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Ordinal Regression with Fenton-Wilkinson Order
Statistics: A Case Study of an Orienteering Race

Joonas Pääkkönen

Abstract—In sports, individuals and teams are typically interested
in final rankings. Final results, such as times or distances, dictate
these rankings, also known as places. Places can be further associated
with ordered random variables, commonly referred to as order
statistics. In this work, we introduce a simple, yet accurate order
statistical ordinal regression function that predicts relay race places
with changeover-times. We call this function the Fenton-Wilkinson
Order Statistics model. This model is built on the following educated
assumption: individual leg-times follow log-normal distributions.
Moreover, our key idea is to utilize Fenton-Wilkinson approximations
of changeover-times alongside an estimator for the total number
of teams as in the notorious German tank problem. This original
place regression function is sigmoidal and thus correctly predicts
the existence of a small number of elite teams that significantly
outperform the rest of the teams. Our model also describes how place
increases linearly with changeover-time at the inflection point of the
log-normal distribution function. With real-world data from Jukola
2019, a massive orienteering relay race, the model is shown to be
highly accurate even when the size of the training set is only 5%
of the whole data set. Numerical results also show that our model
exhibits smaller place prediction root-mean-square-errors than linear
regression, mord regression and Gaussian process regression.

Keywords—Fenton-Wilkinson approximation, German tank
problem, log-normal distribution, order statistics, ordinal regression,
orienteering, sports analytics, sports modeling.

I. INTRODUCTION

CLASSIFICATION refers to machine learning methods

where the target variable is a discrete class, while

regression is typically associated with continuous variables.

However, when the number of classes is large, yet discrete,

it becomes challenging to make a distinction between

classification and regression. Ordinal regression, also known

as ordinal classification, refers to regression with a target that

is discrete and ordered. It can thus be regarded as a hybrid

mixture of both classification and regression.

Typical applications of ordinal classification include age

estimation with an integer-valued target, advertising systems,

recommender systems, and movie ratings. For additional

insight into recent developments of related machine learning

methods, the reader is kindly directed, e.g., to [1] for a survey

on ordinal regression, and to [2] for a survey on deep learning.

Ordinal regression lends itself especially well to ordered

sets. In sports, all result lists are ordered sets with respect to

results such as times, distances or points. Thus, for a given

result, ordinal regression could predict the final rankings, i.e.,
the places of teams or individual athletes. Here we conduct

a case study of ordinal regression on the ranks of sorted

sums of random variables of the duration of a relay. To be
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more specific, we study a large number of realizations of the

changeover-times of an orienteering relay race.

We compare three widely-used regression schemes to an

original ordinal classification method, the derivation of which

is attributed to algebraic manipulations and well-known results

concerning ordered random variables. Such random variables

are known as order statistics, and they represent a branch

of mathematical statistics closely related to extreme value
theory (EVT). While sports analytics has seen several EVT

applications for record values [3], [4], in this work we do not

focus on extreme values but rather order statistics in general.

As an underpinning educated assumption, we say that

individual leg-times are log-normal. We furthermore assume

the log-normality of changeover-times, which is due to the

Fenton-Wilkinson approximation [5]–[7]. We also note that

while there exist explicit expressions for the expectations

of log-normal order statistics [8], for our purposes these

expressions are unnecessary as scaling the log-normal

distribution function directly produces a place predictor.

According to the principle of maximum entropy [9], one

could argue that the amount of uncertainty in the relay system

increases with time, and that changeover-times thus tend to

follow a maximum entropy distribution, such as the log-normal

distribution. In practice, though, the log-normality assumption

follows from the observation that marathon finish-times exhibit

log-normality [10]. We show that a log-normal shape also fits

orienteering data, which is to be expected given that both

marathon running and orienteering are endurance sports.

Unlike prediction models for individual marathon race

finish-times [11], [12], here we consider orienteering relay

team place prediction. As a distinctive element of our work,

rather than predicting times, we are interested in predicting

places. It is often the place that is the hard, quantitative result

that many teams wish to minimize. Thus, place prediction is

of particular interest.

The main contributions of this work are the introduction and

the validation of what we refer to as the Fenton-Wilkinson

Order Statistics (FWOS) model. For a case study of an

orienteering race with real-world data, numerical results show

that FWOS accurately predicts places even with very few

training examples. Further, FWOS plots correctly illustrate that

place increases sigmoidally with changeover-time.

