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Orthogonal Polynomial Density Estimates:
Alternative Representation and Degree Selection

Serge B. Provost and Min Jiang

Abstract—The density estimates considered in this paper comprise
a base density and an adjustment component consisting of a linear
combination of orthogonal polynomials. It is shown that, in the
context of density approximation, the coefficients of the linear combi-
nation can be determined either from a moment-matching technique
or a weighted least-squares approach. A kernel representation of
the corresponding density estimates is obtained. Additionally, two
refinements of the Kronmal-Tarter stopping criterion are proposed
for determining the degree of the polynomial adjustment. By way of
illustration, the density estimation methodology advocated herein is
applied to two data sets.

Keywords—kernel density estimation, orthogonal polynomials,
moment-based methodologies, density approximation.

I. INTRODUCTION

Awide array of parametric, nonparametric and hybrid tech-
niques are available for estimating a density function on

the basis of a sample of observations. An informative account
of the main nonparametric density estimation methodologies
available can be found for instance in [1]. The density esti-
mates being considered in this paper can be expressed as the
product of an initial estimate referred to as base density and
an adjustment component consisting a linear combination of
orthogonal polynomials.

Various aspects of several density estimation and approx-
imation techniques that involve orthogonal series have been
studied in numerous papers, including [2]–[8]. The concept
of making use of a base density and adjusting it has been
previously discussed by [9]–[12], among others.

Although attention is focused on density estimation, some
preliminary results on a density approximation methodology
that relies on orthogonal polynomials are required. Accord-
ingly, orthogonal polynomial density approximants are defined
in Section II. It is also explained therein that a sequence of
orthogonal polynomials can be generated from a given weight
function and that the coefficients of the linear combination
of the orthogonal polynomials constituting the adjustment
component of the estimates can be determined either from a
moment-matching technique or by minimizing the integrated
squared error with respect to a certain weighting function.

As pointed out in Section III, orthogonal polynomial density
estimates can be viewed as counterparts of the density ap-
proximants discussed in [6]; such density estimates are shown
to possess a kernel representation in addition to their prime
representation which is given in terms of sample moments.
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Two refinements of the Kronmal-Tarter criterion whereby the
number of terms to be included in the polynomial adjustment
component of the estimates can be determined, are also
proposed. The step-by-step description of the orthogonal poly-
nomial density estimation methodology contained in Section
III-C should render it more easily implementable and more
widely accessible. Two illustrative examples are presented in
Section IV.

Explicit representations of the kernels associated with the
Legendre, Jacobi, Laguerre and Hermite orthogonal polyno-
mials are provided in Appendices A−D. In view of the
fact that their associated base densities are respectively the
uniform, beta, gamma and Gaussian density functions (up to
certain affine transformations), such orthogonal polynomials
are likely to be frequently utilized in conjunction with the
density estimation approach advocated in this paper.

II. ORTHOGONAL POLYNOMIALS AND DENSITY
APPROXIMANTS

A. Introduction

Let

ϕk(x) =
k∑

�=0

δk,� x�, k = 0, . . . , m , (1)

be polynomials defined on the interval (a, b), which satisfy the
orthogonality property,∫ b

a

w(x)ϕi(x)ϕj(x) dx =

{
θi for i = j

0 for i �= j,
(2)

where w(x) denotes a certain nonnegative weight function
whose ‘moments’ given by

∫ b

a
xk w(x) dx, exist for k =

0, 1, . . . , and θi will be referred to as the ith degree orthogo-
nality factor. Then, {ϕ0(x), ϕ1(x), . . . , ϕm(x)} is said to form
a set of orthogonal polynomials with respect to w(x).

As was explained in [6], in most instances, it is possible to
approximate a continuous probability density function, f(x),
defined on the interval (a, b), by means of an approximant of
the form

fm(x) = c w(x)
m∑

j=0

aj ϕj(x) (3)

where the normalizing constant c is such that
∫ b

a
c w(x) dx =

1 . The weight function w(x) is chosen so that c w(x) provides
a suitable initial density approximation to f(x). The function
fm(x) will be referred to as an mth degree orthogonal poly-
nomial density approximant. It was demonstrated in [7] that
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such approximants, which are based on the exact moments of
a continuous distribution, can yield very accurate percentiles.

