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Packing and Covering Radii of Linear Error-Block
Codes
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Abstract—Linear error-block codes are a natural generalization
of linear error correcting codes. The purpose of this paper is to
generalize some results on the packing and the covering radii to the
error-block case. We study their properties when a code undergoes
some specific modifications and combinations with another code. We
give a few bounds on the packing and the covering radii of these
codes.
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I. INTRODUCTION

Linear error-block (LEB) codes were introduced in [1].
Let q be a prime power and Fq be the finite field with q
elements. The space Fnq is considered as a direct sum of spaces
Fni
q where n =

∑s
i=1 ni. The vectors in Fnq are seen as a

concatenation of s blocks v = (v1, v2, ..., vs) where vi ∈ Fni
q .

Any change that happens inside a block causes a single error
in the vector regardless to its magnitude. Classical linear error
correcting codes are a special family of LEB codes for which
ni = 1 for i = 1, 2, ..., s.

The packing radius t of a code C is defined as the biggest
integer for which each vector of the space is within distance
t of at most one codeword. It is directly related to the mini-
mum distance d (the minimal distance between two different
codewords) by the formula t = �d−1

2 �.
The covering radius ρ of a code C is defined as the smallest

integer such that all vectors of the space Fnq are within distance
at most ρ of some codeword. It is the maximum distance from
any vector in Fq to the code.

There exist further equivalent definitions for the covering
radius. It can be defined as the weight of a coset leader of
greatest weight. Also, if H is any parity check matrix for C,
then ρ is the least integer such that every column vector of
Fn−kq (syndrome) is a sum of some ρ or fewer columns of
H . The least integer w allowing such a sum for the syndrome
s is the weight of a leader of the coset associated with s.

In this paper, we extend the definitions of packing and
covering radii to linear error-block codes. Some proofs are
omitted when the results can be found by direct analogy to
the classical error correcting codes. In the other results, we
study the properties of the packing and covering radii when a
LEB code is modified by extension or puncture, or by some
combination with another LEB code.

This paper is organized as follows. In Section II we recall
basic definitions. Section III introduces the π-packing and the
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π-covering radii, and gives some of their essential properties.
Sections IV and V study some construction of LEB codes
from other LEB codes and give the bounds yielded on the
π-packing and the π-covering radii. They involve respectively
lower bounds and upper bounds. Perspective of this work is
given in Section VI.

II. PRELIMINARIES

A composition π of a positive integer n is
given by n = l1m1 + l2m2 + · · · + lrmr, where
r, l1, l2, . . . , lr,m1,m2, . . . ,mr are integers ≥ 1, and is
denoted

π = [m1]
l1 [m2]

l2 . . . [mr]
lr

If moreover m1 > m2 > · · · > mr ≥ 1 then π is called a
partition.
If π1 = [n1

1]...[n
1
s1 ] and π2 = [n2

1]...[n
2
s2 ] are compositions

of two integers n1 and n2, then we note π = π1π2 the
composition of n1 + n2 given by

π = π1π2 = [n1
1] . . . [n

1
s1 ][n

2
1] . . . [n

2
s2 ].

Let q be a prime power and Fq be the finite field with q
elements. Let s, n1, n2, . . . , ns be the non negative integers
given by a partition π = [m1]

l1 [m2]
l2 . . . [mr]

lr as follows

s = l1 + · · ·+ lr,
n1 = n2 = · · · = nl1 = m1

nl1+1 = nl1+2 = · · · = nl1+l2 = m2
...

nl1+···+lr−1+1 = nl1+···+lr−1+2 = · · · = ns = mr

Let Vi = Fni
q (1 ≤ i ≤ s) and Vπ = V1 ⊕ V2 ⊕ . . . ⊕ Vs =

Fnq . Each vector v ∈ Vπ can be written uniquely as v =
(v1, . . . , vs), vi ∈ Vi (1 ≤ i ≤ s). For any u = (u1, . . . , us)
and v = (v1, . . . , vs) in Vπ , the π-weight wπ(u) of u and the
π-distance dπ(u, v) between u and v are defined by

wπ(u) = �{i/1 ≤ i ≤ s, ui �= 0 ∈ Vi} and

dπ(u, v) = wπ(u− v) = �{i/1 ≤ i ≤ s, ui �= vi}.
An Fq-linear subspace C of Vπ is called an [n, k, d]q linear

error-block (LEB) code of type π, where k = dimFq
(C) and

d = dπ(C) is the minimum π-distance of C, which is defined
as

d = min{dπ(c, c′)/c, c′ ∈ C, c �= c′}
= min{wπ(c)/0 �= c ∈ C}.