II. SYSTEM MODEL

Consider an orienteering relay race. Let n denote the

number of finishing teams as we ignore disqualified and retired

teams. There are m runners on each team and each runner

runs one leg. Each leg is immediately followed by another at

a changeover until the end of the relay.
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Leg-time is the time result of an individual runner. Leg-times

correspond to independent but not identically distributed

random variables Zi with i ∈ Nm := {1, 2, . . . ,m}.
Changeover-time is a team’s cumulative time after l legs.

Changeover-time random variable T (l) after leg l ∈ Nm is

defined as the sum of the first l leg-times, i.e.,

T (l) :=
l∑

i=1

Zi. (1)

Note that, technically, there is no changeover l = m since

“changeover” m is the finish. Also note that the final team

finish-time result list of the relay race is a length-n sample of

T (m) sorted in ascending order.
In this article, place always refers to the final team ranking

after all the m legs. The changeover-time of the team that

arrives at changeover l as the rth team out of n teams is the

realization of random variable T
(l)
r:n. Such a sorted random

variable is called an order statistic.
Changeover-time order statistic T

(l)
r:n, with changeover

ranking r ∈ Nn := {1, 2, . . . , n}, satisfies

T
(l)
1:n ≤ T

(l)
2:n ≤ · · · ≤ T (l)

r:n ≤ · · · ≤ T (l)
n:n.

Finish-time order statistic T
(m)
r:n , with place r ∈ Nn, satisfies

T
(m)
1:n ≤ T

(m)
2:n ≤ · · · ≤ T (m)

r:n ≤ · · · ≤ T (m)
n:n .

Especially note that T
(m)
1:n is the total time of the winning team.

Let c < n denote the number of training observations. For

each leg l, the training observations are chosen uniformly at

random from the realizations of all n changeover-times and

their corresponding places. Hence, we are given c realizations

of T (l), i.e., a changeover-time training vector

tl =
(
t
(l)
1 , . . . , t(l)c

)
∈ R

c
+

at changeover l, and the corresponding place training vector

r = (r1, . . . , rc) ∈ Bc,

where Bc := {S ⊂ Nn : |S| = c} denotes the set of all proper

c-subsets of Nn = {1, 2, . . . , n}. Hence, tl are realizations of

T (l) and r are the corresponding place examples.

Problem formulation: Let t
(l)
i denote a changeover-time

with index i at changeover l and ri denote the corresponding

place. Our primary task is to find a place predictor function

Υ(l) : R+ → N; t �→ Υ(l)(t) that satisfies

Υ(l)
(
t
(l)
i

)
≈ ri (2)

as accurately as possible. We want the prediction error, i.e.,
the approximation error of (2), to be as small as possible. In

this work, we use the RMSE loss function to measure this

prediction error, as will be discussed later in Section IV-B.

III. REGRESSION MODELS

1) Linear Regression: This regression model refers to the

traditional Ordinary Least Squares (OLS) regression rounded

to the nearest integer. OLS finds the intercept and slope that

minimize the residual sum of squares between the observed

targets and the targets predicted by the linear approximation.

Fitting a straight line to the data reflects an initial, uneducated

guess that place increases linearly with changeover-time.

2) Gaussian Process (GP) Regression: A GP is a

nonparametric model that can manage exact regression up to a

million data points on commodity hardware [13]. For a pair of

training vectors (tl, r), a GP is defined by its kernel function

k(·, ·), a c×c kernel matrix Ktltl with covariance values for all

training pairs, and a c-dimensional vector ktlt with evaluations

of the kernel function at training point vector tl and t. A

Gaussian process predicts an arbitrary, unknown function g(·).
For kernel matrix K̂tltl = Ktltl + σ2

0I , with additive

Gaussian noise with zero mean and variance σ2
0 , the expected

value of the zero mean GP predictive posterior distribution

with a Gaussian likelihood is E(g(t) |tl, r) = kᵀ
tlt
K̂−1

tltl
r [14].

Hence, we define the GP place predictor as

Υ
(l)
GP(t) :=

[
kᵀ
tlt
K̂−1

tltl
r],

where [·] denotes rounding to the nearest integer.
For numerical implementations of exact GP, we utilize the

readily available GPyTorch Python library with a radial basis

function (RBF) kernel exactly as in the “GPyTorch Regression

Tutorial” in [15] as a black box solution.
3) Mord Regression: This regression model refers here

to the regression-based model from the readily available

Python mord package for ordered ordinal ridge regression. It

overwrites the ridge regression function from the scikit-learn

library and uses the (minus) absolute error as its score function

[16], [17]. For numerical implementation, we use the mord

package exactly as in [16] as a black box solution.
4) Fenton-Wilkinson Order Statistics (FWOS) Regression:

Let [·] denote rounding to the nearest integer, let Φ(·) denote

the cumulative distribution function (c.d.f.) of the standard

normal distribution, let log(·) denote the logarithm, let (μ̂l, σ̂l)
be the maximum likelihood estimates (MLE) of the log-normal

parameters, and let r(c) denote the maximum of c place

observations {ri} with i ∈ Nc := {1, 2, . . . , c}.
The FWOS regression model is defined as follows.