It is shown in Section II-B that, given a weight function
w(x) whose moments exist, one can generate a specific
sequence of orthogonal polynomials. If w(x) depends on p
parameters, such parameters can be determined for instance
by solving the equations, c

∫ b

a
xh w(x)dx = μX(h), h = 1,

. . . , p, where μX(h) denotes the hth moment of the random
variable whose density function, f(x), is being approximated.
It is assumed in the sequel that the distributions under con-
sideration are uniquely determined from their moments. We
note that this is always the case for random variables whose
support is compact; conditions ensuring uniqueness in the case
of infinite or semi-infinite ranges are specified for instance in
[13]. As shown in Sections II-C and II-D, the coefficients aj in
(3) can be equivalently obtained from two distinct approaches.

B. Determination of the Orthogonal Polynomials

In certain instances, such as in the case of the classical
orthogonal polynomials discussed in the Appendices , the co-
efficients δk,� appearing in (1), as well as the associated weight
functions, are known. In general, one can generate a sequence
of orthogonal polynomials from any proper weight function by
making use of the Gram-Schmidt orthogonalization process.
This procedure constructs an orthogonal basis over an interval
(a, b) with respect to an arbitrary weight function w(x) from
a nonorthogonal set of linearly independent functions.

Using the notation

< pi(x), pj(x) > =
∫ b

a

w(x) pi(x) pj(x) dx , (4)

where w(x) is a weight function, and defining the first two
polynomials as

ϕ0(x) = 1 ≡ δ0,0 (5)

and
ϕ1(x) = x − < x, 1 >

< 1, 1 >
≡ δ1,0 + δ1,1 x , (6)

one can construct all higher order orthogonal polynomials
from the recurrence relation,

ϕi+1(x) =
(

x − < xϕi(x), ϕi(x) >

< ϕi(x), ϕi(x) >

)
ϕi(x)

−
(

< ϕi(x), ϕi(x) >

< ϕi−1(x), ϕi−1(x) >

)
ϕi−1(x) ,

≡
i+1∑
�=0

δi+1,� x� , i = 1, 2, . . . , (7)

see e.g. [14].

C. Moment-Based Density Approximants

It is shown in this section that the coefficients aj , j = 0,
1 . . . , m, appearing in the approximant fm(x) defined by (3)
can be determined by matching the first m moments of fm(x)
to those of f(x), the density function being approximated.
First, one can easily establish that the equalities∫ b

a

xjfm(x) dx =
∫ b

a

xjf(x) dx, j = 0, 1, . . . , m, (8)

are mathematically equivalent to∫ b

a

ϕj(x)fm(x) dx =
∫ b

a

ϕj(x)f(x) dx, j = 0, 1, . . . , m.

(9)
Accordingly, if (9) holds, which amounts to assuming that the
first m moments of the approximate distribution are equal to
those associated with the density function being approximated,
one has∫ b

a

c w(x)
m∑

i=0

ai ϕi(x) ϕj(x) dx =
∫ b

a

ϕj(x)f(x) dx,

that is,
m∑

i=0

c ai

∫ b

a

w(x) ϕi(x) ϕj(x) dx =
∫ b

a

ϕj(x)f(x) dx (10)

or

c aj θj =
∫ b

a

ϕj(x)f(x) dx ,

so that

aj =

∫ b

a
ϕj(x)f(x) dx

c θj
, (11)

where ∫ b

a

ϕj(x)f(x) dx =
∫ b

a

j∑
�=0

δj,� x�f(x) dx

=
j∑

�=0

δj,� μX(�) , (12)

μX(�) denoting the �th moment of the distribution specified
by f(x). Thus,

aj =
j∑

�=0

δj,� μX(�)
c θj

, j = 0, 1, . . . , m , (13)

and the mth degree density approximant can be expressed as
follows:

fm(x) = w(x)
m∑

j=0

j∑
�=0

δj,� μX(�)
θj

ϕj(x) , (14)

where θj can be determined from (2) and δj,� denotes the
coefficient of x� in ϕj(x).

