4x4 grid shows the best performance.

forecast (48 rea) m—
forecast (96 rea) m—m
analysis (48 rea) m—m
6| analysis (96 rea) m—

time (hr)

1 2 4 8 16 24 48
of processors

(b)
Fig. 8: Execution time of the forecast and analysis step for 48 and 96 realizations on (a) LAN cluster and (b) the SARA Lisa

TABLE III: Execution time (in minute) of the analysis step
for different process grid orientation for 48 realizations

process grid | LAN cluster | SARA Lisa cluster
1x16 77.43 15.97
2x8 44.48 13.78
4x4 35.66 12.83

7) Effect of ScaLAPACK block size: ScaLAPACK logically
divides the data in the original matrix in two dimensional
blocks and distributes the matrix in units of these blocks
among the available processors in the process grid. A block
with length and width 1, that is a block with just 1 element
ensures the highest load balancing of the ScaLAPACK op-
erations but increases the inter process communication for
ScaLAPACK operations. So there is a trade-off between load
balancing and the amount of data communication for the
optimal block length and width. Though ScaLAPACK suggests
64 to be the optimal choice, with available larger cache
memory size, the optimal block length may vary for different
applications. Table IV lists the analysis time for different block
lengths on both clusters. We applied this only to the long
dimensions (with length 5061 or 5049 for the used model) of
the matrices described earlier. Fig. 11 reports the execution
time of the analysis step as a function of block sizes. Varying
lengths of the block has a less affect on the performance
compared to the variation of process grid arrangements. Also
the LAN cluster with slow interconnection network is more
sensitive to the variation in the block lengths.

V. CONCLUSION

The parallel EnKF for oil reservoirs developed in this work
possesses the following key properties: (i) parallelization of
the whole EnKF process; (ii) use of sparse measurement data
as well as dense time-lapse seismic data; (iii) no localisation;

1207

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

80

LAN m—

75

70

65

60

55

time (minute)

50
45
40
35

1x16 2x8 4x4
process grid

SARA Lisa

time (minute)

1x16 2x8 4x4
process grid

Fig. 10: Execution time of the analysis step for different process grid orientation for 48 realizations

LAN cluster mmm—
40

39.5

39

38.5

38

time (minute)

37.5

37

36.5

36

35.5

1 16 32 64 128 256 512
block size

SARA Lisa cluster

time (minute)

1 16 32 64 128 256 512
block size

Fig. 11: Execution time of the analysis step for different block sizes for 48 realizations

TABLE IV: Execution time (in minute) of the analysis step TABLE V: Performance comparison between our work and

for different block sizes for 48 realizations

Block Length | SARA Lisa Cluster | LAN Cluster

1 14.71 37.99

16 12.95 35.83

32 12.84 36.12
64 12.83 35.66
128 13.14 37.40
256 14.81 37.36
512 13.23 40.15

(iv) minimization of data communications by intelligent use
and runtime configurations of ScaLAPACK routines.

It outperforms the previous parallel implementations of
EnKF for oil reservoirs in terms of parallel efficiency. Table
V shows the comparison of our work with previous works
Important conclusions regarding performance are: (i) paral-
lelization of EnKF is limited by the analysis step; (ii) the
forecast step shows linear speedup (occasionally super-linear
speedup) and scalability; (iii) the analysis step shows sub-

parallel EnKF

Parallel EnKF realizations | processors efficiency

R. Tavakoli et al. 100 50 50.8% and 47.2%
Our EnKF 96 48 86.8%

B. Liang et al. 200 16 76.8%

Our EnKF 96 16 98.8%

linear speedup and super-linear speedup in fast interconnection
clusters for small number of processors due to cache; (iv)
the number of realizations impacts the forecast step time,
whereas the analysis step time remains almost the same; (v)
the forecast time is almost independent of the hardware and
interconnection network; (vi) the analysis time significantly
depends on the interconnection network, and is affected by
ScaLAPACK process grid organization, where ScaLAPACK
block length has a minor effect.

For further performance gain parallel EnKF can be im-
plemented on GPU clusters. We need to develop CUDA

1208

International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:7, 2013

kernels for expensive functions of simsim. Or other GPU
implementations of oil reservoirs can be used for simulation.
For the analysis step we need GPU versions of singular value
decomposition and matrix-matrix multiplication of Scal A-
PACK equivalent routines.

ACKNOWLEDGMENT

The authors would like to thank SARA, the Netherlands Su-
percomputing Centre, Amsterdam for providing the computing
facility the Lisa cluster.

REFERENCES

[1] J. D. Jansen and S. D. Douma and D. R. Brouwer and P. M. J. Van
den Hof and O. H. Bosgra and A. W. Heemink. Closed loop reservoir
management. In SPE Reservoir Simulation Symposium, The Woodlands,
Texas, U.S.A., February 2009. Society of Petroleum Engineers.

S. Gillijns and O. BarreroMendoza and J. Chandrasekar and B. L. R. De-

Moor and D. S. Bernstein and A. Ridley. What is the ensemble Kalman

filter and how well does it work? In Proceedings of the 2006 American

Control Conference, pp. 4448-4453, 2006.