A LEB code is completely defined by a generator matrix
or a parity check matrix, as these are defined in the classical
case [9].
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A classical linear error correcting code is a LEB code of
type π = [1]n.

A LEB code with a composition type is equivalent to some
LEB code with a partition type through a block permutation.

Up to date publications on LEB codes involve determining
and constructing optimal codes [1], [2], [3], [4]. Also, the
authors have introduced a standard decoding algorithm adapted
to LEB codes [5]. Feng et al. claimed in [1] that LEB codes
have application in experimental design, high-dimensional nu-
merical integration and cryptography. The authors introduced
in [6] a steganographic protocol based on LEB codes. Their
construction advantages utilization of LEB codes with good
covering properties, ideally perfect codes. So far, neither
covering nor packing properties of LEB codes have been
thoroughly studied. For classical codes, a rich survey is given
in [7].

III. PACKING AND COVERING RADII

It is worth noting that it is useless to consider LEB codes
in the Binary Symmetric Channel model, since the crossover
probability (the probability for a bit to be altered) would
differ from a block to another. The most suitable model
supposes that the crossover probability is the same for each
block regardless to the number of bits it contains. In this
model, a received word is corrected by determining the
codeword which is within the least π-distance to it.

In the literature, there are many definitions that can analo-
gously be generalized to the error-block case. We state in the
following some definitions and characteristics of the π-packing
and the π-covering radii.

Definition 1 (The π-packing radius): The π-packing radius
of a code is the largest radius of spheres centered at codewords
such that the spheres are pairwise disjoint.

Let C be an [n, k, dπ] LEB code of type π and π-packing
radius tπ . The following results come straightforward.

Proposition 1:
(i) The code C corrects all errors of π-weight tπ or less.

(ii) The π-packing radius of C equals

tπ = �(dπ − 1)/2�. (1)

The latter equation shows that the characteristics of the π-
packing radius can be deuced from those of the minimum
π-distance. Let H be a parity check matrix of C written in
the block form as H = [H1, H2, . . . , Hs] where Hi is an
(n − k) × ni matrix corresponding to the ith block of π for
i = 1, 2, . . . , s. The following results are also generalized by
direct analogy from the classical case.

Proposition 2:
• The π-packing radius tπ is the biggest integer such that

all coset leaders of π-weight tπ or less are unique.
• The minimum π-distance of C is dπ if and only if any

columns issued from any dπ−1 blocks of H are linearly
independent and there exist columns issued from dπ
blocks that are linearly dependent.

Definition 2 (The π-covering radius): The π-covering ra-
dius of a LEB code C is the smallest radius of spheres centered
at codewords such that the space Vπ is the union of these
spheres.

To say Vπ is the union of spheres of radius ρπ centered at
codewords means that for all x ∈ Vπ there exists a sphere, of
radius ρπ centered at some codeword, which contains x. This
gives the following.

Proposition 3: The π-covering radius of a LEB code C is
the smallest integer ρπ such that all vectors of the space Vπ
are within π-distance at most ρπ of some codeword of C. It
is also the maximum π-distance from any vector in Vπ to the
code. i.e.

ρπ = max{dπ(x, C), x ∈ Vπ}. (2)

Proposition 4: The π-covering radius is the π-weight of a
coset leader of greatest π-weight.

This can be seen by noting that the π-distance between a
Vπ vector x and the code C is the π-weight of the leader of
the coset x+ C. From Equation 2 it follows

ρπ = max
x∈Vπ

{wπ(e), e is a coset leader of x+ C}. (3)

The following result is yielded by noting that any syndrome
(vector of Fn−kq ) can be written as product of H and some
coset leader of C.

Proposition 5: If H is any parity check matrix for C, then
ρπ is the least integer such that every syndrome is a sum of
columns of some ρπ or fewer blocks of H .

An [n, k]q LEB code of type π has qk codewords. Although
the type does not affect the cardinality, it is a major factor in
the topological properties of the code. This can be clearly seen
within the sphere packing and the sphere covering problems.
We generalize the sphere packing problem as follows. ”Given a
length n, a type π, a vector space Vπ and a radius tπ , determine
the maximum number of pairwise disjoint balls of π-radius
tπ in the space Vπ”. In an equivalent statement, ”Find the
maximum cardinality of a code in Vπ with length n and π-
packing radius tπ”.

The sphere covering problem is generalized by the
following statement.”Given a length n, a type π, a vector
space Vπ and a radius ρπ , determine the minimum number
of balls of π-radius ρπ which cover the whole space Vπ”. An
equivalent statement is ”Find the minimum cardinality of a
code in Vπ with length n and π-covering radius ρπ”.