D. Weighted Least-Squares Density Approximants
Alternatively, the coefficients aj appearing in (3) can be

obtained from a weighted least-squares approach. On denoting
the integrated weighted squared error by W (a0, . . . , am) while
making use of the reciprocal of the weight function as the
weighting function as was done for instance in [15], one has

W (a0, . . . , am)

=
∫ b

a

1
w(x)

(
f(x) − fm(x)

)2 dx (15)

=
∫ b

a

f2(x)
w(x)

dx − 2
∫ b

a

c
m∑

i=0

ai ϕi(x) f(x) dx

+
∫ b

a

w(x)
(
c

m∑
i=0

aiϕi(x)
)2

dx .
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Then, equating

∂W (a0,...,am)
∂aj

= −2
∫ b

a

c ϕj(x) f(x) dx

+2
∫ b

a

w(x)
(
c2

m∑
i=0

ai ϕi(x)
)

ϕj(x) dx

= −2 c
( ∫ b

a

ϕj(x)f(x) dx − c ajθj

)
, j = 0, 1, . . . , m ,

to zero, it is seen that the coefficients aj , j = 0, 1, . . . , m, that
minimize W (a0, . . . , am) are given by

aj =

∫ b

a
ϕj(x)f(x) dx

c θj
(16)

or, in light of (12),

aj =
j∑

�=0

δj,� μX(�)
c θj

, (17)

which coincides with the representation of aj given in (13).
Interestingly, Equation (15) can be rewritten as

W (a0, . . . , am) =
∫ b

a

w(x)
(
g(x) − pm(x)

)2

dx, (18)

where g(x) = f(x)/w(x) and pm(x) = fm(x)/w(x). Thus,
the aj’s also minimize the integrated weighted squared error
for f(x)/w(x) with w(x) as the weighting function where
fm(x)/w(x) is the polynomial adjustment component of the
density estimate. Moreover, as stated in [16], a necessary
condition for an mth degree polynomial approximant pm(x) to
converge to a function g(x), is that g(x) be L2

w(x)−integrable.

Thus, g(x) must satisfy the conditions,
∫ b

a
w(x) g(x) dx < ∞

and
∫ b

a
w(x) g2(x) dx < ∞ . Clearly, the first condition is

always satisfied when g(x) = f(x)/w(x) and f(x) is a density
function, and in terms of f(x), the second one can be re-
expressed as

∫ b

a
f2(x)/w(x) dx < ∞ .

III. DENSITY ESTIMATION

A. Kernel Representation of the Density Estimates
Density estimates that are the counterparts of the orthogonal

polynomial density approximants discussed in the previous
section are shown to admit a certain kernel representation.

Let {x1, x2, . . . , xn} be a simple random sample from
a population whose distribution is specified by the random
variable X . On replacing the exact raw moments, μX(�), by
the sample moments, μ̂X(�) = 1

n

∑n
i=1 x�

i , � = 0, 1, . . . , m,
in (14), one obtains the mth degree orthogonal polynomial
density estimate,

f̂m(x) = w(x)
m∑

j=0

ϕj(x)
θj

j∑
�=0

δj,� μ̂X(�) (19)

=
w(x)

n

m∑
j=0

1
θj

ϕj(x)
j∑

�=0

δj,�

n∑
i=1

x�
i

=
w(x)

n

n∑
i=1

m∑
j=0

1
θj

ϕj(xi) ϕj(x) . (20)

On making use of the Christoffel–Darboux formula, that is,∑m
k=0

ϕk(x) ϕk(y)
θk

=
δm,m

δm+1,m+1

ϕm+1(x) ϕm(y) − ϕm(x) ϕm+1(y)
θm (x − y)

, (21)

see, for instance, [17], δk,k being the coefficient of xk in
ϕk(x), and letting

Km(x, xi) = w(x)
m∑

j=0

1
θj

ϕj(xi) ϕj(x) (22)

or equivalently,

Km(x, xi)

=
w(x) δm,m

δm+1,m+1

(ϕm+1(x)ϕm(xi) − ϕm(x)ϕm+1(xi)
θm (x − xi)

)
,

(23)
one has the following kernel representation of the orthogonal
polynomial density estimate:

f̂m(x) =
1
n

n∑
i=1

Km(x, xi), (24)

which is mathematically equivalent to the representation given
in (19) in terms of the first m sample moments. It can easily
be shown that such kernels integrate to one.

