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Abstract—The concept of order reduction by least-squares 
moment matching and generalised least-squares methods has been 
extended about a general point ‘a’, to obtain the reduced order 
models for linear, time-invariant dynamic systems. Some heuristic 
criteria have been employed for selecting the linear shift point ‘a’, 
based upon the means (arithmetic, harmonic and geometric) of real 
parts of the poles of high order system. It is shown that the resultant 
model depends critically on the choice of linear shift point ‘a’. The 
validity of the criteria is illustrated by solving a numerical example 
and the results are compared with the other existing techniques. 
 

Keywords—Integral square error, Least-squares, Markov 
parameters, Moment matching, Order reduction.  

I. INTRODUCTION 
HE mathematical description of most physical systems is 
carried out using theoretical considerations. In the time 
domain or state space representation, the modelling 

procedure leads to a high order state space model and a high 
order transfer function model in frequency domain 
representation. It is often desirable for control and other 
purposes to represent such models by equivalent lower order 
state variable or transfer function models. Model order 
reduction techniques for both types of reduction have been 
proposed by several researchers. A large number of methods 
[1-8] are available in the literature for order-reduction of 
linear continuous systems in time domain as well as in 
frequency domain. In spite of the significant number of 
methods available, no approach always gives the best results 
for all systems. Almost all methods, however, aim at accurate 
reduced models for a low computational cost. In addition, it is 
desired to preserve the stability of the original model; i.e., 
given a stable high order model, the reduced order model 
should also be stable. 

A popular approach, known as Pade approximation method 
for deriving reduced order models has been based on 
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matching of the time moments of original and reduced order 
systems [9-11]. This technique has a number of useful 
properties, such as, computational simplicity, fitting of the 
initial time moments and the steady state values of the output 
of original and reduced order systems being the same for input 

of the form i
i tα∑ .  This simple technique usually gives 

good results and is not computationally demanding. A well-
known drawback of this method, however, is that an unstable 
reduced model might arise from a stable model. To remedy 
this situation, several variants of the method have been 
proposed. One such technique [12] suggests using a least-
squares time moment fit to obtain a reduced transfer function 
denominator, and then obtain the numerator by exact time 
moment matching. A suggestion to make this technique [12] 
less sensitive to the pole distribution of the original system, 
was proposed by Lucas and Beat [13], in which the linear shift 
point was about a general point ‘a’, where (1 )a ≈ − α  and 
−α  is the real part of the smallest magnitude pole. 

Further, the method of model order reduction by least-
squares moment matching was generalised [14] by including 
the Markov parameters in the process to cope with a wider 
class of transfer functions. On the other hand, Aguirre [15] 
has argued that one of the chief advantages of the least-
squares Pade (LS-Pade) method is that additional information 
concerning the original system over the mid-frequency range 
is included in the simplified model, and consequently better 
approximations are often obtained. The simplification of 
squared magnitude functions (SMF) using the LS-Pade 
method was proposed [16] as a new procedure for model 
reduction, which overcomes the jw-axis problem encountered 
in model simplification by means of SMF. 

Further, Aguirre [17] suggested a procedure, which allows 
the exact retention of poles and/or zeros in a reduced order 
model while the rest of the coefficients are calculated by 
means of least-squares matching of Pade coefficients and 
Markov parameters. A new algorithm was also suggested to 
determine the numerator of a reduced order model by means 
of least-squares technique [18], in which the only requirement 
is that the simplified denominator should be previously 
determined. 

In this paper, the concept of order reduction by least-
squares moment matching and generalised least-squares 
methods [13, 14] has been extended about a general point ‘a’, 
in order to have better approximations of high order linear, 
time-invariant dynamic systems. Some heuristic criteria have 
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been employed for selecting the linear shift point ‘a’, based 
upon the means (arithmetic, harmonic and geometric) of real 
parts of the poles of high order system. These criteria can also 
be applied to the systems in which the smallest magnitude 
pole is unity, where the existing technique of Lucas and Beat 
[13] will be equivalent to the standard expansion about s = 0, 
similar to the one as suggested by Shoji et al. [12].       

