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OWA Operators in Generalized Distances
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considering the attitudinal character of the decismaker is

Abstract—Different types of aggregation operators such as tthe ordered weighted averaging (OWA) operator ohiged

ordered weighted quasi-arithmetic mean (Quasi-O\ggrator and
the normalized Hamming distance are studied. Whedioice the use
of the OWA operator in generalized distances sugttha quasi-
arithmetic distance. We will call these new diswmaggregation the
ordered weighted quasi-arithmetic distance (QUASAD) operator.

We develop a general overview of this type of galieation and

study some of their main properties such as theéndton between
descending and ascending orders. We also consitenedt families

of Quasi-OWAD operators such as the Minkowski cedeweighted
averaging distance (MOWAD) operator, the orderedighted

averaging distance (OWAD) operator, the Euclidearde@d

weighted averaging distance (EOWAD) operator, tlemalized

quasi-arithmetic distance, etc.

by Yager in [1]. The OWA operator provides a partarieed
family of aggregation operators that include, amotigrs, the
maximum, the minimum and the average criteria. &Siits
appearance, it has been used in a wide range ditagns
such as [2]-[25].

In this paper, we suggest a new type of distancasuore
consisting in normalize the quasi-arithmetic diseamith the
OWA operator. Then, the normalization developed Wwé
able to modify the results of the aggregation bpgislifferent
degrees of pessimism or optimism and it will previd
parameterized family of distance operators thatuge the
maximum distance, the minimum distance and the ageer

Keywords—Aggregation operators, Distance measures, Quagdistance. Note that from a mathematical perspectihe

OWA operator.

. INTRODUCTION

HE quasi-arithmetic distances are very useful tepgras
that generalize a wide range of distance measuds as

attitudinal character of the decision maker indggregation is
seen as the orness or the andness of the aggre§iatioNe
will call this generalization as the ordered wegghtquasi-
arithmetic distance operator or the Quasi-OWAD apmt for
short. We will also study a wide range of particdases of

the Hamming distance, the Euclidean distance arel tRuasi-OWAD operators such as the Minkowski ordered
Minkowski distance. These particular cases of thmsg Wweighted averaging distance (MOWAD) operator, the
arithmetic distance are very useful techniques tizate been Hamming ordered weighted averaging distance (HOWAD)
used in a lot of applications such as fuzzy setoryhe operator, the Euclidean ordered weighted averadistance
multicriteria decision making, business decisiats, (EOWAD) operator, the ordered weighted geometric
Often, when calculating distances, we want an a@eeraaveraging distance (OWGAD) operator and the ordered
result of all the individual distances. We call sththe weighted harmonic averaging distance (OWHAD) opsrat

normalization process. In the literature, we firabibally, two
types of normalized distances. The first type & ¢hse when
we normalize the distance giving the same impogaacall
the individual distances. This case is known fog tjuasi-
arithmetic distance, the normalized quasi-arithedistance.
The second type is the case when we normalize igtande
giving different degrees of importance to the indial
distances. Then, we get the weighted quasi-ariibrdettance.

We should note that some considerations about USMEA
operators in distance measures have been studjgi]in

In order to do so, the remainder of the paper gaoized as
follows. In Section I, we briefly describe some sha
aggregation operators such as the Hamming distandethe
Quasi-OWA operator. Section lll, develops the Qu@2¥/AD
operator. In Section IV, we study different famslief Quasi-
OWAD operators. Finally, in Section V, we summaribe

Sometimes, when calculating the normalized distaiice main conclusions of the paper.

would be interesting to consider the attitudinaretcter of the

decision maker in order to modify the results ofe th

aggregation with optimistic or pessimistic attitesded very
useful technique for the aggregation of the infdrom
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Il. PRELIMINARIES

