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Abstract—Different types of aggregation operators such as the 

ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and 
the normalized Hamming distance are studied. We introduce the use 
of the OWA operator in generalized distances such as the quasi-
arithmetic distance. We will call these new distance aggregation the 
ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. 
We develop a general overview of this type of generalization and 
study some of their main properties such as the distinction between 
descending and ascending orders. We also consider different families 
of Quasi-OWAD operators such as the Minkowski ordered weighted 
averaging distance (MOWAD) operator, the ordered weighted 
averaging distance (OWAD) operator, the Euclidean ordered 
weighted averaging distance (EOWAD) operator, the normalized 
quasi-arithmetic distance, etc.  
 

Keywords—Aggregation operators, Distance measures, Quasi-
OWA operator.  

I. INTRODUCTION 

HE quasi-arithmetic distances are very useful techniques 
that generalize a wide range of distance measures such as 

the Hamming distance, the Euclidean distance and the 
Minkowski distance. These particular cases of the quasi-
arithmetic distance are very useful techniques that have been 
used in a lot of applications such as fuzzy set theory, 
multicriteria decision making, business decisions, etc.  

Often, when calculating distances, we want an average 
result of all the individual distances. We call this the 
normalization process. In the literature, we find basically, two 
types of normalized distances. The first type is the case when 
we normalize the distance giving the same importance to all 
the individual distances. This case is known for the quasi-
arithmetic distance, the normalized quasi-arithmetic distance. 
The second type is the case when we normalize the distance 
giving different degrees of importance to the individual 
distances. Then, we get the weighted quasi-arithmetic distance.  

Sometimes, when calculating the normalized distance, it 
would be interesting to consider the attitudinal character of the 
decision maker in order to modify the results of the 
aggregation with optimistic or pessimistic attitudes. A very 
useful technique for the aggregation of the information 
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considering the attitudinal character of the decision maker is 
the ordered weighted averaging (OWA) operator introduced 
by Yager in [1]. The OWA operator provides a parameterized 
family of aggregation operators that include, among others, the 
maximum, the minimum and the average criteria. Since its 
appearance, it has been used in a wide range of applications 
such as [2]–[25].  

In this paper, we suggest a new type of distance measure 
consisting in normalize the quasi-arithmetic distance with the 
OWA operator. Then, the normalization developed will be 
able to modify the results of the aggregation by using different 
degrees of pessimism or optimism and it will provide a 
parameterized family of distance operators that include the 
maximum distance, the minimum distance and the average 
distance. Note that from a mathematical perspective, the 
attitudinal character of the decision maker in the aggregation is 
seen as the orness or the andness of the aggregation [1]. We 
will call this generalization as the ordered weighted quasi-
arithmetic distance operator or the Quasi-OWAD operator, for 
short. We will also study a wide range of particular cases of 
Quasi-OWAD operators such as the Minkowski ordered 
weighted averaging distance (MOWAD) operator, the 
Hamming ordered weighted averaging distance (HOWAD) 
operator, the Euclidean ordered weighted averaging distance 
(EOWAD) operator, the ordered weighted geometric 
averaging distance (OWGAD) operator and the ordered 
weighted harmonic averaging distance (OWHAD) operator. 
We should note that some considerations about using OWA 
operators in distance measures have been studied in [21].  

In order to do so, the remainder of the paper is organized as 
follows. In Section II, we briefly describe some basic 
aggregation operators such as the Hamming distance and the 
Quasi-OWA operator. Section III, develops the Quasi-OWAD 
operator. In Section IV, we study different families of Quasi-
OWAD operators. Finally, in Section V, we summarize the 
main conclusions of the paper. 

II. PRELIMINARIES 

A. Normalized Hamming Distance 

The normalized Hamming distance is a distance measure 
used for calculating the differences between two elements, two 
sets, etc. In fuzzy set theory, it is very useful, for example, for 
the calculation of distances between fuzzy sets, interval-valued 
fuzzy sets, intuitionistic fuzzy sets and interval-valued 
intuitionistic fuzzy sets. For two sets A and B, it can be defined 
as follows. 
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Definition 1. A normalized Hamming distance of dimension n 
is a mapping dH: Rn × Rn 

→ R such that: 
 

     dH(A,B) = ∑
=

−
n

i
ii ba

n 1

1
                                        (1) 

 
where ai and bi are the ith arguments of the sets A and B 
respectively.  