Now by finding out the cardinality of a ball of radius r in
Vπ , we determine the sphere packing and the sphere covering
bounds for LEB codes. Let bπ be cardinality of a ball of radius
r. Combinatoric calculations show that

bπ(r) = 1 +

r∑
α=1

∑
1≤i1<···<iα≤s

(qni1 − 1) . . . (qniα − 1). (4)

Proposition 6: For any q-ary [n, k] LEB code of packing
radius t and covering radius ρ

bπ(t) ≤ qn−k ≤ bπ(ρ), (5)

where bπ(.) is given by Equation 4.
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The left side inequation is called the Hamming bound.
Further to it, there was given in [1] another Hamming bound
that holds only for LEB codes of even minimum π-distance.

Proposition 7: Let C be an [n, k, d]q LEB code of type π =
[n1], [n2], ..., [ns], n1 ≥ n2 ≥ · · · ≥ ns where d = 2r, r ≥ 1.
We have the following Hamming bound

qn−k ≥ b′π(r), (6)

where

b′π(r) = qn1

⎡
⎣1 + r−1∑

α=1

∑
2≤i1<···<iα≤s

(qni1 − 1) . . . (qniα − 1)

⎤
⎦ .

The advantage of this bound is that it is more precise than
the usual Hamming bound, since b′π(r) ≥ bπ(r). Actually,
b′π(r) is the cardinality of any set B′

π(c, r) defined for a
codeword c and a positif integer r > 0 by

B′
π(c, r) = Bπ(c, r−1)∪{x ∈ V/dπ(c, x) = r and x1 �= c1} .
This gives the possibility to a LEB code to correct up to

d/2 errors if d is even. However, we cannot consider t = d/2
as a sphere packing radius since the sets B′ are not balls,
and the balls of radius d/2 are not disjoint.

A particularly interesting solution to the sphere packing and
the sphere covering problems is when the balls of radius, say r,
are at the same time pairwise disjoint and their union covers
the whole space Vπ . The codes verifying this property are
called perfect codes; their packing radius is equal to their
covering radius. If a code is not perfect, then either the balls of
radius ρπ are not pairwise disjoint or the balls of radius tπ do
not cover the whole space Vπ . As a direct result of Proposition
6 we have the following.

Proposition 8: If tπ is the π-packing radius and ρπ is the
covering radius of an [n, k] code of type π, then tπ ≤ ρπ .

Definition 3: Let n be a positif integer and Πn be the
set of all possible partitions of n. We define a partial order
relation ”
” between two elements π = [n1][n2]...[ns] and
π′ = [n′

1][n
′
2]...[n

′
s′ ] of Πn as follows,

π 
 π′ if and only if there exists an ordered sequence
(li)0≤i≤s′ such that for all i = 1, 2, ..., s′ we have

n′
i =

li∑
j=li−1+1

nj with l0 = 0 and ls′ = s.

This means each component of π′ is a union of one or more
consecutive components of π.

Corollary 1: We keep the notations of Definition 3. We
have the following results

• ∀π ∈ Πn; [1]n 
 π 
 [n].
• π 
 π′ if and only if π = π1π2...πs′ where πi ∈ Πn′

i
,

i = 1, ..., s′. i.e. each πi is a partition of n′
i. π is a

concatenation of partitions of n′i.
• If π 
 π′ then tπ′ ≤ tπ and ρπ′ ≤ ρπ .

Proof: The first and the second assertions are direct
results of Definition 3. Let x and y be two codewords of C.
If π 
 π′ then dπ′(x, y) ≤ dπ(x, y). Definition 2 proves the
third assertion.

In the remainder of this paper, if a partition π is clear
from the context, we omit the symbol π when referring to
code parameters. We shall denote the π-covering radius, the
π-packing radius and the π-minimum distance as ρ, t and d
respectively. For simplicity we focus our study on the binary
case. In the following, we show how the π-packing and the
π-covering radii are related to the type of the code when the
length and the dimension are fixed.

IV. LOWER BOUNDS

For the next two sections, we adopt the following notation.
Let C1 and C2 be, respectively, an [n1, k1, d1] LEB code
of type π1, packing radius t1, covering radius ρ1 and
generator matrix G1, and an [n2, k2, d2] LEB code of type π2,
packing radius t2, covering radius ρ2 and generator matrix
G2. Concatenation of partitions π1 and π2 is in general a
composition, denoted by π = π1π2 (see Section II).

In this section, we study lower bounds on the π-packing and
the π-covering radii of a LEB code which is constructed from
other LEB codes. Note that these constructions can be made,
in a particular case, using classical error correcting codes.