 

II. OVERVIEW OF THE METHODS  

A. Order Reduction by Least-Squares Moment Matching  
Here, the model order reduction by least-squares moment 

matching is discussed in brief [13] : 
Consider the nth order system transfer function, given by : 
  

1
0 1 1

2
0 1 2

......( )
......

n
n

n n
n

b b s b sG s
a a s a s a s

−
−+ + +

=
+ + + +

                    (1) 

 
If ( )nG s  is expanded about s = 0, then the time moment 

proportionals, ic , are given by : 
 

0
( ) i

n i
i

G s c s
∞

=

= ∑                                           (2) 

 
Similarly, if ( )nG s  is expanded about s = ∞ , then the 

Markov parameters, jm  are given by : 
 

1

( ) j
n j

j

G s m s
∞

−

=

= ∑                                                         (3) 

 
It is well-known that a reduced rth order model derived by 

the Pade approximation method [12] has a denominator 
polynomial : 

 

0
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If the ie  coefficients given by the solution of (4) do not 

constitute a stable denominator, then Shoji et al. [12] suggest 
adding another equation to this set so that the model assumes a 
matching of the next time moment from the full system : 
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or, H e c= ,  in matrix vector form, which may only be 
solved for ‘e’ in the least-squares sense using the generalised 
inverse method. This gives the denominator vector estimate 
‘e’ as : 

 
1( )T Te H H H c−=                                   (6) 

 
If this estimate still does not yield a stable reduced 

denominator, then H and c in (5) are extended by another row, 
which corresponds to using the next time moment from the 
full system in a least-squares match. 

 

B. Order Reduction by Generalised Least-Squares Method 
Here, the model reduction by generalised least-squares 

method suggested in [14] is discussed in brief : 
For a reduced rth order model of ( )nG s  in (1), given by : 
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which retains (r + t) time moments and ( )r t−  Markov 
parameters (0 )t r≤ ≤  the coefficients ke , kd  in (7) are 
derived from following set of equations : 
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where, the ic  and jm  are the time moment proportionals and 
Markov parameters of the system, respectively. Elimination of 
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the ( , 1, ..., 1)jd j t t r= + −  in (9) by substituting into (8) 
gives the reduced denominator coefficients as the solution of : 
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                                                                                         (10) 
or,   H e m=  in matrix vector form. 

 
If the denominator given by e in (10) is unstable, or has a 

singularity, then the next Markov parameter 1r tm − +  can be 
assumed to be matched by extending (9) with the equation : 

 
 1 1 2 2 1 1...t t t r td m e m e m− + + − += + + +          (11) 
 
This in effect adds another row to the H  matrix and the m 

vector in (10), given by  : 
 

1 2 0 1 2[ ... ... ]t t r tc c c m m m− − −− − −  and 1[ ]r tm − + ,  
respectively. Calculation of e  from this non-square system of 
equations can only be done in the least- squares sense, i.e. : 

 
 1( )T Te H H H m−=                          (12) 
 
If the denominator polynomial is still not adequate, then the 

H matrix and the m vector may again be extended by 
assuming a matching of the next Markov parameter in the 
sequence and (12) is solved for the new estimate of e. 

 III.     SELECTION OF ‘a’ 
Let the nth order system transfer function is given by [19] : 
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where, iP  and iZ  are the poles and zeros of the system, 
respectively.  

For this system the centroid like point ‘a’ is given by the 
arithmetic mean (A.M.) of the magnitude of real parts of iP  
( | | )ip . 

 

1
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= ∑                                           (14) 

 

After several experimentations, it has been found that for 
systems having a wide spread of poles, but dominated by 
small magnitude poles, the value of ‘a’ from the relation (14) 
becomes very large and may eventually lead to an unstable 
reduced order model. For such cases ‘a’ may be chosen to be 
the harmonic mean (H.M.) of | |ip , given by : 

 

1

1 1
| |

n

i i

n
pa =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                                  (15) 

 
‘a’ could also be chosen to be the geometric mean (G.M.) 

of | |ip , given by : 
 

( ) 1/

1
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n
i

i
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=
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Equations (14)-(16) give values for the linear shift point ‘a’.    