Sometimes, when normalizing the Hamming distance it is 
better to give different weights to each individual distance. 
Then, the distance is known as the weighted Hamming 
distance. It can be defined as follows. 

 
Definition 2. A weighted Hamming distance of dimension n is 
a mapping dWH: Rn × Rn 

→ R that has an associated weighting 
vector W of dimension n such that the sum of the weights is 1 
and wj ∈ [0,1]. Then: 

 

      dWH(A,B) = ∑
=

−
n

i
iii baw

1
                                      (2) 

 
where ai and bi are the ith arguments of the sets A and B 
respectively. Note that Definitions 1 and 2 are the general 
expressions. For the formulation used in fuzzy set theory see 
for example [27]–[29].  

B. Quasi-OWA operator 

The Quasi-OWA operator [5] is a generalization of the 
OWA operator by using quasi-arithmetic means. The quasi-
arithmetic mean was introduced in [30]–[32] and it represents 
a generalization to a wide range of mean aggregations such as 
the generalized mean, the arithmetic mean, the geometric 
mean, the harmonic mean or the quadratic mean. It can be 
defined as follows. 

 
Definition 3. A quasi-arithmetic mean of dimension n is a 
mapping QM: Rn 

→ R such that: 
 

     QM(a1, a2,…, an) = ( )








∑
=

− n

i
iag

n
g

1

1 1
                       (3)                                                                                      

 
where ai is the argument variable and g is a continuous strictly 
monotonic function. Note that depending on the form of g, we 
obtain different types of means. When g(ai) = ai, we obtain the 
arithmetic mean. When g(ai) = ai

2, the quadratic mean. When 
g(ai) = ai

−1, the harmonic mean. When g(ai) = ai
0, the 

geometric mean. More generally, when g(ai) = ai
λ, we get the 

generalized mean. 
Note that if the arguments have different weights, then, the 

quasi-arithmetic mean is transformed in the weighted quasi-
arithmetic mean. With this information, we can define the 
Quasi-OWA operator as follows. 

 

Definition 4. A Quasi-OWA operator of dimension n is a 
mapping QOWA: Rn 

→ R that has an associated weighting 
vector W of dimension n such that the sum of the weights is 1 
and wj ∈ [0,1], then: 

 

   QOWA(a1, a2,…, an) =    ( )( )













∑
=

− n

j
jj bgwg

1

1                  (4)                                            

 
where bj is the jth largest of the ai, and g is a continuous 
strictly monotonic function. 

From a generalized perspective of the reordering step, we 
can distinguish between the descending Quasi-OWA (Quasi-
DOWA) operator and the ascending Quasi-OWA (Quasi-
AOWA) operator. The weights of these operators are related 
by wj = w*n−j+1, where wj is the jth weight of the Quasi-DOWA 
and w*n−j+1 the jth weight of the Quasi-AOWA operator. 

It can be demonstrated that the Quasi-OWA operator 
generalizes a wide range of aggregation operators [3], [5] such 
as the maximum, the minimum, the generalized OWA operator 
[2], [17], the arithmetic mean, the geometric mean, the 
quadratic mean, the harmonic mean, the weighted average, the 
weighted geometric mean, the OWA operator [1], the ordered 
weighted quadratic averaging (OWQA) operator [17], the 
ordered weighted harmonic averaging (OWHA) operator [17], 
etc.  

III.  THE QUASI-ORDERED WEIGHTED AVERAGING DISTANCE 

OPERATOR 

The Quasi-OWAD operator represents an extension of the 
traditional normalized quasi-arithmetic distance [33] by using 
OWA operators. The difference is that the reordering of the 
arguments is developed according to the values of the 
individual distances. Then, it is possible to calculate the 
distance between two elements, two sets, two fuzzy sets, etc., 
modifying the results according to the attitudinal character of 
the decision maker. For example, this type of distance is very 
useful when a decision maker wants to compare two fuzzy 
subsets but he wants to give more importance to the highest 
individual distance because he believes that it will be more 
significant in the analysis. Note that this type of normalized 
distance operator can be constructed by mixing the quasi-
arithmetic distance with OWA operators, by mixing the 
Hamming distance with quasi-OWA operators or by mixing 
the Hamming OWAD operator with quasi-arithmetic means. It 
can be defined as follows. 
 