A. The direct sum

Let C be the code defined by

C = C1 ⊕ C2 = {(c1, c2)/c1 ∈ C1 and c2 ∈ C2}
Proposition 9: The code C is an [n1 +n2, k1 + k2] code of

type π = π1π2 and it has packing radius

t = min(t1, t2) (7)

and covering radius

ρ = ρ1 + ρ2. (8)

A generator matrix of C has the form[
G1 0
0 G2

]
.

Proof: Codewords of C have the form (c1, c2). Let e1
and e2 be two codewords of minimum weight of C1 and
C2 respectively. So (e1, 0) and (0, e2) are codewords of C.
Hence d = min(d1, d2). If l1 and l2 are two coset leaders of
maximum weight of C1 and C2 respectively, then a maximum
weight coset leader of C is (l1, l2).

B. The concatenation lower bound

Suppose we have k1 > k2, and let Ĝ2 be the k1×n2 matrix[
G2

0

]
where 0 is the (k1 − k2)× n2 null matrix.

Proposition 10: The code C defined by the generator matrix

G = [G1Ĝ2]

is an [n1 + n2, k1] code of type π = π1π2 and it has packing
radius

t ≥ t1 (9)
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and covering radius

ρ ≥ ρ1 + ρ2. (10)

Proof: Codewords of C have the form c = (c1, c2) where
c1 ∈ C1 and c2 ∈ C2. If c is non null then c1 cannot be null as
G1 is of rank k1. Hence wπ(c) = wπ1

(c1) + wπ2
(c2) ≥ d1.

Let l1 and l2 be two coset leaders of maximum weight of
C1 and C2 respectively. Then (l1, l2) is a coset leader of C of
weight ρ1 + ρ2.

C. The (u, u+ v) construction

Assume that n1 = n2, π1 = π2 and C2 ⊆ C1. Let C be the
code defined by

C = {(u, u+ v)/u ∈ C1, v ∈ C2} .
Proposition 11: The code C is a [2n1, k1+k2] code of type

π = π1 = π2 and it has packing radius

t = min(2t1, t2) (11)

and covering radius

ρ ≥ 2ρ1. (12)

A generator matrix of C has the form[
G1 G1

0 G2

]
.

Proof: Let e1 be a codeword of minimum weight of
C1. Then (e1, e1) is a codeword of C of weight 2d1. Let e2
be a codeword of minimum weight of C2. Then (0, e2) is a
codeword of C of weight d2. Hence d = min(2d1, d2) this
implies 11. Let l be a coset leader of C1 of weight ρ1. Then
(l, l) is a coset leader of C with π-weight 2ρ1.

D. The supercode lower bound

Proposition 12: Let C1 and C2 be two codes of length n and
type π such that C2 ⊂ C1. We define two quantities associated
with these codes:

m(C1, C2) = min{wπ(x), x ∈ C1 − C2},
M(C1, C2) = max

x∈C1

min{wπ(x− y), y ∈ C2}.

Then we have the following inequalities

ρ2 ≥M(C1, C2) ≥ m(C1, C2) ≥ d1. (13)

Proof: ρ2 is defined by ρ2 = max{wπ(x+C2), x ∈ Fn2}.
Since wπ(x + C2) = min{wπ(x + c2), c2 ∈ C2}, it follows
ρ2 = maxx∈Fn

2
minc2∈C2

{wπ(x+ c2)}. Hence

ρ2 =M(Fn2 , C2) ≥M(C1, C2).
This yields

m(C1, C2) = min{dπ(c1, c2), c1 ∈ C1, c2 ∈ C2}
≥ min{dπ(c1, x), c1 ∈ C1, x ∈ Fn2} = d1.

E. Code lengthening

We can lengthen an [n, k] LEB code of type π0 =
[n1][n2]...[ns] by adding some m new columns to its generator
matrix G = [G1G2...Gs]. This yields an [n + m, k] code
and modifies the type. Essentially there are two methods of
lengthening a LEB code. We describe them in the following.

a) Lengthening a block: The columns are added to a
block Gi of the generator matrix G. This increases the size
of the i-th element of the partition, but the overall size of
the partition (the integer s) remains unchanged. The produced
code is of type π = [n1]...[ni +m]...[ns].

b) Inserting a block: In this case, the produced code is of
type π = [n1]...[ni][m][ni+1]...[ns]. The size of the partition
is now s+ 1.

Proposition 13: The packing and the covering radii in each
case are either unchanged or increased by 1. Combinations
of these methods provide more lengthening situations. Each
time a new block is modified (lengthened or inserted) the
packing and the covering radii may be increased by 1 or
remain unchanged.

