
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

522

Abstract—Scale Invariant Feature Transform (SIFT) has been
widely applied, but extracting SIFT feature is complicated and
time-consuming. In this paper, to meet the demand of the real-time
applications, SIFT is parallelized and optimized on cluster system,
which is named pSIFT. Redundancy storage and communication are
used for boundary data to improve the performance, and before
representation of feature descriptor, data reallocation is adopted to
keep load balance in pSIFT. Experimental results show that pSIFT
achieves good speedup and scalability.

Keywords—cluster, image matching, parallelization and
optimization, SIFT.

I. INTRODUCTION

MAGE matching is a fundamental aspect of many problems in
computer vision, including object or scene recognition,

solving for 3D structure from multiple images, stereo
correspondence, and motion tracking. Image matching is
divided into scale- information-based matching and
feature-based matching. Scale-information-based matching is
simple and easy to realize, but it is compute-intensive and very
sensitive to changes in image scale, rotation, deformation etc.
Feature-based matching can largely overcome these
shortcomings, so it is well applied in computer vision. D. G.
Lowe has proposed a method for extracting distinctive

invariant features from images， named SIFT [1]. The SIFT

features are invariant to image scale and rotation, and also
provide robust matching across a substantial range of affine
distortion, change in viewpoint, addition of noise, and change
in illumination. So SIFT method becomes a hot topic and has
been studied in serial optimization [5], parallel optimization [6],
[7], and there are many method extensions, such as PCA-SIFT
[2], GLOH [3] and CSIFT [4]. It is also applied in detection [8],
[9], tracking [10], [11] and registration [12], [13].

A 128-dimensional vector is used to describe the SIFT
feature, which is compute-intensive. The method of SIFT can’t
meet the real-time demand of many applications, such as online
object recognition and real-time video processing.

Therefore, parallelization of SIFT has come to the
researchers’ attention. Parallel SIFT has been implemented on
GPU, and extracted about 800 points from a 640x800 video at
10 frames per second (FPS)for the limitation of hardware and
OpenGL [14].

Mingling Zheng is with the School of Computer, National University of

Defense Technology, Changsha, Hunan, 410073 China (e-mail: minglingzh@
yahoo.com.cn).

Zhenlong Song is with the School of Computer, National University of
Defense Technology, Changsha, Hunan 410073 China (e-mail: songzhl@
sina.com).

Ke Xu is with the Hunan Police Academy, Changsha, Hunan,China.
Hengzhu Liu is with the School of Computer, National University of

Defense Technology, Changsha, Hunan, 410073, China.

Then the SIFT was parallelized on GPU with the speed of 20

FPS [15]. Qi Zhang et al. implemented parallel SIFT on the
dual 4-core server and gain the speed of 45 FPS, that met the
demand of real-time video stream with the speed 30 FPS [16].
For the High Definition Television (HDTV) image (size of
1920x1080), the speed of 10 FPS on the 16-core machine can’t
meet the requirement of HDTV. So Reference [17] adopted a
64-core Chip MultiProcessor (CMP) simulator and achieved 33

FPS, which met the real-time requirement of HDTV. With GPU、
SMP and CMP platform, these studies basically meet the
requirements of real-time applications with small image. But
for the application of aerophotogrammetry and remote sensing,
the image is massive and the speed of parallel SIFT on these
platform can’t meet the real-time demand. Seth Warn et al.
carried on the parallel experiment of large image and achieved
the speedup about 2x on dual 4-core SMP machine [7]. Feng et
al. implemented the parallel SIFT on 32-processor cluster
which has been named DDP-SIFT, but the speedup is about 10x.
The two parallel methods have low speedup for large images.

This paper focus on the parallelization and optimization of
SIFT feature extraction on cluster system for large images. The
remainder of this paper is organized as follows. Section II
describes the extraction of SIFT feature. In section III, we
propose a parallelized and optimized algorithm of SIFT feature
extraction. Section IV gives the experimental results and
Section V concludes our work.

II. SIFT FEATURE EXTRACTION

SIFT method was proposed by D. G. Lowe in 2004, which
remained invariant to rotation and change in image scale, and
also showed to provide robust matching across a substantial
range of affine distortion, change in viewpoint, addition of
noise, and change in illumination [1]. Three major stages are
used to extract SIFT feature in this paper. They are generation
of Gaussian pyramid, scale space extrema detection and
descriptor representation.