Proposition 1. For c pairs of random changeover-time–place
training observations, the FWOS regression function

Υ
(l)
FWOS(t) :=

[
Φ

(
log t− μ̂l

σ̂l

)(
1 +

1

c

)
r(c)

]
(3)

predicts place with changeover-time t = tl at changeover l.

The derivation of (3) is deferred to the Appendix.
Loosely speaking, Proposition 1 states that FWOS

approximates place with the expected changeover-ranking for

a given changeover-time. We anticipate that this approximation

holds to a satisfactory degree and that it improves with l.

IV. NUMERICAL RESULTS

Real-world data are acquired from the publicly available

results of the prestigious annual orienteering relay Jukola,

where there are m = 7 runners on each team. We specifically

use the results of Jukola 2019 [18], where there are n = 1653
teams. The regression models are trained for two cases: 1)

for c = 1322 (c/n ≈ 80%), and 2) for c = 82 (c/n ≈ 5%),
randomly chosen pairs of changeover-time–place training

observations for each of the seven legs. In both cases, the

rest of the data are used for testing the regression models.
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Fig. 1 Place prediction (red crosses) against changeover-time at changeover l = 4 with training set size 80% and test set (blue circles) size 20% for all the
four tested regression models. FWOS regression captures the sigmoidal nature of the data.

Fig. 2 Place prediction (red crosses) against changeover-time at changeover l = 4 with training set size 5% and test set (blue circles) size 95% for all the
four tested regression models. The prediction performance of FWOS is similar to that of Fig. 1 despite the significantly smaller number of training points.
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A. Curve Fits
Fig. 1 plots place against changeover-time (in minutes) after

leg l = 4 for the predictions (red crosses) and the test set (true

values, blue circles) for all the four regression models for a

random training set, the size of which is 80% of the data set.
Linear regression and GP regression provide reasonable

predictions for a large portion of the test set, but behave

poorly when time is large. For average-performing teams, with

approximately 350 to 550 minutes of elapsed time at the 4th

changeover, place seems to grow linearly with time.
Mord regression captures the effect where place saturates for

large values of time, but fails to provide a smooth transition.

FWOS regression, unlike the other models, indeed exhibits the

smooth sigmoidal behavior of the data.
Interestingly, the red FWOS curve in Fig. 1 suggests that

there exists a rather small number of elite teams that “pull
away” from the rest of the teams, as suggested by the convex

part of the curve, while extremely slow teams fall far behind

the rest, as suggested by the concave part of the curve. If the

curve was convex everywhere, no teams would fall far behind,

while if the curve was concave everywhere, there would be no

elite teams that distinctively pull away from the rest.
In Fig. 2, there are significantly fewer training data

compared to Fig. 1, namely, 5% compared to 80%. Yet, linear,

mord and FWOS regression provide similar fits compared to

those of Fig. 1, whereas GP greatly suffers from the lack of

training data especially with high values of changeover-time.
The poor performance of GP regression may be due to,

e.g., suboptimal hyperparameter values. While it is true that

optimizing the GP method could improve its performance, it

is extremely unlikely that an optimal GP could significantly

outperform FWOS and we thus leave optimizing the GP

method outside the scope of this work. Similar reasoning

renders optimizing the mord method unnecessary.

B. Root-Mean-Square Errors (RMSEs)
To measure the error between place prediction Υ(l)(ti) and

the corresponding true value ri of a test set with data point

indices i ∈ Nv , where v = n− c is the size of the test set, we

use the root-mean-square error (RMSE)

RMSE
(
Υ(l)

)
:=

√√√√1

v

v∑
i=1

(
Υ(l)(ti)− ri

)2
(4)

as a functional. We anticipate that (4) decreases with l because

the chances of overtaking diminish as the relay progresses1.
Fig. 3 plots the RMSEs after each of the m = 7 changeovers

for a small random test set of v = 331 test points (a large

training set with c/n ≈ 0.80 as in Fig. 1), while Fig. 4 plots

the RMSEs for a large random test set of v = 1571 test points

(a small training set with c/n ≈ 0.05 as in Fig. 2). We notice

similar RMSEs for both training set sizes for linear, mord and

FWOS regression. However, when the training set is small, the

error performance of the GP regression model unexpectedly

deteriorates with l, as shown in Fig. 4.