V. UPPER BOUNDS

A. The Singleton and the redundancy bounds

A parity check matrix H of an [n, k, d] LEB code has rank
n − k, which means that there exist n − k columns in H
that are linearly independent. These columns are contained in
at most n − k blocks. By Proposition 2, the columns of the
first d − 1 blocks are linearly independent. This proves the
following bound which was first introduced in [1].

Proposition 14 (Singleton bound): An [n, k, d] LEB code
of type π = [n1][n2] . . . [ns] verifies

n1 + n2 + · · ·+ nd−1 ≤ n− k. (14)

This is an indirect bound on the packing radius. Also, by
Proposition 5, every vector of length n−k is a sum of columns
of at most ρ blocks of H . This proves the following bound.

Proposition 15 (Redundancy bound): The covering radius
ρ of any [n, k] LEB code verifies

ρ < n− k. (15)

We give in the following some bounds on the covering ra-
dius yielded by three constructions. We use the same notation
as in Section IV.

B. The concatenation upper bound

Proposition 16: Let C be the concatenation of C1 and C2 as
in Proposition IV-B. We have

ρ ≤ min(ρ1 + n2, ρ2 + n1). (16)

Proof: Codewords of C have the form c = (c1, c2). For
all x = (x1, x2) ∈ Fn1 ⊕ Fn2 we have d(x, c) = d(x1, c1) +
d(x2, c2) ≤ d(x1, c1) + n2. This yields d(x, C) ≤ d(x1, C1) +
n2. Hence ρ ≤ ρ1 + n2. Analogously we get ρ ≤ ρ2 + n1
which yields the result.
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C. The supercode upper bound

Proposition 17: Let C1 and C2 be two codes of length n
and type π such that C2 ⊂ C1. We have

ρ1 ≤ ρ2 +M(C1, C2). (17)

Proof: Let x ∈ Fn2 such that dπ(x, C2) = ρ2. Let a be
the closest codeword of C1 to x. We have dπ(x, a) ≤ ρ1. Let
b be the closest codeword of C2 to a. We have dπ(a, b) ≤
M(C1, C2). Thus,

ρ1 ≤ dπ(b, x)
≤ dπ(a, x) + dπ(a, b)
≤ ρ2 +M(C1, C2).

D. The ρ1 + ρ2 Bound

The following bound is the generalization of the bound
appeared in [8].

Proposition 18: Let C be an [n, k] code of type π, and
assume that there exists a parity check matrix H of C in the
form H = [IrD] where D is an r × k matrix of rank j and
r = n−k. Define C1, as the [k, k−j] code of type π1 such that
D is a parity check matrix, and let ρ1 be the covering radius
of C1. Define C2 as the [r, j] code of type π2 spanned by the
columns of D, and let ρ2 be its covering radius. Assume that
π = π1π2.

ρ ≤ ρ1 + ρ2 ≤ n− k. (18)

Proof: If x is any syndrome, then it is at π2-distance ρ2
or less from some vector c2 in C2. Thus x = c2+y, where y is
the sum of columns of at most ρ2 blocks of Ir. The set of all
subsets of columns of D with sum c2 corresponds to a coset
of C1. Thus c2 is the sum of columns of at most ρ1 blocks
of D accordingly to π1. Therefore, x is the sum of at most
ρ1 + ρ2 columns of H . For the right hand side, Proposition
15 yields ρ1 ≤ j and ρ2 ≤ r − j. Thus ρ1 + ρ2 ≤ r = n− k.

E. Code puncturing

With the same notations as Section IV-E, we give in the
following two main ways of puncturing a LEB code.

c) Puncturing a block: The columns are removed from a
block Gi. This decreases the size of the i-th element of the par-
tition, but the overall size of the partition remains unchanged.
The produced code is of type π = [n1]...[ni −m]...[ns].

d) Removing a block: This produces a code of
type π = [n1]...[ni][ni+1]...[ns] and of generator matrix
[G1G2...Gi−1Gi+1...Gs].

Proposition 19: The packing and the covering radii in each
case is either unchanged or decreased by 1. Combinations of
these methods provide more puncturing situations. Each time a
new block is modified (punctured or removed) the packing and
the covering radii may be decreased by 1 or remain unchanged.

VI. PERSPECTIVE

We defined π-covering radius of linear error-block (LEB)
codes. We studied various types of constructions and gave
bounds on the covering radius. Forthcoming work involves
determining bounds in the general construction of ”Matrix
product codes”. In this case, the code is written as C =
[C1 . . . CM ].A where C1, . . . , CM are LEB codes of length
n over Fq and A is an M ×N matrix over Fq .
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