A. Generation of Gaussian Pyramid

Two-dimensional image I(x, y) at different scale space, can
be expressed as follows:

),(*),,(),,(yxIyxGyxL δδ = (1)
Where * is the convolution operation of the x and y,

two-dimensional Gaussian function G (x, y, δ) is defined as
follows:

222 2/)(
22

1
),,(δ

πδ
δ yxeyxG +−= (2)

The Gaussian pyramid (GSS pyramid) is computed by the
convolution of a variable-scale Gaussian function with the
input image. There are o octaves and each octave has s images

Parallelization and Optimization of SIFT Feature
Extraction on Cluster System

Mingling Zheng, Zhenlong Song, Ke Xu, and Hengzhu Liu

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

523

in the GSS pyramid. For the first octave of scale space, the
image (the input image is up-sampled by a factor of 2) is
repeatedly convolved with Gaussian to produce the set of scale
space images. After that, the Gaussian image is down-sampled
by a factor of 2, and the process is repeated for other octaves.

B. Scale Space Extrema Dectection

In 1999, Lowe proposed to detect extrema at
Difference-of-Gaussian (DOG) scale space [19]. Adjacent
images in GSS pyramid are subtracted to produce the DOG
images:

),,(),,(

)),,(),,((),,(

δδ
δδδ

yxLkyxL

yxGkyxGyxD

−=
−=

 (3)

In order to detect the local maxima and minima of D(x,y,δ),
comparison between each sample point with its eight neighbors
in the current image and nine neighbors in the scale above and
below is performed. Twenty six comparison operations are
needed for a sample point during this step. The next step is to
perform a detailed fit to the nearby data for location, scale, and
ratio of principal curvatures. This information is used to reject
points that have low contrast (and are therefore sensitive to
noise) or are poorly localized along an edge.

C. Descriptor Representation

Firstly, it is needed to determine the keypoint’s location,
scale and orientation. In the section B, the location and scale is
ready. For each image sample, L(x,y), the gradient magnitude,
m(x,y), and orientation, θ(x,y), are computed using pixel
difference:

22))1,()1,(()),1(),1((),(−−++−−+= yxLyxLyxLyxLyxm (4)

))),1(),1(/())1,()1,(((1tan),(yxLyxLyxLyxLyx −−+−−+−=θ (5)
In actual process, the gradient magnitude and orientation are

computed in a region around the keypoint location, and these
samples are accumulated into orientation histogram. The peak
of the histogram is the main orientation and others above 80%
of the peak are the auxiliary orientation. Then the coordinates
of the descriptor and the gradient orientations are rotated to the
main orientation to keep the invariability to rotation. A
Gaussian window with the center at the keypoint is selected and
these samples in the window are accumulated into orientation
histograms over 4x4 subregions with 8 orientation bins. The
descriptor is formed a vector containing the value of all
orientation histogram entries, corresponding to the gradient
magnitudes. So the descriptor vector contains 4x4x8=128
elements.

III. PARALLELIZATION AND OPTIMIZATION OF SIFT

The serial processing time of three steps is shown in table 1
and the platform is a dual 6-core server. The serial code is
provided by Andrea Vedaldi [20]. The time of extrema
detection is little and it occupies less the 5% of the total
execution time. The time spent on the generation of GSS
pyramid increases rapidly with the increasing size of image,
and when the image size is 2048x2048, time spent on GSS
pyramid is much more than that on the descriptor representation.
In the generation of GSS pyramid, the base image (the bottom

image in each octave) of current octave is from the last octave,
so it is difficult to parallelize totally among octaves. How to
parallelize and optimize the generation of GSS pyramid is one
of the difficulties in parallelism and optimization of SIFT. Time
of descriptor computation is affected by the number of
keypoints and the computation of descriptors can be
parallelized totally.