In some instances and, in particular, if one wishes to make
use of available results in connection with certain classical
orthogonal polynomials, it may be indicated or even necessary
to transform the data prior to resorting to the representations
the density estimates given in (19), (20) or (24). For example,
on letting y1, y2, . . . , yn be a simple random sample from
a distribution specified by the density function, f(y), and
making the change of variables x = g(y), where g(y) is a
differentiable function of y, the density estimate corresponding
to (24) becomes

f̂m(y) =
|g′(y)|

n

n∑
i=1

Km(g(y), g(yi)) , (25)

where Km(·, ·) is as defined in Equation (23). Oftentimes, it
suffices to apply an affine transformation such as

g(y) =
y − τ

ν
, (26)

so that support or the first moment or perhaps the first two
moments of the transformed variable coincide(s) with that
(those) of the normalized weight function associated with a
given type of orthogonal polynomials. This will be illustrated
in the Appendices in connection with four classical orthogonal
polynomials. However, it should be noted that, as explained
in Section II-A, one can always generate a set of orthogonal
polynomials from a suitable weight function, in which case
there is no need to apply any transformation to the data. For
illustrative purposes, two kernels are plotted in Section IV-B;
these kernels were obtained from the orthogonal polynomials
generated from a mixture of three Gaussian density functions.
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When one applies the linear transformation specified by
Equation (26), the density estimates (19), (20) and (24),
respectively become

f̂m(y) =
1
ν

w
(y − τ

ν

) m∑
j=0

ϕj

(
y−τ

ν

)
θj

j∑
�=0

δj,� μ̂X(�) (27)

with

μ̂X(�) =
1
n

n∑
i=1

(yi − τ

ν

)�

=
1
ν�

�∑
k=0

(
�

k

)
μ̂Y (k) (−1)�−k τ �−k ,

where

μ̂Y (k) =
1
n

n∑
i=1

yk
i , k = 0, 1, . . . , � ,

f̂m(y) =
1

n ν
w

(y − τ

ν

) n∑
i=1

m∑
j=0

1
θj

ϕj

(yi − τ

ν

)
ϕj

(y − τ

ν

)
(28)

and

f̂m(y) =
1

n ν

n∑
i=1

Km

(y − τ

ν
,
yi − τ

ν

)
. (29)

In the case of a density approximant, which is based on
μY (k) = E(Y k), k = 0, 1, . . . , m, the exact moments of
the random variable Y , the linear transformation yields the
following density approximant corresponding to (14):

fm(y) = w
(y − τ

ν

) m∑
j=0

j∑
�=0

δi,� μX(�)
ν θj

ϕj

(y − τ

ν

)
, (30)

where

μX(�) =
1
ν�

�∑
k=0

(
�

k

)
μY (k)(−1)�−kτ �−k .

The kernels associated with the Legendre, Jacobi, Laguerre
and Hermite classical orthogonal polynomials are explicitly
given in Appendices A − D. Additionally, when the weight
functions involve parameters, convenient estimates thereof are
provided in terms of the sample moments.

The main results derived in this section, that is, the con-
nection between approximants and estimates and the dual
representation of the density estimates, ought to provide valu-
able insights into the orthogonal polynomial density estimation
methodology advocated herein and lead to a heightened appre-
ciation of this approach as a viable alternative to other density
estimation techniques.

Since the kernels specified by Equation (23) become more
concentrated as the number of moments being used increases,
caution needs be exercised when selecting the number of terms
to be included in the polynomial adjustment component.

B. Degree Selection Criterion

This section addresses the question of determining the
degree of the polynomial adjustment in the orthogonal poly-
nomial density estimates. A convenient criterion was proposed
by [18] in connection with Fourier series. Some preliminary
considerations are in order before discussing its extension to
orthogonal polynomial density estimates and proposing some
refinements.