A. Normalized Hamming Distance

The normalized Hamming distance is a distance nmeasu
used for calculating the differences between tveoneints, two
sets, etc. In fuzzy set theory, it is very usefiot,example, for
the calculation of distances between fuzzy setsrval-valued
fuzzy sets, intuitionistic fuzzy sets and intervalued
intuitionistic fuzzy sets. For two sefsandB, it can be defined
as follows.
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Definition 1. A normalized Hamming distance of dimension Definition 4. A Quasi-OWA operator of dimension is a
is a mappingly: R" x R'— R such that: mapping QOWA R' — R that has an associated weighting
vectorW of dimensiom such that the sum of the weights is 1

1N andw; 0 [0,1], then:
dH(A,B) = ;Z‘ai _bi‘ (1)
i=1

QOWAay, &,..., &) = 9_1[1_%% g(b(j))] @

where a, and b; are theith arguments of the se#s and B
respectively.

Sometimes, when normalizing the Hamming distands it where b: is theith largest of thea. andd is a continuous
better to give different weights to each individuhstance. . ! ) o s 9
strictly monotonic function.

Then, the distance is known as the weighted |_anmgFrom a generalized perspective of the reorderieg, sive

distance. It can be defined as follows. can distinguish between the descending Quasi-OWuéa$h
DOWA) operator and the ascending Quasi-OWA (Quasi-

i . .. AOWA) operator. The weights of these operatorsratated
a mappingdyy: R' x R"— Rthat has an associated weightin - . . . .
: . . . OYW = W*r ., Wherew is thejth weight of the Quasi-DOWA
vectorW of dimensiom such that the sum of the weights is 1 . . .
andw [ [0,1]. Then: andw*, ., thejth weight of the Quasi-AOWA operator.
! T ’ It can be demonstrated that the Quasi-OWA operator
. generalizes a wide range of aggregation operaByr$g] such
dwi(AB) = Y w, |ai _bil (2) as the maximum, the minimum, the generalized OWéraior
i=1 [2], [17], the arithmetic mean, the geometric medne
guadratic mean, the harmonic mean, the weightethgeethe
where a and b are theith arguments of the se#s and B weighted geometric mean, the OWA operator [1],dhiered
respectively. Note that Definitions 1 and 2 are fmmeral weighted quadratic averaging (OWQA) operator [1ffg
expressions. For the formulation used in fuzzytisebry see ordered weighted harmonic averaging (OWHA) opergt@t,
for example [27]-[29]. etc.

B. Quasi-OWA operator IIl.  THE QUASI-ORDEREDWEIGHTED AVERAGING DISTANCE
The Quasi-OWA operator [5] is a generalization bé t OPERATOR

OWA operator by using quasi-arithmetic means. Thasg
arithmetic mean was introduced in [30]-[32] andejpresents
a generalization to a wide range of mean aggragasach as
the generalized mean, the arithmetic mean, the ggmm
mean, the harmonic mean or the quadratic meanarthe
defined as follows.

Definition 2. A weighted Hamming distance of dimensiois

The Quasi-OWAD operator represents an extensiotieof
traditional normalized quasi-arithmetic distanc8][By using
OWA operators. The difference is that the reordgmf the
arguments is developed according to the values hef
individual distances. Then, it is possible to chlta the
distance between two elements, two sets, two fsety, etc.,
modifying the results according to the attitudiohbracter of
the decision maker. For example, this type of disais very
useful when a decision maker wants to compare wwzyf
subsets but he wants to give more importance tchitjieest

OM(ay, a,..., @) = g—l[iig(ai )J 3) individual distance because he believes that it el more

nig significant in the analysis. Note that this typenmirmalized

distance operator can be constructed by mixing ghasi-

wherea, is the argument variable agds a continuous strictly 2fithmetic distance with OWA operators, by mixinge t

monotonic function. Note that depending on the fofrg, we ~Hamming distance with quasi-OWA operators or by ingx

obtain different types of means. Whgfa) = &, we obtain the the Hamml_ng OWAD operator with quasi-arithmetic medt

arithmetic mean. Wheg(a) = a2 the quadratic mean. When ¢an be defined as follows.

g(@ = a7, the harmonic mean. Wheg(a) = a° the o _ . o

geometric mean. More generally, whg(®) = a’, we get the Definition 5. A Quasi-OWAD operator of dimensiamis a

generalized mean. mapping QOWAD R' x R" — R that has an associated

Note that if the arguments have different weigthen, the weighting vectorW of dimensionn such that the sum of the
quasi-arithmetic mean is transformed in the weighgeiasi- Weights is 1 andy; O [0,1]. Then, the distance between two
arithmetic mean. With this information, we can defithe SetsAandBis:

Quasi-OWA operator as follows.