TABLE I
SERIAL EXECUTION TIME OF SIFT FEATURE EXTRACTION (UNIT: SECOND)

Image Size
number of
keypoints

GSS

PYRAMID
Keypoint
detection

Descriptor
presentation

800x640 4513 0.8949s 0.076s 1.066s
1024x1024 14346 1.9899s 0.115s 3.122s
2048x1024 33409 5.1603s 0.278s 7.051s
2048x2048 43341 13.229s 0.452s 9.817s

Reference [18] proposed a parallel SIFT feature extraction

algorithm, named DDP-SIFT. In the DDP-SIFT, the base
images of each octave are produced in serial, referenced
Pyramid Octave Base (POB) bellow. Then POB is divided and
allocated to all task nodes to do the following steps. The top
layer of POB is divided into one block. Next layer is divided
into four blocks and the rest may be deduced by analogy. For
example, when there are 4 octaves, the ratio of blocks number
from top to bottom of POB is 1:4:16:64. The generation of POB
can’t be parallelized, so the time spent on this procedure is
invariable when the system scale enlarged. This procedure
results in bad speedup, and according to Amdahl’s law, the
speedup will get worse with the increasing number of
computing nodes.

We propose a parallel algorithm with input image, named
pSIFT. The flow of pSIFT is shown in Fig. 1. After the input
image is partitioned and assigned to all nodes, the GSS pyramid
is generated and local extrema is detected using local data on
each node. All nodes send the number of keypoints to the
master node(master node is the node whose identifier is 0 in this
paper). The master node calculates the mean value according to
the number of keypoints and nodes and broadcasts to all nodes.
All nodes send the keypoints with a small region around that
exceeds the mean value to the master node and the master node
reallocates these data to the nodes whose number of keypoints
is less than the mean value. All nodes compute the descriptor
vector using local data in parallel.

Fig. 1 Flow of pSIFT

A. Data Partition

During the generation of GSS pyramid, the base image of
current octave is from last octave, so the procedure of octave

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

524

generation can’t be completely parallelized. According to the
number of nodes, input image is allocated to all nodes evenly
and all nodes compute GSS pyramid on the local image data.
The partition of input image is diverse, but only two are in
common use, as shown in Fig. 2.

If the boundary data is redundant, two partition methods
shown in Fig.2 have no effect on the parallel algorithm. But for
data communication, two methods will have different impact
on performance. For the partition (a) in Fig. 2, one node will
communicate with two adjacent nodes at most. For the partition
(b) in Fig. 2, one node will communicate with up to four nodes,
which brings additional communication overhead and adds the
complexity of program. So the partition (a) is adopted in this
paper.

Fig. 2 Diagram of data partition

B. Processing of Boundary Data

The main problem brought by data partition is the processing
of boundary data. After the partition of input image, the middle
part of the input image may be the boundary data of a node and
keypoints may be extracted from this area, just like data roped
by the coil shown in Fig. 3(a). Different procedure needs
different boundary data and the following discusses boundary
data needed in SIFT feature extraction.

1. For the procedure of GSS pyramid generation, a boundary
pixel needs w rows of data on adjacent node(2w+1 is the
template size of Gaussian filter).
2. For the procedure of extrema detection, a pixel will be
compared with 8 neighbors on the same scale, so one row of
pixel on adjacent node is needed.
3. For the representation of descriptor, a keypoint needs a
16x16 block (not including the row and column of keypoint),
so a boundary keypoint needs 8 rows of pixels on adjacent
node.
There are two methods for the boundary data. One is

redundant storage and another is communication. In the
generation of GSS pyramid, the base image of current octave is
from last octave, so if fully redundant storage is used, there will
be large volume of data to be redundant and additional
computation will also be brought. The following gives an
example with o octaves and s images for each octave.

To get the base image of current octave, the Gaussian image
of last octave that has twice the initial value of δ (δ is the
deviation of Gaussian function) is resampled by taking every
second pixel in each row and column [1]. If w rows of boundary
pixels need to be redundant for the oth octave, 2w rows are
needed for o-1th octave. The rest may be deduced by analogy,

and 2o-1w rows are needed to be redundant for the first octave.
So there will be much additional computing for this method.
And the volume of redundant data is invariant when the system
scale enlarged. For 1024x1024 image on 32 CPU cores, when
the template size of filter, w, is 8 and number of octave, o, is 4,
the local data for each node are 1024x32 and the redundant data
is 1024x24-1x8=1024x64. That is to say, the redundant data are
twice as the local data, which has affected the performance
seriously. Above figures only take into account the unilateral
data redundancy, bilateral data needs to be redundant in fact.