Definition 5. A Quasi-OWAD operator of dimension n is a 
mapping QOWAD: Rn × Rn 

→ R that has an associated 
weighting vector W of dimension n such that the sum of the 
weights is 1 and wj ∈ [0,1]. Then, the distance between two 
sets A and B is: 
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 QOWAD(d1, d2,…, dn) = ( )( )













∑
=

− n

j
jj Dgwg

1

1               (5)                                                                              

 
where D(j) is the jth largest of the di and di is the individual 
distance between A and B. That is, di = ai − bi. Note that g 
is a continuous strictly monotonic function. As we can see, we 
adapt the characteristics of the quasi-arithmetic mean to the 
characteristics of the OWAD operator.  

A fundamental aspect of the Quasi-OWAD operator is the 
reordering of the arguments based upon their values. That is, 
the weights rather than being associated with a specific 
argument, as in the case with the usual quasi-arithmetic mean, 
are associated with a particular position in the ordering. This 
reordering introduces nonlinearity into an otherwise linear 
process. Note that the Quasi-OWAD operator follows a similar 
methodology than the Quasi-OWA operator [3], [5], [8]. 

If D is a vector corresponding to the ordered arguments 
g(D(j)), we shall call this the ordered argument vector, and WT 
is the transpose of the weighting vector, then the Quasi-
OWAD aggregation can be expressed as:  

 

      QOWAD(d1, d2,…, dn) = ( )DWg T1−                           (6) 

 
From a generalized perspective of the reordering step, we 

have to distinguish between the descending Quasi-OWAD 
(Quasi-DOWAD) and the ascending Quasi-OWAD (Quasi-
AOWAD) operators. The weights of the Quasi-DOWAD are 
related to those of the Quasi-AOWAD by using wj = w*n−j+1, 
where wj is the jth weight of the Quasi-DOWAD and w*n−j+1 
the jth weight of the Quasi-AOWAD operator. 

Note that if the weighting vector is not normalized, i.e., W 

=∑ = ≠n
j jw1 1, then, the Quasi-OWAD operator can be 

expressed as: 
 

QOWAD(d1, d2…, dn) = ( )( )













∑
=

− n

j
jj Dgw

W
g

1

1 1
           (7) 

 
The Quasi-OWAD operator is a mean or averaging 

operator. This is a reflection of the fact that the operator is 
monotonic, bounded, commutative, and idempotent.  
 
Theorem 1 (Commutativity). Assume f is the Quasi-OWAD 
operator, then: 
 

f (d1, d2…, dn) = f (e1, e2…, en)                              (8) 
 
where (d1, d2…, dn) is any permutation of the arguments (e1, 
e2…, en). 
 
Proof. Let 
 

f (d1, d2…, dn) = 

λ
λ

/1

1 












∑
=

n

j
jjbw                              (9) 

 

f (e1, e2…, en) = 

λ
λ

/1

1 












∑
=

n

j
jj dw                              (10) 

 
Since (d1, d2…, dn) is a permutation of (e1, e2…, en), we have 
dj = ej, for all j, and then 
 

f (d1, d2…, dn) = f (e1, e2…, en)                               ■ 
 
Theorem 2 (Monotonicity). Assume f is the Quasi-OWAD 
operator, if di ≥ ei, for all i, then: 
 

f (d1, d2…, dn) ≥ f (e1, e2…, en)                              (11) 
 
Proof. Let 
 

f (d1, d2…, dn) = 

λ
λ

/1

1 












∑
=

n

j
jj bw                             (12) 

 

f (e1, e2…, en) = 

λ
λ

/1

1 












∑
=

n

j
jjcw                              (13) 

 
Since di ≥ ei, for all di, it follows that, di ≥ ei, and then 
 

f (d1, d2…, dn) ≥ f (e1, e2…, en)                             ■ 
 
Theorem 3 (Bounded). Assume f is the Quasi-OWAD 
operator, then: 
 

Min{ di} ≤ f (d1, d2…, dn) ≤ Max{di}                     (14) 
 