—

Definition 3. A quasi-arithmetic mean of dimensionis a
mappingQM: R"— R such that:
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n . 14
QOWAL(:, d,..., ) = g‘l[jgle g(D<j))] 5) (dy cery ) = {z W bf} (©)

=1

where Dy, is thejth largest of thed, andd; is the individual 1A
distance betweeA andB. That is,d = Ua — bill Note thaig flen ..., 8) = [i Wjdf] (10)
is a continuous strictly monotonic function. As ean see, we =1
adapt the characteristics of the quasi-arithmetiamto the
characteristics of the OWAD operator.

A fundamental aspect of the Quasi-OWAD operatathes  Since y, de..., dy) is a permutation ofe(, ..., &), we have
reordering of the arguments based upon their vallieat is, ¢ =§, for allj, and then
the weights rather than being associated with acifipe
argument, as in the case with the usual quasiragiiic mean, f(dy, da..., dp) =T (&1, &2..., &) =
are associated with a particular position in thdeoing. This
reordering introduces nonlinearity into an otheewinear Theorem 2 (Monotonicity). Assume f is the Quasi-OWAD
process. Note that the Quasi-OWAD operator follavgsmilar  operator, ifd, > g, for all i, then
methodology than the Quasi-OWA operator [3], [B], [

If D is a vector corresponding to the ordered arguments f(dy, dp..., dy) >f (en, &..., &) (11)
g(Dg), we shall call this the ordered argument veciod W'
is the transpose of the weighting vector, then @uasi- prgof. Let
OWAD aggregation can be expressed as:

1/
QOWAL(d,, y,..., &) = g™ TD) (6) f(dy, dy..., dy) = [ﬁwjbf] (12)
E

From a generalized perspective of the reorderieg, sive
have to distinguish between the descending QuashDW

1/

(Quasi-DOWAD) and the ascending Quasi-OWAD (Quasi- f - L 13
AOWAD) operators. The weights of the Quasi-DOWAL ar (e1, &..., &) J'Z=:1WJCJ (13)
related to those of the Quasi-AOWAD by using= W*, 1,
wherew; is thejth weight of the Quasi-DOWAD ang*,, j;, . .
thejth weight of the Quasi-AOWAD operator. Sinced, > g, for all d, it follows that,d; > &, and then

Note that if the weighting vector is not normalizéd., W
:Z?zle #1, then, the Quasi-OWAD operator can be f(dy 0z.... ) 2 T (e1, €., &) .
expressed as: Theorem 3 (Bounded). Assume f is the Quasi-OWAD

operator, then

] L
QOWAR ... & = @ [W Elwig(D(j))j @ Min{d} <f (dy, db..., d) < Max{d} (14)

The Quasi-OWAD operator is a mean or averaginBrOOf' Let max{d} = ¢, and ming} = d, then

operator. This is a reflection of the fact that thygerator is

) . . 1/ 1/
monotonic, bounded, commutative, and idempotent. n 1 n 1
f(d]_,dz .,dn): Z:WJbJ < ZWJC =
i=1 i=1
Theorem 1 (Commutativity). Assume f is the Quasi-OWAD . .
operator, then R 1A
f(dy, do..., &) =f (en, &..., €) (8) =1
where(d,, d,..., d,) is any permutation of the argumerfts, n 1/ n 1/A
... &), f(dl,dz...,dn):[zwjbf] z[zwjd”J =
i=1 i1
Proof. Let
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N 1/A For example, ifw; = 1 for somg, thenH(W) = 0, and the
[d” > Wj] (16) least amount of information is used.wf = 1/n for allj, then,
j=1 the amount of information used is maximum.