Redundancy and communication are adopted for boundary
data in this paper. For the first octave, 2(w+8) rows are
redundant for each node, shown in Fig. 3(b), so the first octave
is computed by local data and the redundant data does not bring
additional computation. In the following octaves, each node
obtains the boundary data by communication as shown in Fig.
3(c). Data movement consists of two directions: up and down
data transfer. In the communication, end nodes (node 0 and
node n-1 in Fig. 3(c)) send and receive once, and other nodes
send and receive twice.

{

{

Fig. 3 Processing of boundary data

C. Data Synchronization

After the detection of extrema, all nodes compute the
descriptors using local data directly, which can reduce the
overhead of communication. However, the number of
keypoints on each node is not equal and the load imbalance is
variable with difference input image. So there is data
synchronization before descriptor computation. All nodes send
the number of keypoints to the master node, and the master
node calculates and broadcasts the mean value based on the
total number of nodes and keypoints. All nodes compare the
number of keypoints with the mean value. The keypionts that
exceeds the mean value are sent to the master node with
position, scale, gradient orientation and a small region around.
The master node distributes these keypoints to the nodes whose
number of keypoints is less than the mean. Each node computes
the descriptor in parallel.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluate the performance of pSIFT on the cluster
developed by National University of Defense Technology
(NUDT). The configuration of cluster system is as follows:

1. Computing node is configured with 48GB memory and
dual 6-core Intel Xeon CPU X5670 which has 2.93GHz
clock and 12MB L3 cache.

2. Luster file system is used.
3. Bandwidth of network is 160Gbps in dual.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

525

Fig. 4 shows the speedup of pSIFT and DDP-SIFT, and we
can see that the performance of pSIFT is better than DDP-SIFT,
for pSIFT avoids the serial process. With the increasing number
of CPU cores, the performance of DDP-SIFT becomes worse
and the speedup almost reaches the peak with 24 cores. For the
image with size of 1024x1024, the speedup of pSIFT is about
20x and it is only about 10x for DDP-SIFT with 32 cores.

Fig. 4 also gives the experimental result of image with size of
2048x2048 and the super-linear speedup is achieved. For large
images, the GSS pyramid is too large to cache and cache miss
leads to the overhead of memory access. For the first octave
with 5 images, there are 80MB data and it’s hardly to put into
cache totally. So when the scale of system enlarges, the
probability of cache miss will be reduced and the performance
will be improved which has nothing to do with the computation
or communication.

In Fig. 4, pSIFT:1024 and pSIFT:2048 are the pSIFT
experimental results with image size of 1024x1024 and
2048x2048. DDP-SIFT:1024 is the DDP-SIFT experimental
result with image size of 1024x1024. The same is true of Fig.5.

Fig. 4 Speedup of pSIFT and DDP-SIFT

Synchronization is executed before keypoints descriptor

computation to keep load balance. Synchronization keeps the
load balance, and at the same time it brings communication
overhead. With the enlarging of system, the ratio of
computation with communication will reduce and the overhead
of communication will affect the performance more apparently.
We carry on the experiment for the synchronization. The
synchronization is canceled before computation of descriptor,
so the descriptor is directly computed after the keypoint
detection and this process is named nsSIFT (non-
synchronization SIFT). Fig. 5 shows the experimental result of
pSIFT and nsSIFT on 32-core cluster, and pSIFT is superior in
performance to nsSIFT.

Fig. 5 Performance comparison between pSIFT and nsSIFT

V. CONCLUSION AND FUTURE WORK

We proposed pSIFT which implemented the parallel SIFT on
the cluster. The pSIFT method gains good scalability and
speedup compared to DDP-SIFT. This is mainly for the data
partition of pSIFT that avoids the serial execution time. In this
paper, boundary data is dealt with carefully, which avoids the
loss of feature and improves the performance.

Images with the size of 2048x208 are used for the
experiment. The experimental results show that the volume of
GSS pyramid data has great effect on performance for large
images. So how to improve the performance of SIFT to large
images will be a challenge and it is one of our future works.

ACKNOWLEDGMENT

 The authors are grateful to the reviewers for their important
contribution to improve the paper clarity. And the authors also
want to give thanks to Andrea Vedaldi for his source code of
serial SIFT.