1For the same reason, the relay can be regarded as a composition of random
permutations πl ∈ Perm(Nn) of an ordered place set Nn, where permutation
πl at changeover l “approaches” the identity permutation as l increases.

Fig. 3 RMSEs for each changeover (l) with training set size 80%. FWOS
displays the lowest RMSE values, and the FWOS RMSE curve seems to

decrease linearly with changeover l.

Fig. 4 RMSEs for each changeover (l) with training set size 5%. FWOS
regression provides the best results for all changeovers. The error

performance of FWOS is comparable to that of Fig. 3 despite the small
amount of training data.

Figs. 3 and 4 show that FWOS exhibits the lowest RMSE

values when compared to the other models. However, the

RMSEs are not zero even for the 7th changeover, i.e., after

the anchor leg when the team finishes. This is due to

the imperfections of the regression models and the random

fluctuations of the data.

C. Log-normal Statistics

To study the full data set, Table I tabulates leg-distances,

changeover-distances and log-normal statistics including the

changeover-time mean w = E
[
T (l)

]
= exp

(
μl + σ2

l /2
)

and

the changeover-time mode u = exp
(
μl − σ2

l

)
for changeover

l. The changeover-specific log-normal parameters μl and σl

are found through maximum likelihood estimation (MLE) over

the whole data set.

Further, in Table I, s denotes the leg-distance (in kilometers)
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TABLE I
LOG-NORMAL STATISTICS OF JUKOLA 2019 CHANGEOVER-TIMES

l s
∑

s w Δw u Δu

1 10.7 10.7 107.5 107.5 99.5 99.5
2 10.4 21.1 219.4 111.9 203.5 104.4
3 13.1 34.2 355.5 136.1 331.7 128.2
4 7.2 41.4 452.1 96.6 419.6 87.9
5 7.7 49.1 555.5 103.4 513.3 93.7
6 11.0 60.1 682.8 127.3 633.4 120.1
7 12.8 72.9 815.4 132.6 760.7 127.3

and
∑

s denotes the cumulative changeover-distance (in

kilometers) covered in total at changeover l. Also the change

in the mean (Δw) and the change in the mode (Δu) compared

to the previous changeover are shown.

Here the mode is a rising point of inflection, i.e., a point

where the 2nd derivative of the c.d.f. fit changes its sign from

positive to negative. Interestingly, and loosely speaking, at this

point place increases linearly with changeover-time. Figs. 1

and 2 suggest that the FWOS mode for changeover 4 is around

420 (minutes). Around that time teams arrive at the changeover

at approximately constant intervals.

Table I reveals that changeover 3 yields the largest

increases in the changes of both changeover-time means and

changeover-time modes. Therefore, we may argue that leg 3

(colloquially: the long night) is the most important leg.

The 3rd leg in Jukola 2019 was only slightly longer than the

anchor leg, but for the faster teams the 3rd leg is a night leg

as opposed to the anchor leg which is run in daylight. Night

orienteering is typically somewhat slower than orienteering

in daylight. However, for the slower teams, the 3rd leg is in

practice a dawn leg, or even a day leg, rather than a night leg.

D. Additional Remarks

The leg-distance of a certain leg is not exactly equal

for each team as all the legs in Jukola are forked: not all

teams visit exactly the same control points on any given

leg. In this manner, individual orienteering is enforced even

in packs of runners. However, running in packs is common

especially on the 1st leg and after restarts. Pack running may

distort leg-time distributions and thus erode our prediction

performance. Orienteers typically arrive at changeovers in

bursty clusters – a phenomenon not captured by the smooth

FWOS model.

V. CONCLUSIONS

This work has shed light on the numerical nature of

relay races. We have introduced the Fenton-Wilkinson Order

Statistics (FWOS) model in order to predict discrete places

with continuous changeover-times. A real-world case study

of an orienteering relay race has verified the accuracy of

FWOS even with few training data. Based on these results,

we advocate properly scaled log-normal c.d.f. fits for both

place against leg-time plots and place against changeover-time
plots. We also conjecture that, e.g., ultramarathons exhibit

log-normal characteristics. Our results may further bring better

understanding of pacing and pack clustering in large-scale

endurance running sporting events.

APPENDIX

DERIVATION OF FWOS REGRESSION FUNCTION

Let us make the following two well-educated assumptions.