A third measure that could be studied in the aggfieg is
) the divergence of the weightg It can be defined as follows.
Since Z?:le =1, we get
2

. _ n n-j
f (0, dy..., d) < € (17) Div(w)= J_Z::le (ﬁ ‘U(W)] (23)

f(dy de.... dy) = d (18) Note that the divergence can also be formulated it

ascending order in a similar way as it has beemvshio the

Therefore, attitudinal character.
Min{d} <f (dy, dy..., d) < Max{d} " IV. FAMILIES OF QUASI-OWAD OPERATORS
Theorem 4 (Idempotency).Assume f is the Quasi-OWAD A. Analysing the Weighting Vector W
operator, if d=d, for all d, then By using a different manifestation of the weightiregtor in
the Quasi-OWAD operator, we are able to obtainedft
f(dy, do..., dy) =d (19) types of distance aggregation operators. For examp can
obtain the maximum distance, the minimum distante,
Proof. Sinced, = d, for all d;, we have normalized quasi-arithmetic distance and the weitguasi-

arithmetic distance.

Remarkl: The maximum distance is obtained whean= 1
andw; = 0, for allj # 1. And the minimum distance is found
whenw, = 1 andw;, = 0, for allj # n. As we can see, the
maximum and the minimum distances are obtained

n 1A n va independently of the value gf
[ijd"J = [dA ZWjJ (20) Remark2: It should also be noted that the median cam als

1= 1= be used as Quasi-OWAD operator. We will call it Qeasi-
OWAD median and it is possible to distinguish betwewo
situations. Ifn is odd we assigw, + 1> = 1 andw; = 0 for alll
others, and this affects then[¢ 1)/2]th largest argumenf. If
nis even we assign for exampl@,, = W) + 1 = 0.5, and this
f (cy, dp..., d) =d - 3ffects the arguments with the/Z)th and [(/2) + 1]th largest
L.

Another interesting issue to analyze is the aiiitaid Remark3: More generally than the maximum, the minimum
character of the Quasi-OWAD operator. Based omteasure and the median, i, = 1 andw; = 0, for allj # k, we get for
developed for the Quasi-OWA operators in [2], incee anyg, QOWANd,, d,..., &) = Dy, whereDy is thekth largest
formulated in two different forms depending on type of Or lowest of the arguments. This type of Quasi-OWAD

ordering used. For the first type we get the folfay operator is known as the step-Quasi-OWAD operditmte
that if k = 1, the step-Quasi-OWAD is transformed in the

maximum and ifk = n, the step-Quasi-OWAD becomes the

a(W) = g—l{znle g(ﬂjj (21) Minimum.

n 1/A
f(dlydz...,dn):[zwjbjf‘] -
=1

Since Z?:le =1, we get

j=1 n-1 Remark 4: For the weighted-Quasi-OWAD median, we
select the argument that has ke largest;, such that the sum
A further issue to consider is the measure of dipe of of the weights from 1 t& is equal or higher than 0.5 and the
the weightsW. It is a measure that provides the type ofum of the weights from 1 fo- 1 is less than 0.5.

information being used. Using the same methodoksgin [1], Remark5: The normalized quasi-arithmetic distance ard th
it can be defined as follows. weighted quasi-arithmetic distance are also pdaictases of

the Quasi-OWAD operator. The normalized quasi-arétic

n distance is obtained whem = 1/, for all j. The weighted

HW) = - > w; In(w;) (22) quasi-arithmetic distance is obtained wiheni, for all i andj,
j=1 wherej is thejth argument oD; andi is theith argument o;.
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Remark6: Other families of aggregation operators cowd b= Max{a}, and the normalized quasi-arithmetic distancle if
used in the weighting vector. For example, the HervQuasi- n. In the second class, the minimum distance isioddaif k =
OWAD criteria is obtained whem, = a,w, =1 -a,w =0, for 1 and b, = Min{a}, and the normalized quasi-arithmetic