We first note that f̂m(x), as given in (20), can be rewritten
as

f̂m(x) = c w(x)
m∑

j=0

âj ϕj(x) (31)

where

âj =
1

c n

n∑
i=1

1
θj

ϕj(xi) . (32)

It can be assumed without any loss of generality that c = 1
and θj = 1 (by renormalizing the orthogonal polynomials) for
j = 0, 1, . . . , m. The degree of the adjustment component acts
in fact as a smoothing parameter, smaller values of m leading
to smoother estimates. The number of terms to be included in
the adjustment component will be determined from an estimate
of J(m), the mean integrated weighted squared error between
the true density and an mth degree orthogonal polynomial
density estimate, that is,

J(m) = E
( ∫ b

a

1
w(x)

(f̂m(x) − f(x))2 dx
)

= E
( ∫ b

a

1
w(x)

(
w(x)

m∑
i=0

(âi − ai) ϕi(x)

−w(x)
∞∑

i=m+1

ai ϕi(x)
)2

dx
)

(33)

where f̂m(x) is as specified in (31) or (24) and aj is as
specified in (13) in terms of the moments of the random
variable X . Making use of the orthogonality property specified
by (2) with θj = 1, for j = 0, 1, . . . , one can re-express
Equation (33) as follows:

J(m) = E
( m∑

i=0

(âi − ai)2 +
∞∑

i=m+1

a2
i

)

=
m∑

i=0

n−1(d2
i − a2

i ) +
∞∑

i=m+1

a2
i ,

=
m∑

i=0

(
n−1(d2

i − a2
i ) − a2

i

)
+

∞∑
i=0

a2
i , (34)

where d2
i = E

(
ϕ2

i (X)
)
, as explained for instance in [15] and

[19].
It is seen from Equation (34) that the jth term should be

included whenever J(j) < J(j − 1), which is equivalent to
n−1(d2

j − a2
j ) < a2

j . Clearly,

d̂2
i =

1
n

n∑
k=1

ϕ2
i (xk), (35)
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is an unbiased estimator of d2
i , while

â2
i =

n

n − 1
(â2

i −
1
n

d̂2
i ) (36)

is an unbiased estimator of a2
i , see [19]. Thus, in terms of the

unbiased estimates of d2
i and a2

i , the condition n−1(d2
j−a2

j ) <
a2

j becomes

KTS(j) ≡ â2
j − 2 d̂2

j/(n + 1) > 0 , (37)

where KTS(j) denotes the jth degree Kronmal-Tarter statistic,
the estimates âj and d̂2

j being as given in (32) and (35),
respectively.

The Kronmal-Tarter criterion consists of including all the
terms until t successive terms fail the test specified by in-
equality (37). Such a rule was suggested in [18] and [20] for
density estimators expressed in terms of Fourier series, and
later generalized to orthogonal series density estimators in [19]
which pointed out some of its drawbacks.

An empirical simulation study in which we generated var-
ious types of distributions, suggests that the Kronmal-Tarter
criterion often produces unsatisfactory density estimates when
applied to skewed or multimodal distributions. This is due to
the fact that this criterion can select a degree m that is smaller
than m0, the degree corresponding to the maximum value of
the the Kronmal-Tarter statistic.

Two refinements are being proposed. The first will be
referred to as the MKT criterion as it chooses the degree
m0 corresponding to the maximum value of the Kronmal-
Tarter statistic. Referring to (34), it is seen that m0 is the
degree associated with the largest of the negative terms in
the first sum, in absolute value, so that additional terms will
not contribute as significantly to reducing the estimated mean
integrated weighted squared error. It was also observed that
for strongly skewed or multimodal distributions, the MKT
criterion produces estimates that tend to be too smooth. Thus,
in order to obtain estimates that duplicate more closely the
features of the underlying distribution in such instances, we
propose to select the degree, m1 that corresponds to the first
occurrence of a negative value of the Kronmal-Tarter statis-
tic past m0—at which point the estimated mean integrated
squared error starts to increase. We shall refer to this rule as
the RSKT criterion for right-sided Kronmal-Tarter criterion.
Intermediate values of m could also be considered.