Assumption 1: Each individual leg-time Zi is log-normal.

Assumption 2: Each changeover-time T (l) is log-normal.

The log-normal distribution often appears in sciences [19].

Assumption 1 is based on the log-normality of travel time,

such as vehicle travel time [20], and, more importantly

with regard to an endurance running application, marathon

finish-times exhibit a log-normal shape [10].

Assumption 2 concerns the sum of log-normal random

variables as described in (1). While it is widely-known that

a closed-form expression does not exist for the density of a

log-normal sum, it is commonly approximated by the partly

folkloric Fenton-Wilkinson (FW) method [5]–[7]. This method

models log-normal sums with another log-normal random

variable. Zi and T (l) are thus both assumed to be log-normal

but not identically distributed as their log-normal parameters

are different except for the special case when i = l = 1.

We can now derive the FWOS regression predictor function

Υ
(l)
FWOS(·) defined in (3). To achieve this, we utilize the

following two well-known preliminary tools in elementary

probability theory.

Tool 1: Let W denote a random variable that follows

the standard uniform distribution U(0, 1) and let T (l) follow

distribution F . Let Wr:n denote the rth order statistic of a

length-n sample of W . The rth order statistic of a length-n
sample of T (l) has the same distribution as the inverse

cumulative distribution function (c.d.f.) of F at Wr:n

Tool 2: The rth standard uniform order statistic follows

Beta(r, n − r + 1). Therefore, the expected value of Wr:n is

E(Wr:n) = r/(n+ 1).
The inverse c.d.f. of F is known as the quantile function

QF (·). Tool 1 can be thus expressed as

T (l)
r:n

d
= QF (Wr:n), (5)

where “
d
=” reads “has the same distribution as”. Hence,

applying Tool 2 to (5) yields the expected value2 of T
(l)
r:n as

E(T (l)
r:n) = QF

(
r

n+ 1

)
. (6)

Let F be the log-normal distribution with c.d.f. FT (l)(·). Now

(6) directly implies FT (l)

(
E(T

(l)
r:n)

)
= r/(n+ 1) and hence

FT (l)

(
E(T (l)

r:n)
)
(n+ 1) = r. (7)

For large n, as in our case study, it is fair to assume that

∀t ∈ R+, ∃r ∈ Nn such that

E

(
T (l)
r:n

)
≈ t. (8)

Combining (7) and (8), we arrive at FT (l)(t)(n+1) ≈ r, which

resembles (2) as desired.

2Explicit expressions for the expected values of T
(l)
r:n, i.e., the expected

changeover-times for changeover-ranking r out of n teams at changeover l,
can be found through [8, Theorem 1]. However, finding such expected values
is unnecessary for our specific purposes.
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The log-normal c.d.f. is

FT (l)(t) = Φ

(
log t− μl

σl

)
, (9)

where

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−τ2

2

)
dτ

is the standard normal c.d.f., and μl and σl are the log-normal

parameters.

We plug (8) and (9) into (7) and, after rounding, arrive at[
Φ

(
log t− μl

σl

)
(n+ 1)

]
≈ r, (10)

where [·] denotes rounding to the nearest integer.

Maximum likelihood estimation (MLE) for the normal

distribution yields log-normal estimators for μl and σl as

(μ̂l, σ̂l) =

⎛⎝1

c

c∑
i=1

q
(l)
i ,

√√√√1

c

c∑
i=1

(
q
(l)
i − μ̂l

)2

⎞⎠ (11)

by setting q
(l)
i := log t

(l)
i .

What remains to be done is finding an estimate for the total

number of teams n to estimate the scaling factor (n + 1) in

(10). We assume that there are no ties, which is equivalent to

stating that the elements in the training set r are unique. Thus,

r is a length-c sample, without replacement, of the discrete

uniform distribution U [1, n].
Now recall that r corresponds to an ordered Bc (an

ordered proper c-subset of Nn). Let D denote a random

variable that follows U [1, n]. Estimating the parameter n
of U [1, n], with a sample drawn without replacement, is in

the literature known as the German tank problem [21]. A

uniformly minimum-variance unbiased estimator (UMVUE)

for this parameter is given in [22] as

n̂ =

(
1 +

1

c

)
r(c) − 1, (12)

where

r(c) = max
i∈Nc

ri

is the realization of the cth order statistic (maximum) of a

length-c sample of D.

We plug the pair (μ̂l, σ̂l) of (11) into (10). We plug (12)

into the n of (10). This concludes the derivation.
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