Proof. Let max{di} = c, and min{di} = d, then 
 

f (d1, d2…, dn) = 

λ
λ

/1

1 












∑
=

n

j
jjbw  ≤ 

λ
λ

/1

1 
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









∑
=

n

j
j cw  =  

                   

λ
λ
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

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=
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j
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f (d1, d2…, dn) = 

λ
λ
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Since ∑ = =n
j jw1 1, we get 

 
f (d1, d2…, dn) ≤ c                                             (17) 

 
f (d1, d2…, dn) ≥ d                                             (18) 

 
Therefore, 
 

Min{ di} ≤ f (d1, d2…, dn) ≤ Max{di}                      ■     
 
Theorem 4 (Idempotency). Assume f is the Quasi-OWAD 
operator, if di = d, for all di, then: 
 

f (d1, d2…, dn) = d                                     (19) 
 
Proof. Since di = d, for all di, we have 

 

f (d1, d2…, dn) = 

λ
λ
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Since ∑ = =n
j jw1 1, we get 

 
f (d1, d2…, dn) = d                                              ■ 

 
Another interesting issue to analyze is the attitudinal 

character of the Quasi-OWAD operator. Based on the measure 
developed for the Quasi-OWA operators in [2], it can be 
formulated in two different forms depending on the type of 
ordering used. For the first type we get the following: 

 

    α(W) = 






















−
−

∑
=

−
n

j
j n

jn
gwg

1

1

1
                                (21) 

 
A further issue to consider is the measure of dispersion of 

the weights W. It is a measure that provides the type of 
information being used. Using the same methodology as in [1], 
it can be defined as follows. 

 

        H(W) = ∑
=

−
n

j
jj ww

1

)ln(                                         (22) 

 

For example, if wj = 1 for some j, then H(W) = 0, and the 
least amount of information is used. If wj = 1/n for all j, then, 
the amount of information used is maximum. 

A third measure that could be studied in the aggregation is 
the divergence of the weights W. It can be defined as follows. 

 

     Div(W) = 

2

1

)(
1∑

=







 −
−
−n

j
j W

n

jn
w α                               (23) 

 
Note that the divergence can also be formulated with an 

ascending order in a similar way as it has been shown in the 
attitudinal character.  

IV.  FAMILIES OF QUASI-OWAD OPERATORS 

A. Analysing the Weighting Vector W  

By using a different manifestation of the weighting vector in 
the Quasi-OWAD operator, we are able to obtain different 
types of distance aggregation operators. For example, we can 
obtain the maximum distance, the minimum distance, the 
normalized quasi-arithmetic distance and the weighted quasi-
arithmetic distance.  

Remark 1: The maximum distance is obtained when w1 = 1 
and wj = 0, for all j ≠ 1. And the minimum distance is found 
when wn = 1 and wj = 0, for all j ≠ n. As we can see, the 
maximum and the minimum distances are obtained 
independently of the value of g.  

Remark 2: It should also be noted that the median can also 
be used as Quasi-OWAD operator. We will call it the Quasi-
OWAD median and it is possible to distinguish between two 
situations. If n is odd we assign w(n + 1)/2 = 1 and wj = 0 for all 
others, and this affects the [(n + 1)/2]th largest argument di. If 
n is even we assign for example, wn/2 = w(n/2) + 1 = 0.5, and this 
affects the arguments with the (n/2)th and [(n/2) + 1]th largest 
di. 

Remark 3: More generally than the maximum, the minimum 
and the median, if wk = 1 and wj = 0, for all j ≠ k, we get for 
any g, QOWAD(d1, d2,…, dn) = Dk, where Dk is the kth largest 
or lowest of the arguments di. This type of Quasi-OWAD 
operator is known as the step-Quasi-OWAD operator. Note 
that if k = 1, the step-Quasi-OWAD is transformed in the 
maximum and if k = n, the step-Quasi-OWAD becomes the 
minimum. 

Remark 4: For the weighted-Quasi-OWAD median, we 
select the argument that has the kth largest di, such that the sum 
of the weights from 1 to k is equal or higher than 0.5 and the 
sum of the weights from 1 to k − 1 is less than 0.5.  