 IV.   LEAST-SQUARES METHODS ABOUT ‘a’ 
The following steps are to be followed to obtain the 

reduced order models by least-squares methods about a 
general point ‘a’ : 
•  Replace the high order system ( )nG s  by ( )nG s a+ , 

where the value of ‘a’ can be chosen from either A.M., 
G.M. or H.M., as described earlier. 

•  Calculate the shifted time moments ˆ( )ic  and Markov 
parameters jm̂( )  by expansion of nG s a( )+  about s = 0 

and s = ∞ , respectively, and obtain the successive 
estimates of ‘e’ using (6) and (12). 

•   Apply the inverse shift ( )s s a→ −  to the reduced 
denominator formed by ‘e’. 

•    Calculate the reduced numerator as before, by matching 
proper number of time moments of ( )nG s  to that of the 
reduced order model. 

V.    ILLUSTRATIVE EXAMPLE 
To demonstrate the validity of the criteria for selecting the 

linear shift point ‘a’ from A.M., G.M. or H.M., one numerical 
example is taken from the literature [20] and the reduced 
second-order models are found. The different models obtained 
are given in tabular forms and the general form of second-
order model is taken as :  
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The relative impulse and step integral square errors (I and J) 

are calculated to measure the goodness of the reduced order 
models, which are given by [21] : 
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2 2

0 0
[ ( ) ( )] [ ( ) ( ) ]J r t r t dt r t r dt

∞ ∞
= − − ∞∫ ∫    (19) 

 

where, g(t) and r(t) are the impulse and step responses of 
original system, respectively, and ( )g t , ( )r t  are that of their 
approximants. 
Example: Consider a third-order system given by [20] : 

2

3 3 2

8 6 2( )
4 5 2
s sG s

s s s
+ +

=
+ + +

                                         (20) 

which has the poles at 1− , 1−  and 2− . 

A. Order Reduction by Least-Squares Moment Matching 
about ‘a’ 

For such a system, where the smallest magnitude pole is 
unity, the method of Lucas and Beat [13] gives the value of 
linear shift point a = 0  and it [13] will be equivalent to the 
standard expansion about s = 0 similar to the one as suggested 
in [12]. 

Expansion about s = 0 gives the first eight time moment 
proportionals as given in Table I. Reduction to second-order 
models of type (17) by least-squares moment matching [12] 
gives the results as shown in Table II. 

 
TABLE  I 

TIME MOMENT PROPORTIONALS 

i 
ic  

0 1 

1 0.5 

2 0.75 

3 -3.375 

4 6.6875 

5 -10.3438 

6 14.172 

7 -18.0863 
 

 
TABLE  II 

COMPARISON OF SECOND ORDER MODELS 

Moments used 
in least-
squares fit 

0d  1d  0e  1e  I  J  

4 -0.2222 -1.7778 -0.2222 -1.6667 Unstable Unstable 

5 -0.1099 -0.14185 -0.1099 -0.0869 Unstable Unstable 

6 0.1110 0.6641 0.1110 0.6086 0.862037 3.361240

7 0.2798 1.1202 0.2798 0.9803 0.750469 2.574628

8 0.4026 1.4076 0.4026 1.2063 0.680474 2.176359

 
It can be seen in Table II, that the method produces quite 

different reduced models as the number of time moments 
increase and none are good approximations in terms of the I 
and J values. This is because of the rapidly increasing values 
of ic  [13], when solving (6).  

Now, by using the linear shift and choosing the value of ‘a’ 
by the heuristic criteria as described earlier, a considerable 
improvement in the values of I and J can be achieved. 