Herschel L. Mitchell and P. L. Houtekamer, An Adaptive Ensemble

Kalman Filter, MONTHLY WEATHER REVIEW, 128(2): 416433,

February 2000.

[4] P. L. Houtekamer and Herschel L. Mitchell, A Sequential Ensem-

ble Kalman Filter for Atmospheric Data Assimilation, MONTHLY

WEATHER REVIEW, 129(1):123-137, JANUARY 2001.

Christian L. Keppenne. Data assimilation into a primitive-equation model

with a parallel ensemble Kalman filterr MONTHLY WEATHER RE-

VIEW, 128(6):1971-1981, June 2000.

Christian L. Keppenne and Michele M. Rienecker. Initial testing of a

massively parallel ensemble Kalman filter with the poseidon isopycnal

ocean general circulation model. MONTHLY WEATHER REVIEW,

130(12):2951-2965, December 2002.

Christian L. Keppenne and Michele M. Rieneckerb, Assimilation of

temperature into an isopycnal ocean general circulation model using a

parallel ensemble Kalman filter, Journal of Marine Systems, 40-41 (2003),

pp. 363380.

[8] Teng Xua and J. Jaime Gomez-Hernandeza and Liangping Lia and

Haiyan Zhoua, Parallelized Ensemble Kalman Filter for Hydraulic Con-

ductivity Characterization, Computers & Geosciences, 52: 42-49, March

2013.

Edward Ott and Brian R. Hunt and Istvan Szunyogh and Aleksey V. Zimin

and Eric J. Kostelich and Matteo Corazza and Eugenia Kalnay and

D. J. Patil and James A. Yorkey, A local ensemble Kalman filter for

atmospheric data assimilation, Tellus (2004), 56A, pp. 415-428.

[10] Jan Mandel, Efficient Implementation of the Ensem-
ble Kalman Filter , CCM Report 231, May 2006,
http://math.ucdenver.edu/ccm/reports/rep231.pdf

[11] S. Zhang and M. J. Harrison and A. T. Wittenberg and A. Rosati and
J. L. Anderson and V. Balaji, Initialization of an ENSO (El NinoSouthern
Oscillation (ENSO)) Forecast System Using a Parallelized Ensemble
Filter, MONTHLY WEATHER REVIEW, 133: 3176-3201.

[12] Jeffrey L. Anderson and Nancy Collins, Scalable Implementations
of Ensemble Filter Algorithms for Data Assimilation, JOURNAL OF
ATMOSPHERIC AND OCEANIC TECHNOLOGY, 24(8): 1452-1463,
AUGUST 2007.

[13] Lars Nerger and Wolfgang Hiller, Software for ensemble-based data as-
similation systems - Implementation strategies and scalability, Computers
& Geosciences, Available online 7 April 2012.

[14] Lars Nerger and Wolfgang Hiller and Jens Schroeter, PDAF - the Parallel
Data Assimilation Framework: Experiences with Kalman filtering. In:
Zwieflhofer, W., Mozdzynski, G. (Eds.), Use of High Performance
Computing in Meteorology - Proceedings of the 11. ECMWF Workshop.
World Scientific, pp. 63-83.

[15] Janji Tijana and Lars Nerger and Alberta Albertella and Jens Schroeter
and Sergey Skachko, On Domain Localization in Ensemble-Based
Kalman Filter Algorithms, Monthly Weather Review, 139: 2046-2060,
2011.

[16] B. Liang and K. Sepehrnoori and M. Delshad, An Automatic History
Matching Module with Distributed and Parallel Computing, Petroleum
Science and Technology, 27(10): 1092-1108, January 2009.

2

3

=

(5

[

[6

=

[7

—

[9

s}

[17] Reza Tavakoli and Gergina Pencheva and Mary F. Wheeler. Multi-level
parallelization of ensemble Kalman filter for reservoir history matching.
In 2011 SPE Reservoir Simulation Symposium.

[18] Reza Tavakoli and Gergina Pencheva and Mary F. Wheeler and Ben-
jamin Ganis, A parallel ensemble-based framework for reservoir history
matching and uncertainty characterization, Computational Geosciences,
17(1): 83-97, February 2013.

[19] L. Xin, Continuous Reservoir Model Updating by Ensemble Kalman
Filter on Grid Computing Architectures, Ph.D. thesis, Louisiana State
University, Baton Rouge, Louisiana, 2008.

[20] G. Evensen.The Ensemble Kalman Filter for combined state and pa-
rameter estimation, Monte Carlo techniques for data assimilation in large
systems. IEEE CONTROL SYSTEMS MAGAZINE, 2009.

[21] R. E. Kalman. A new approach to linear filter and prediction problems.
J. Basic Eng., 82:35-45, 1960.

[22] S. Gillijns and O. BarreroMendoza and J. Chandrasekar and B. L. R. De-
Moor and D. S. Bernstein and A. Ridley. What is the ensemble Kalman
filter and how well does it work? In Proceedings of the 2006 American
Control Conference, pages 4448-4453, 2006.

[23] Eric w. Weisstein, Monte carlo method,
http://mathworld.wolfram.com/MonteCarloMethod.html, ~Last visited
on 26-02-2013.

[24] G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer:
New York, 2007.

1209