Remark 5: The normalized quasi-arithmetic distance and the 
weighted quasi-arithmetic distance are also particular cases of 
the Quasi-OWAD operator. The normalized quasi-arithmetic 
distance is obtained when wj = 1/n, for all j. The weighted 
quasi-arithmetic distance is obtained when j = i, for all i and j, 
where j is the jth argument of Dj and i is the ith argument of di. 
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Remark 6: Other families of aggregation operators could be 
used in the weighting vector. For example, the Hurwicz Quasi-
OWAD criteria is obtained when w1 = α, wn = 1 - α, wj = 0, for 
all j ≠ 1,n. Note that if α = 1, the Hurwicz Quasi-OWAD 
criteria becomes the maximum distance and if α = 0, it 
becomes the minimum distance.  

Remark 7: When wj = 1/m for k ≤ j ≤ k + m − 1 and wj = 0 
for j > k + m and j < k, we are using the window-Quasi-
OWAD operator based on the window-OWA operator [13]. 
Note that k and m must be positive integers such that k + m − 1 
≤ n. Also note that if m = k = 1, then, the window-Quasi-
OWAD is transformed in the maximum distance. If m = 1, k = 
n, then, the window-Quasi-OWAD becomes the minimum 
distance. And if m = n and k = 1, the window-Quasi-OWAD is 
transformed in the normalized quasi-arithmetic distance. 

Remark 8: If w1 = wn = 0, and for all others wj = 1/(n − 2), 
we are using the olympic-Quasi-OWAD operator that it is 
based on the olympic average [16]. Note that if n = 3 or n = 4, 
the olympic-Quasi-OWAD operator is transformed in the 
Quasi-OWAD median and if m = n − 2 and k = 2, the window-
Quasi-OWAD is transformed in the olympic-MOWAD 
operator.  

Remark 9: Another interesting family is the S-Quasi-OWAD 
operator based on the S-OWA operator [13], [15]. It can be 
divided in three classes, the “orlike”, the “andlike” and the 
generalized S-Quasi-OWAD operator. The generalized S-
Quasi-OWAD operator is obtained when  w1 = (1/n)(1 − (α + 
β)) + α, wn = (1/n)(1 − (α + β)) + β, and wj = (1/n)(1 − (α + 
β)) for j = 2 to n − 1 where α, β ∈ [0, 1] and α + β ≤ 1. Note 
that if α = 0, the generalized S-Quasi-OWAD operator 
becomes the “andlike” S-Quasi-OWAD operator and if β = 0, 
it becomes the “orlike” S-Quasi-OWAD operator. Also note 
that if α + β = 1, the generalized S-Quasi-OWAD operator 
becomes the Hurwicz quasi-arithmetic distance criteria. 

Remark 10: A further useful approach for obtaining the 
weights is the functional method introduced by Yager [16] for 
the OWA operator. For the Quasi-OWAD operator, it can be 
summarized as follows. Let ƒ be a function ƒ: [0, 1] → [0, 1] 
such that ƒ(0) = ƒ(1) and ƒ(x) ≥ ƒ(y) for x > y. We call this 
function a basic unit interval monotonic function (BUM). 
Using this BUM function we obtain the Quasi-OWAD weights 
wj for j = 1 to n as 

 

 






 −−






=
n

j
f

n

j
fwj

1
                                            (24) 

 
It can easily be shown that using this method, the wj satisfy 

that the sum of the weights is 1 and wj ∈ [0,1]. 
Remark 11: A further type of aggregation that could be used 

is the E-Z Quasi-OWAD weights based on the E-Z OWA 
weights [18]. In this case, we should distinguish between two 
classes. In the first class, we assign wj = 0 for j = 1 to n − k and 
wj = (1/k) for j = n − k + 1 to n, and in the second class we 
assign wj = (1/k) for j = 1 to k and wj = 0 for j > k. Note that for 
the first class, the maximum distance is obtained if k = 1 and b1 

= Max{ai}, and the normalized quasi-arithmetic distance if k = 
n. In the second class, the minimum distance is obtained if k = 
1 and bn = Min{ai}, and the normalized quasi-arithmetic 
distance if k = n. 