Before making use of either of the proposed stopping rules,
the minimum value of m could generally be taken to be four.
However, if it is known a priori that the underlying distribution
is symmetric and unimodal and that it closely matches the
selected base distribution, then the minimum degree could be
set to two. On the other hand, if the distribution is multimodal
and its modes are separated, the minimum degree could be set
equal to twice the number of modes plus two. For illustration
and comparison purposes, both the MKT and RSKT criteria
are utilized in the examples presented in Section IV.

C. The Density Estimation Methodology

The orthogonal polynomial density estimation methodology
comprises the following steps:

Fig. 1. The Kronmal-Tarter statistic for the certificates of deposit rates data

1) An initial density estimate, referred to as base density
and denoted c w(x), is selected on the basis of some
preliminary estimate such as a histogram of the data
or some prior knowledge of the underlying distribution.
A mixture of densities is indicated in the case of a
multimodal distribution whose modes are separated.

2) A sequence of orthogonal polynomials {ϕ0(x),
ϕ1(x), . . . , } is generated from the chosen base density
as explained in Section II-B, and the associated kernels
are determined from (23). For the uniform, beta, gamma
and normal base densities, the corresponding orthogonal
kernels (up to certain affine transformations) are the
Legendre, Jacobi, Laguerre and Hermite kernels, which
are explicitly provided in Appendices A − D.

3) The density is estimated by means of the kernel formula
given in (24) or equivalently from (19) in terms of the
sample moments, the degree m being determined from
the MKT and/or the RSKT criteria introduced in Section
III-B.

4) The end points the resulting density estimate are taken
to be the points of intersection with the abscissa. The
resulting function, which is non-negative, is then renor-
malized to produce a bona fide density function.

IV. APPLICATION TO TWO DATA SETS

The density estimation technique described in Section III-C
is applied to the certificates of deposit rates and the galaxy
velocities data sets. All the calculations were carried out with
the symbolic computational software, Mathematica. The code
is available from the authors upon request.

A. The Certificates of Deposit Rates Data Set

Consider the data set analyzed in [21], which represents the
three-month certificates of deposit rates for 69 Long Island
banks and thrift institutions, as given in the August 23, 1989
issue of Newsday. The 13-bin histogram of this data set
appears to be mainly bimodal, with a primary mode around 8.5
and a secondary mode around 7.9. Not surprisingly, the data
contains two subgroups, namely 29 commercial banks and 40
thrift (Savings and Loans) institutions.

In order to make use of the estimate given in Equation (29)
in conjunction with the Hermite polynomial kernel specified
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Fig. 2. Histogram, kernel density estimate (dashed line) and Hermite
polynomial density estimates (upper panel: degree 21; lower panel: degree
14) for the the certificates of deposit rates data

by Equation (A.4.1), one needs to apply to the original data the
linear transformation, g(y) = (y − μ̂)/(

√
2σ̂), with μ̂ = 8.26

and σ̂ = 0.298, as explained in Appendix D. Equivalently,
one may make use of a Gaussian density function with mean
μ̂ and variance σ̂2 as initial estimate, generate a sequence
of orthogonal polynomial by means of the Gram-Schmidt
orthogonalization process and apply formula (24), in which
case no transformation is required. Referring to the plot of the
Kronmal-Tarter statistic shown in Figure 1, one would select
degrees m0 = 14 and m1 = 21 in accordance with the MKT
and RSKT criteria introduced in Section III-B. The Hermite
polynomial density estimates of degrees 21 and 14, which can
be evaluated from formula (29) conjunction with the Hermite
kernels specified in (A.4.1), are respectively plotted (as solid
lines) in the upper and lower panels of Figure 2 along with
a two-stage plug-in kernel density estimate with bandwidth
0.0913129 (dashed line) and a 13-bin histogram of the data.
As expected, the density estimates exhibit two main modes.
It should be observed that the higher-degree density estimate
captures a possibly spurious third mode of lesser importance
which is present in the left tail of the histogram.