all j # 1,n Note that ifa = 1, the Hurwicz Quasi-OWAD distance ik =n. o S
criteria becomes the maximum distance andgit= O. it Remarkl12: Another method for obtaining the weights is the

becomes the minimum distance. one suggested by Filev and Yager in [4]. Followihg same
Remark7: Whenw = 1mfork<j<k+m-1 andw = 0 methodology we can distinguish between two pogtdsl for
or | ok e m ande <k we are using the win dow-Quasi- the Quasi-OWAD weights. For the first method, theights

OWAD operator based on the window-OWA operator [13[Fan b€ expressed ag = a, Wy = Wy(1 — wy)/w,, andw; =
Note thatk andm must be positive integers such thatm—-1  W-i(1 —wi) forj =2 ton - 1. And for the second method, the
< n. Also note that ifm = k = 1, then, the window-Quasi- Weights are obtained ag = 1 - a, wy = wy(1 — wy)/w,, andw
OWAD is transformed in the maximum distancemif 1,k = = W(1 —wh) forj =2ton—1.
n, then, the window-Quasi-OWAD becomes the minimum Remarkl3: Other families of Quasi-OWAD operators could
distance. And ifn = n andk = 1, the window-Quasi-OWAD is be obtained such as the weights that depend oagiyegated
transformed in the normalized quasi-arithmeticatise. objects [13]. Note that in the Quasi-OWAD operattite
Remark8: If wy = w, = 0, and for all othersj = 1/( - 2), aggregated objegts are individual distances. Ttienweights
we are using the olympic-Quasi-OWAD operator tHatsi depend on the distances between the elements diiffaeent
based on the olympic average [16]. Note that#3 orn = 4, SEts. For example, we could develop the BADD-QEAMAD

the olympic-Quasi-OWAD operator is transformed ine t operator based on the OWA version developed in [13]
Quasi-OWAD median and ih=n - 2 andk = 2, the window-
Quasi-OWAD is transformed in the olympic-MOWAD
operator.

Remark9: Another interesting family is the S-Quasi-OWAD
operator based on the S-OWA operator [13], [15kdh be
divided in three classes, the “orlike”, the “andllkand the Wwhere a O (-, «), b; is the jth largest element of the
generalized S-Quasi-OWAD operator. The generaliBd argumentsd;, that is, the individual distances. Note that the
Quasi-OWAD operator is obtained whem = (1h)(1 - (o + sum of the weights is 1 arng O [0,1]. Also note that itr = O,

A) +a,w,=(1h)(1-(a+p)+ G andw; = (Lh)(1 - (a+ we get the normalized quasi-arithmetic distance ifuad= oo,
) forj =2 ton- 1 wherea, S0 [0, 1] anda + S< 1. Note we get the maximum distance.

that if a = 0, the generalized S-Quasi-OWAD operator Remarkl4: A second family of Quasi-OWAD operator that
becomes the “andlike” S-Quasi-OWAD operator an@ # 0, depends on the aggregated objects is

it becomes the “orlike” S-Quasi-OWAD operator. Alsote

W] = ! > (25)

that if o + S = 1, the generalized S-Quasi-OWAD operator Wb
becomes the Hurwicz quasi-arithmetic distance riaite W; =n—Ja 6§2
Remark 10: A further useful approach for obtaining the ijl(]-/bj)

weights is the functional method introduced by Yadé] for
the OWA operator. For the Quasi-OWAD operator,ab ®e | hare o [ (~0, %), by is the jth largest element of the
summarized as follows. L¢tbe a functionf: [0, 1] - [0, 1]  grgumentsd,. In this case, we also get the normalized

such thatf(0) = f(1) andf(x) = f(y) for x >y. We call this \jinkowski distance ifr = 0 and ifa = », we get the minimum
function a basic unit interval monotonic functioBUM).  jistance.