Remark 12: Another method for obtaining the weights is the 
one suggested by Filev and Yager in [4]. Following the same 
methodology we can distinguish between two possibilities for 
the Quasi-OWAD weights. For the first method, the weights 
can be expressed as w1 = α, wn = wn−1(1 − w1)/w1, and wj = 
wj−1(1 − w1) for j = 2 to n − 1. And for the second method, the 
weights are obtained as wn = 1 − α, w1 = w2(1 − wn)/wn, and wj 
= wj(1 − wn) for j = 2 to n − 1. 

Remark 13: Other families of Quasi-OWAD operators could 
be obtained such as the weights that depend on the aggregated 
objects [13]. Note that in the Quasi-OWAD operator, the 
aggregated objects are individual distances. Then, the weights 
depend on the distances between the elements of the different 
sets. For example, we could develop the BADD-Quasi-OWAD 
operator based on the OWA version developed in [13].  

 

   
∑ =

=
n

j j

j
j

b

b
w

1
α

α
                                                     (25) 

 
where α ∈ (−∞, ∞), bj is the jth largest element of the 
arguments di, that is, the individual distances. Note that the 
sum of the weights is 1 and wj ∈ [0,1]. Also note that if α = 0, 
we get the normalized quasi-arithmetic distance and if α = ∞, 
we get the maximum distance.  

Remark 14: A second family of Quasi-OWAD operator that 
depends on the aggregated objects is 

 

   
∑ =

=
n

j j

j
j

b

b
w

1
)/1(

)/1(

α

α
                                                 (26) 

 
where α ∈ (−∞, ∞), bj is the jth largest element of the 
arguments di. In this case, we also get the normalized 
Minkowski distance if α = 0 and if α = ∞, we get the minimum 
distance.  

Remark 15: Another family of Quasi-OWAD operator that 
depends on the aggregated objects is 
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where α ∈ (−∞, ∞), bj is the jth largest element of the 
arguments di. Note that in this case if α = 0, we also get the 
normalized quasi-arithmetic distance and if α = ∞, we get the 
minimum distance. Note also that other families of dependent 
OWA operators could be developed in order to obtain the 
weighting vector. 

Remark 16: A further type of aggregation operator that 
could be used in the Quasi-OWAD operator is the centered-
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OWA operator [19]. Following the same methodology, we 
could say that a Quasi-OWAD operator is a centered 
aggregation operator if it is symmetric, strongly decaying and 
inclusive. It is symmetric if wj = wj+n−1. It is strongly decaying 
when i < j ≤ (n + 1)/2 then wi < wj and when i > j ≥ (n + 1)/2 
then wi < wj. It is inclusive if wj > 0. Note that it is possible to 
consider a softening of the second condition by using wi ≤ wj 

instead of wi < wj. We shall refer to this as softly decaying 
centered-Quasi-OWAD operator. Note that the normalized 
quasi-arithmetic distance is an example of this particular case 
of centered-Quasi-OWAD operator. Another particular 
situation of the centered-Quasi-OWAD operator appears if we 
remove the third condition. We shall refer to it as a non-
inclusive centered-Quasi-OWAD operator. For this situation, 
we find the median Quasi-OWAD as a particular case. 

Remark 17: A special type of centered-Quasi-OWAD 
operator is the Gaussian Quasi-OWAD weights based on the 
Gaussian OWA weights [11]. In order to define it, we have to 
consider a Gaussian distribution η(µ, σ) where 
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we can define the Quasi-OWAD weights as 
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Note that the sum of the weights is 1 and wj ∈ [0,1]. 

Remark 18: By using the orness or attitudinal character and 
the dispersion measure it is also possible to obtain the weights 
of the Quasi-OWAD operator. For example, following [9] we 
could develop the maximal entropy Quasi-OWAD (MEQuasi-
OWAD) as follows 
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where α ∈ [0, 1], wj ∈ [0,1], and the sum of the weights is 1. 
Note that other methods similar to the MEQuasi-OWAD could 
be developed for obtaining the Quasi-OWAD weights 
following the same methodologies than [6], [7], [10], [11]. 

B. Analysing the strictly continuous monotonic function g 

If we analyze g, we obtain a wide range of particular cases 
that includes, among others, the Minkowski ordered weighted 
averaging distance (MOWAD) operator, the Hamming ordered 
weighted averaging distance (HOWAD) operator, the 
Euclidean ordered weighted averaging distance (EOWAD) 
operator, the ordered weighted geometric averaging distance 
(OWGAD) operator, the ordered weighted harmonic averaging 
distance (OWHAD) operator, etc. 