REFERENCES
[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.
[2] A.Y.Ke and R.Sukthankar, “PCA-SIFT: A more distinctive

representation for local image descriptors,” In Proc. 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’04), pp.506-513.

[3] Mikolajczyk, K., Schmid, C., “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Analysis and Machine Intelligence.
Vol.27, pp.1615-1630, Augst 2005.

[4] Alaa E. Abdel-Hakim and Aly A. Farag, “CSIFT: A SIFT Descriptor with
Color Invariant Characteristics,” in proc. 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06).

[5] Geoffrey Treen, and Anthony Whitehead, “Efficient SIFT Matching from
Keypoint Descriptor Properties,” 2009 Workshop on Applications of
Computer Vision(WACV), pp1-7.

[6] Vanderlei Bonato, Eduardo Marques, and George A. Constantinides, “A
Parallel Hardware Architecture for Scale and Rotation Invariant Feature
Detection,” IEEE Trans. Circuits and Systems for Video Technology,
VOL.18, pp1703-1712, 2008.

[7] Seth Warn, Wesley Emeneker , Jackson Cothren,Amy Apon,
“Accelerating SIFT on Parallel Architectures,” In Proc. 2009 IEEE Int.
Conf. Cluster Computing and Workshops(CLUSTER’09), pp.1-4.

[8] Marc Lalonde, David Byrns, Langis Gagnon, Normand Teasdale, Denis
Laurendeau, “Real-time eye blink detection with GPU-based SIFT
tracking,” In Proc. 4th Canadian Conference on Computer and Robot
Vision(CRV'07), pp.481-487,2007.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:4, 2012

526

[9] Sirmacek, B., Unsalan, C., “Urban-Area and Building Detection Using
SIFT Keypoints and Graph Theory,” IEEE Trans. Geoscience and
Remote Sensing, Vol.47, pp.1156-1167, 2009.

[10] Gangqiang Zhao, Ling Chen, Jie Song, Gencai Chen, “Large head
movement tracking using SIFT-based registration,” In Proc. 15th
international conference on Multimedia, PP: 807-810, 2007.

[11] Jiang, R.M., Crookes, D., Luo, N., Davidson, M.W., “Live-Cell Tracking
Using SIFT Features in DIC Microscopic Videos,” IEEE Trans.
Biomedical Engineering, Vol.57, pp: 2219-2228, 2010.

[12] Goncalves, H., Corte-Real, L., Goncalves, J.A., “Automatic Image
Registration through Image Segmentation and SIFT,” IEEE Trans.
Geoscience and Remote Sensing, Vol.49 pp.2589-2600, 2011.

[13] Yi, Z., Zhiguo, C., Yang, X., “Multi-spectral remote image registration
based on SIFT,” IEEE Electronics Letters, Vol.44 pp. 107-108,2008.

[14] Sudipta N. Sinha, Jan-Michael Frahm, Marc Pollefeys, and Yakup Genc,
“Feature Tracking and Matching in Video Using Programmable Graphics
Hardware,” Machine Vision and Applications, Vol.22, pp.207-217,
March 2007.

[15] S. Heymann, K. Muller, A. Smolic, B. Froehlich, and T. Wiegand, “SIFT
implementation and optimization for general-purpose GPU,” In Proc.
WSCG’07, 2007.

[16] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “Sift implementation and
optimization for multi-core systems,” IEEE International Symposium on
Parallel and Distributed Processing (IPDPS 2008), pp. 1–8, 2008.

[17] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and
characterization of sift on multi-core systems,” IEEE International
Symposium on Workload Characterization (IISWC’08), pp. 14–23, 2008.

[18] Guiyuan Jiang, Guiling Zhang and Dakun Zhang, “A Distributed
Dynamic Parallel Algorithm for SIFT Feature Extraction,” 3rd
International Symposium on Parallel Architectures, Algorithms and
Programming (PAAP), pp.381-385, 2010.

[19] Lowe, D.G., “Object recognition from local scale-invariant features,” In
Proc. IEEE Int Conf. Computer Vision, pp. 1150-1157, 1999.

[20] Andrea Vedaldi, SIFT source code, download from
http://www.vlfeat.org/~vedaldi/assets/ siftpp/versions/.