B. The Galaxy Velocities Data Set
In this case, the proposed density estimation methodology

is applied to a data set consisting of 82 galaxies velocities
in km/sec from 6 well-separated conic sections of an unfilled
survey of the Corona Borealis region. Multimodality in such
surveys is evidence for voids and superclusters in the far
universe. This data set has been previously analyzed in [22].
It is often used as a benchmark example in mixture analysis.
Given that the modes are clearly separated, a mixture of three
Gaussian density functions—weighted in proportion to the
number of points included in each of the three subintervals—
was used as base density. The associated orthogonal poly-
nomials were generated from Equation (7). For illustrative

Fig. 3. Two kernels for the galaxy velocities data. K4(x, 20828.2): short
dashes; K8(x, 20828.2): long dashes

Fig. 4. The Kronmal-Tarter statistic for the galaxy velocities data

purposes, two kernels are plotted in Figure 3, one of degree
four and the other of degree eight. The number of terms
in the polynomial component of the density estimates were
determined by applying the MKT and the RSKT stopping
criteria (both described in Section III-B). It is seen from Figure
4 that m0 = 16 and m1 = 23. The resulting density estimates
of degrees 23 and 16, which can be obtained from (27) in terms
of the sample moments or from (29) in terms of kernels, are
respectively plotted in the upper and lower panels of Figure
5 along with a two-stage plug-in kernel density estimate with
bandwidth 1155.33 (the dashed line in both panels) and a 30-
bin histogram of the data.

APPENDIX A
LEGENDRE POLYNOMIAL KERNELS

Let ϕL
k (x) =

∑k
�=0 δL

k,� x� denote a kth degree Legendre
polynomial; then the coefficient of x� as given explicitly in
[8] in a compact form is

δL
k,�

=
(−1)k + (−1)�

2k+1

(−1)
3k−�

2 (k + �)!
Γ(k−�

2 + 1) Γ(k+�
2 + 1) �!

, � = 0, 1, . . . , k,

so that δL
n,n = 2n!/

(
2n(n!)2

)
. In this case, the support

is (−1, 1), the weight function is w(x) = 1/2 , and the
orthogonality factor is θm = 2/(2m + 1) . Thus, according
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Fig. 5. Histogram, kernel density estimate (dashed line) and mixture of three
normals polynomial density estimates (upper panel: degree 23; lower panel:
degree 16) for the galaxy velocities data

to (23), the mth degree kernel associated with the Legendre
polynomials is

Km(x, xi) =
(m + 1)

2

(
ϕL

m+1(x) ϕL
m(xi) − ϕL

m(x) ϕL
m+1(xi)

)
x − xi

(A.1.1)
where ϕL

k (x) =
∑k

i=0 δL
k,i xi denotes a Legendre polynomial

of degree k.
In order to estimate a density function defined on the

interval (a, b) in terms of Legendre polynomials, one must
first apply the linear transformation,

g(y) =
2y − (a + b)

b − a
, (A.1.2)

which maps the interval (a, b) onto the interval (−1, 1). The
density estimates are then obtained either from Equation (27)
or Equation (29) in conjunction with the kernel representation
given in (A.1.1) after letting τ = a+b

2 and ν = b−a
2 , referring

to (26).

APPENDIX B
JACOBI POLYNOMIAL KERNELS

The following explicit representation of the coefficients of a
kth degree Jacobi polynomial with parameters α and β whose
support is the interval (−1, 1), is given in [8]:

δα,β
k,� =

∑k
h=0

∑�
j=0

(k + α)! (k + β)! (−1)k−h−�+j

2k(k + α − h)! j! (β + h)! (h − j)! (� − j)! (k − h − � + j)!
(A.2.1)

and as shown in [17], δα,β
n,n = Γ(2n+α+β+1)

2n n! Γ(n+α+β+1) . In this case,
the weight function and mth degree orthogonality factor are
respectively w(x) = (1 − x)α(1 + x)β , −1 < x < 1, and

θm =
2α+β+1Γ(m + α + 1) Γ(m + β + 1)

m! (2m + α + β + 1) Γ(m + α + β + 1)
, (A.2.2)

the normalizing constant c being equal to Γ(α + β +
2)/

(
2α+β+1 Γ(α + 1) Γ(β + 1)

)
. Thus, the mth degree Ja-

cobi polynomial kernel is

Km(x, xi) = (1 − x)α(1 + x)β (m + 1)(m + α + β + 1)
(2m + α + β + 2)

× m! Γ(m + α + β + 1)
2α+β Γ(m + α + 1) Γ(m + β + 1)

×
(
ϕα,β

m+1(x)ϕα,β
m (xi) − ϕα,β

m (x)ϕα,β
m+1(xi)

)
(x − xi)

,

where ϕα,β
k (x) =

∑k
i=0 δα,β

k,i xi denotes a Jacobi polynomial
of degree k with parameters α and β. The Jacobi polynomial
kernels behave similarly to the the Legendre polynomial
kernels.