If the value of ‘a’ is selected by A.M. (a = 1.33), given by 
(14), the sequence of shifted time moment proportionals îc  is 
obtained as shown in Table III. Notice that, the rate of 
increase in the magnitude of îc  is quite small. Using these 
values of îc , the reduced second-order models are obtained as 
shown in Table IV. It is clear that the results represent a vast 
improvement in the values of I and J over those given in  
Table II and all the reduced order models are stable. 
 

TABLE  III 
SHIFTED TIME MOMENT PROPORTIONALS 

i 
îc  

0 1.335 

1 -0.038 

2 -0.103 

3 0.062 

4 -0.024 

5 0.0061 

6 0.00011 

7 -0.0015 

 
 

TABLE  IV 
COMPARISON OF SECOND ORDER MODELS 

a = A.M. = 1.33 

Moments used 
in least-
squares fit 

0d  1d  0e  1e  I  J  

4 4.3968 5.6206 4.3968 3.4222 0.070424 0.208288

5 4.4913 5.6046 4.4913 3.3589 0.067907 0.195684

6 4.5243 5.5964 4.5243 3.3342 0.067124 0.191289

7 4.5300 5.5937 4.5300 3.3287 0.067022 0.190464

8 4.5293 5.5932 4.5293 3.3285 0.067050 0.190498
 

 
Similarly, by choosing the values of linear shift point ‘a’ by 

H.M. (a = 1.2) and G.M. (a = 1.26), given by (15) and (16) 
respectively, for the same example, we will get the reduced 
second-order models as given in Table V and VI, respectively.  

 
TABLE  V 

COMPARISON OF SECOND ORDER MODELS 

a = H.M. = 1.2 

Moments used 
in least-
squares fit 

0d  1d  0e  1e  I  J  

4 4.4215 5.5667 4.4215 3.3559 0.070796 0.201389

5 4.5181 5.5244 4.5181 3.2653 0.068942 0.187106

6 4.5525 5.5034 4.5525 3.2271 0.068506 0.181879

7 4.5569 5.4969 4.5569 3.2184 0.068552 0.180972

8 4.5546 5.4959 4.5546 3.2186 0.068641 0.181169
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TABLE  VI 
COMPARISON OF SECOND ORDER MODELS 

a = G.M. = 1.26 

Moments used 
in least-
squares fit 

0d  1d  0e  1e  I  J  

4 4.2941 5.5823 4.2941 3.4352 0.074431 0.218718

5 4.3810 5.5565 4.3810 3.3660 0.072253 0.205687

6 4.4124 5.5439 4.4124 3.3377 0.071578 0.200912

7 4.4183 5.5399 4.4183 3.3308 0.071493 0.199924

8 4.4179 5.5395 4.4179 3.3305 0.071509 0.199921

 
The results obtained by the proposed methods have been 

compared with some other existing order reduction techniques 
for a second-order reduced model, as shown in Table VII. It 
can be seen in Table VII, that the values of I and J are 
comparable for the proposed and the other existing 
techniques. The unit impulse and step responses of original 
and various reduced order models (obtained by matching of 8 
time moments), are shown in Fig. 1 (a)-(b), respectively.  

 
TABLE  VII 

COMPARISON OF REDUCED ORDER MODELS 
Method  of  
order reduction 

Reduced Models; 2 ( )G s  I J 

Proposed 
method 
(a=A.M.) 

2

5.5932 4.5293
3.3285 4.5293

s
s s

+
+ +

 0.067050 0.190498 

Proposed 
method 
(a=H.M.) 

2

5.4959 4.5546
3.2186 4.5546

s
s s

+
+ +

 0.068641 0.181169 

Proposed 
method 
(a=G.M.) 