Remark 19: The MOWAD operator [21], [22] is found 
when g(Dj) = Dj

λ. Therefore, we can see that the Quasi-OWAD 
operator provides a further generalization to the MOWAD 
operator. It can be constructed as a particular case of the 
Quasi-OWAD operator, but it is also possible to construct it by 
mixing the OWA operator with the quasi-arithmetic distance 
or by mixing the Hamming distance with the Quasi-OWA 
operator. Note that g−1(Dj) = Dj

−λ. Its formulation is as follows. 
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Note that from a generalized perspective of the reordering 

step it is possible to distinguish between descending 
(DMOWAD) and ascending (AMOWAD) orders. Note also 
that in this case we could also obtain a parameterized family of 
distance aggregation operators such as the maximum distance, 
the minimum distance, the normalized Minkowski distance, 
the weighted Minkowski distance, the HOWAD operator, the 
EOWAD operator, etc. 

Remark 20: The Hamming OWAD operator or simply 
OWAD operator [23] is found when g(Dj) = Dj. Note that 
g−1(Dj) = Dj

−1. Note also that it is also possible to obtain it as a 
particular case of the MOWAD operator when the parameter λ 
= 1. It can be formulated as follows. 

 

HOWAD(d1, d2,…, dn) = ∑
=

n

j
jj Dw

1
                          (35)                                                                     

 
In this case, we can also distinguish between the descending 

HOWAD (DHOWAD) and the ascending HOWAD 
(AHOWAD) operator.  

Remark 21: The Euclidean OWAD operator [21], [24] or 
also the ordered weighted quadratic averaging distance 
(OWQAD) operator is found when g(Dj) = Dj

2. Note that in 
this case, g−1(Dj) = Dj

−2. Its formulation is as follows. 
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As shown above for the other particular cases, it is possible 

to distinguish between descending and ascending orders.  
Remark 22: Another particular case obtained with the 

Quasi-OWAD operator is the OWGAD operator [25]. This 
case is found when g(Dj) = Dj

0. Note that in this case we also 
get, g−1(Dj) = Dj

0.  
  

    OWGAD(d1, d2,…, dn) = ∑
=

n

j

w
j

jD
1

                        (37)                                                                                  

 
Note that the geometric operators cannot aggregate negative 

numbers and the value zero. Therefore, this distance 
aggregation operator is only useful in some special situations. 
Note also that it is possible to transform this operator as 
suggested in [26], so it can deal with zero or negative numbers.   

Remark 23: Another special case found in the Quasi-OWAD 
operator is the OWHAD operator. In this case, when g(Dj) = 
Dj

−1. Note that in this case, g−1(Dj) = Dj
1. It can be formulated 

as follows. 
 

   OWHAD(d1, d2,…, dn) = 
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As shown above in the previous particular cases of the 

Quasi-OWAD operator, we can distinguish between 
descending (DOWHAD) and ascending (AOWHAD) orders. 

V. CONCLUSION 

In this paper, we have suggested a new generalization of the 
OWA operator by using distance measures. We have called it 
the ordered weighted quasi-arithmetic distance (Quasi-
OWAD) operator. We have seen that it is a further 
generalization of the Minkowski distance by using quasi-
arithmetic means. We have considered some of its main 
properties such as the distinction between descending and 
ascending orders and some basic measures to characterize the 
weighting vector. Next, we have developed a wide range of 
particular cases of the Quasi-OWAD operator that includes all 
the particular cases of the MOWAD operator. We have seen 
that these special cases also provide a parameterized family of 
aggregation operators with similar properties than the Quasi-
OWAD operator. We have also considered the usual families 
found in the weighting vector such as the Quasi-OWAD 
median, the step-Quasi-OWAD, the window-Quasi-OWAD, 
the S-Quasi-OWAD, the olympic-Quasi-OWAD, the centered-
Quasi-OWAD, etc. 

This paper represents a first analysis about the possibility of 
using OWA operators in quasi-arithmetic distances. In future 

research, we will develop further analysis by using different 
extensions of the OWA operator. 
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