Using this BUM function we obtain the Quasi-OWADiglets Remark15: Another family of Quasi-OWAD operator that

w; forj = 1tonas depends on the aggregated objects is
j J -1 a
N 24 1-b,
w= il ) w =0 27)
Zj:]_(l_bj)a

It can easily be shown that using this method vihsatisfy
that the sum of the weights is 1 amd [0,1]. where @ O (-, ), by is the jth largest element of the
Remarkl1: A further type of aggregation that could bedis argumentsd,. Note that in this case i = 0, we also get the
is the E-Z Quasi-OWAD weights based on the E-Z OWAormalized quasi-arithmetic distance andrif «, we get the
weights [18]. In this case, we should distinguisi®en tWo  minimum distance. Note also that other familieslependent

classes. In the first class, we assigm O forj =1 ton—-kand  o\wa operators could be developed in order to obtai
w; = (1K) forj =n-k+ 1 ton, and in the second class Weyeighting vector.
assignw, = (1K) forj = 1 tok andw; = O forj > k. Note that for

Remark 16: A further e of aggregation operator that
the first class, the maximum distance is obtaifiéd=i 1 andb; could be used in the ngsri)-OWADg%pegrator is Thaered-
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OWA operator [19]. Following the same methodologye

wherea O [0, 1], w; O [0,1], and the sum of the weights is 1.

could say that a Quasi-OWAD operator is a centerddote that other methods similar to the MEQuasi-OWeédnld

aggregation operator if it is symmetric, stronggcaying and be developed for obtaining the Quasi-OWAD weights

inclusive. It is symmetric iy, = W, 4. It is strongly decaying
wheni <j < (n + 1)/2 therw; <w; and when >j = (n + 1)/2

thenw; <w,. It is inclusive ifw; > 0. Note that it is possible to

consider a softening of the second condition bypaisi < w;

instead ofw;, < w;. We shall refer to this as softly decayin

centered-Quasi-OWAD operator. Note that the nomedli
guasi-arithmetic distance is an example of thigipaar case
of centered-Quasi-OWAD operator. Another
situation of the centered-Quasi-OWAD operator appédave
remove the third condition. We shall refer to it @asnon-
inclusive centered-Quasi-OWAD operator. For thisiaion,
we find the median Quasi-OWAD as a particular case.

operator is the Gaussian Quasi-OWAD weights basethe
Gaussian OWA weights [11]. In order to define ig have to
consider a Gaussian distributigfy, o) where

1. _n+l
Hn=—p 0= 28)
nig
1,
00 = =320~ )’ (29)
=

Assuming that

1
2No,

o (i=Hn)? 1203

n(j) =

we can define the Quasi-OWAD weights as

n e (i~tn)? /207

MmN TN ) 1207
200 PIPIC

(31)

Note that the sum of the weights is 1 awpd] [0,1].

Remark18: By using the orness or attitudinal character an

the dispersion measure it is also possible to nlite weights
of the Quasi-OWAD operator. For example, followig we

could develop the maximal entropy Quasi-OWAD (MESua

OWAD) as follows

n
Maximize: —ij Inw;
j=1

Subject to: g_l[ i W g(uj} =a(W) (33)
j=l n_l

9

particula

(32)

following the same methodologies than [6], [7], Jj1Q1].

B. Analysing the strictly continuous monotonic funetgp

If we analyzeg, we obtain a wide range of particular cases

that includes, among others, the Minkowski ordeseighted
averaging distance (MOWAD) operator, the Hammirdeoed
weighted averaging distance (HOWAD) operator,
Fuclidean ordered weighted averaging distance (EOWA
operator, the ordered weighted geometric averadiagnce
(OWGAD) operator, the ordered weighted harmoniaayieg
distance (OWHAD) operator, etc.

Remark19: The MOWAD operator [21], [22] is found

operator provides a further generalization to th©WAD
operator. It can be constructed as a particulae aHsthe
Quasi-OWAD operator, but it is also possible tostaurct it by
mixing the OWA operator with the quasi-arithmetistdnce
or by mixing the Hamming distance with the Quasi-®W
operator. Note thay™(D;) = D;”. Its formulation is as follows.