The transformation specified by Equation (A.1.2) for distri-
butions whose support is the interval (a, b) also applies in this
case. Letting μ̂Y (j) denote the jth sample raw moment of the
original observations, the parameters α and β are estimated
as follows by matching the moments of Y to those of the
normalized weight function:

α̂ =
(b − μ̂Y (1))(μ̂Y (2) + ab − (a + b)μ̂Y (1))

(b − a)(μ̂Y (1)2 − μ̂Y (2))
− 1 (A.2.3)

and

β̂ =
(μ̂Y (1) − a)(μ̂Y (2) + ab − (a + b)μ̂Y (1))

(b − a)(μ̂Y (1)2 − μ̂Y (2))
−1. (A.2.4)

APPENDIX C
LAGUERRE POLYNOMIAL KERNELS

In the case of the Laguerre polynomials with parameter φ,
the support is the interval (0,∞),

δφ
k,� =

(−1)�Γ(k + φ + 1)
(k − �)! Γ(φ + � + 1) �!

and δφ
n,n = (−1)n/n!. Moreover, w(x) = xφe−x, c =

1/Γ(φ + 1) and θm = Γ(φ + m + 1)/m! . Thus, according
to (23), the mth degree Laguerre polynomial kernel is given
by

Km(x, xi)

= −xφe−x
(m + 1)!

(
ϕφ

m+1(x) ϕφ
m(xi) − ϕφ

m(x) ϕφ
m+1(xi)

)
Γ(φ + m + 1) (x − xi)

,

where ϕφ
k(x) =

∑k
i=0 δφ

k,ix
i denotes a kth degree Laguerre

polynomial with parameter φ.
Let μ̂Y (j), j = 0, 1, 2, . . . , denote the jth sample moment

associated with a random variable Y for which a gamma
distribution is a suitable initial approximation, and let ν̂ =(
μ̂Y (2)− μ̂Y (1)2

)
/μ̂Y (1), and φ̂ = (μ̂Y (1)/ν̂)−1. Then, the

transformation, g(y) = y/ν̂, is required since the scaling factor
in the weight function is one. The resulting density estimates
are obtained either from Equations (27), (28) or (29) with
τ = 0 and ν and φ respectively estimated by ν̂ and φ̂.
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APPENDIX D
HERMITE POLYNOMIALS KERNELS

As for Hermite polynomials,

δH
k,� =

((−1)k + (−1)�)(−1)
3k−�+2

2 2
(k+�−2)

2 k!
(k − �)! �!

k−�
2∏

j=0

(2j − 1),

and δH
n,n = 2n. Their associated weight function and or-

thogonality factor are respectively w(x) = e−x2
and θm =√

π 2m m! , the normalizing constant c being equal to 1/
√

π.
Thus, the mth degree kernel associated with Hermite polyno-
mials is

Km(x, xi)

= e−x2 1√
π 2m+1 m!

ϕH
m+1(x)ϕH

m(xi) − ϕH
m(x)ϕH

m+1(xi)
(x − xi)

,

(A.4.1)
where ϕH

k (x) =
∑k

i=0 δH
k,ix

i denotes a kth degree Hermite
polynomial.

In this case, the appropriate transformation is g(y) = y−μ̂√
2σ̂

where μ̂ and σ̂ are respectively the sample mean and sample
standard deviation of the original observations, so that τ is μ̂
and ν is

√
2 σ̂ in Equations (27), (28) and (29). We note that

this transformation produces a distribution having mean zero
and variance 1/2, as is the case for the normalized weight
function π−1/2 e−x2

.
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