1/A
MOWALd:, ..., d) = (ZWJ Df} (3f
j=1

Note that from a generalized perspective of thedering
step it is possible to distinguish between descendi
(DMOWAD) and ascending (AMOWAD) orders. Note also

(30) that in this case we could also obtain a paranzet@riamily of

distance aggregation operators such as the maxiistance,
the minimum distance, the normalized Minkowski aligte,
the weighted Minkowski distance, the HOWAD operatbe
EOWAD operator, etc.

Remark 20: The Hamming OWAD operator or simply
OWAD operator [23] is found wheg(D) = D;. Note that
g7(D;) =D;™. Note also that it is also possible to obtairsina
particular case of the MOWAD operator when the peaterA
= 1. It can be formulated as follows.

HOWAD(dy, t,..., &) = > w, D,
=1

(39)

In this case, we can also distinguish between dseehding
HOWAD (DHOWAD) and the ascending HOWAD
(AHOWAD) operator.

Remark21: The Euclidean OWAD operator [21], [24] or
also the ordered weighted quadratic averaging mista
(OWQAD) operator is found wheg(D) = Djz. Note that in
this caseg™(D;) = DJ-’Z. Its formulation is as follows.

the

Remark 17: A special type of centered-Quasi-OWADWheng(DJ') =Dy Therefore, we can see that the Quasi-OWAD
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EOWAD(dy, O, ..., @) = Zn)Wijz
=1

As shown above for the other particular cases, ftassible [1]
to distinguish between descending and ascendirgrard

Remark 22: Another particular case obtained with they
Quasi-OWAD operator is the OWGAD operator [25]. §hi
case is found wheg(D) = D,’. Note that in this case we alsol3]

get,g™(D)) =D/". (4]

(5]
@37

(6]

OWGARd;, ty,..., d) = Zn: D,"
=1

Note that the geometric operators cannot aggregajative [7]
numbers and the value zero. Therefore, this dietanﬁ;]
aggregation operator is only useful in some spegiahtions.
Note also that it is possible to transform this rapar as
suggested in [26], so it can deal with zero or tiegaumbers. [

Remark23: Another special case found in the Quasi-OWAD
operator is the OWHAD operator. In this case, wgéy) = [10]
D;™. Note that in this case, (D;) = D;". It can be formulated
as follows. [11]

[12]

[EEY

OWHAD(d,, ..., d) = — (38)
W 3]
2D

[14]
As shown above in the previous particular caseghef [15]
Quasi-OWAD operator, we can distinguish betweens)
descending (DOWHAD) and ascending (AOWHAD) orders. 17

V. CONCLUSION [18]

In this paper, we have suggested a new generalizafithe
OWA operator by using distance measures. We haledda
the ordered weighted quasi-arithmetic distance $Rua[20]
OWAD) operator. We have seen that it is a further
generalization of the Minkowski distance by usingasj- [21]
arithmetic means. We have considered some of itthh ma
properties such as the distinction between desogndnd
ascending orders and some basic measures to cha@adhe
weighting vector. Next, we have developed a widegeaof
particular cases of the Quasi-OWAD operator theluihes all
the particular cases of the MOWAD operator. We hseen
that these special cases also provide a parameddamily of
aggregation operators with similar properties than Quasi-
OWAD operator. We have also considered the usumiliés
found in the weighting vector such as the Quasi-@WA
median, the step-Quasi-OWAD, the window-Quasi-OWAD,
the S-Quasi-OWAD, the olympic-Quasi-OWAD, the ceate [26]
Quasi-OWAD, etc.

This paper represents a first analysis about tissipitity of
using OWA operators in quasi-arithmetic distandesfuture

[19]

[22]

[23]

[24]

[25]

[27]

12 research, we will develop further analysis by usiliiferent
(36) extensions of the OWA operator.
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