2

5.5395 4.4179
3.3305 4.4179

s
s s

+
+ +

 0.071509 0.199921 

Lucas and Beat 
[13]  (a=0) 2

1.4076 0.4026
1.2063 0.4026

s
s s

+
+ +

 0.680474 2.176359 

Lucas and 
Munro [14]  
(a=0) 

2

4.0135 1.9248
3.0511 1.9248

s
s s

+
+ +

 0.240502 0.663259 

Chuang [20] 
2

8 7.6
4.2 7.6
s

s s
+

+ +
 0.022364 0.168013 

Parthasarathy et 
al. [22] 2

8 7.6
4.2 7.6
s

s s
+

+ +
 0.022364 0.168013 

Marshall [23] 
2

12.08696 4.34783
5.34783 4.34783

s
s s

+
+ +

 0.110296 0.293657 

Chen et al. [24] 
2

1.5 0.5
1.25 0.5

s
s s

+
+ +

 0.660304 2.050886 

Pal [25] 
2

1.375 0.5
1.125 0.5

s
s s

+
+ +

 0.693272 2.200096 

Lepschy and 
Viaro [26] 2

0.906268 0.350005
0.731265 0.350005

s
s s

+
+ +

 0.821271 3.053492 

Lepschy and 
Viaro [26] 2

0.055385 0.07407
0.083481 0.07407

s
s s

+
+ +

 1.017015 6.386533 

Pal [27] 

2( 2; 2)r= =α  2

6.5 5
4 5
s

s s
+

+ +
 0.044278 0.204652 

 
(a) 

 
(b) 

 
Fig. 1 (a) Impulse responses of 3( )G s and 2 ( )G s . (b) Step responses 

of 3( )G s and 2 ( )G s . 
 

B. Order Reduction by Generalised Least-Squares Method 
about ‘a’ 

Consider the same 3rd order system [20] as taken earlier. 
Expansion about s = 0 and s = ∞  gives the first four time 
moment proportionals ( )ic  and Markov parameters ( )jm  as 
given in Table VIII. Reduction to second-order models of type 
(17) by generalised least-squares method [14] gives the results 
as shown in Table IX, where, four time moments and j  
Markov parameters are used to calculate the denominators. 
The numerators are calculated by matching exactly the first 
two time moments of the system. 

 

TABLE  VIII 
TIME MOMENT PROPORTIONALS AND MARKOV PARAMETERS  
i 

ic  j 
jm  

0 1 1 8 
1 0.5 2 -26 
2 0.75 3 66 
3 -3.375 4 -150 
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TABLE  IX 
COMPARISON OF SECOND ORDER MODELS 

j 
0d  1d  0e  1e  I  J  

0 -0.2222 -1.7778 -0.2222 -1.6667 Unstable Unstable 

1 1.0581 5.9097 1.0581 5.3806 0.195763 0.860622

2 0.8223 3.8139 0.8223 3.4027 0.303601 1.023099

3 1.2647 3.6079 1.2647 2.9755 0.302970 0.903717

4 1.9248 4.0135 1.9248 3.0511 0.240502 0.663259
 

 
It can be seen in Table IX, that the method produces quite 

different reduced order models as the number of Markov 
parameters increase and none are good approximations in 
terms of the I and J values.  

Now, by using the linear shift and choosing the value of ‘a’ 
by the heuristic criteria as described earlier, a considerable 
improvement in the values of I and J can be achieved. If the 
value of ‘a’ is selected by A.M. (a = 1.33), given by (14), the 
sequence of shifted time moment proportionals ( îc ) and 
Markov parameters ˆ( )jm  is obtained as shown in Table X. 

Using these values of îc  and ˆ jm , the reduced second order 
models are obtained as shown in Table XI. It is clear that the 
results represent a vast improvement in the values of I and J 
over those given in Table IX.  

 
TABLE  X 

SHIFTED TIME MOMENT PROPORTIONALS AND MARKOV PARAMETERS  
i 

îc  j ˆ jm  

0 1.335 1 8 
1 -0.038 2 -36.64 
2 -0.103 3 149.3112 
3 0.062 4 -570.135 

 
 

TABLE  XI 
COMPARISON OF SECOND ORDER MODELS 

a = A.M. = 1.33 

j 
0d  1d  0e  1e  I  J  

0 4.3968 5.6206 4.3968 3.4222 0.070424 0.208288 

1 -5.4355 0.6008 -5.4355 3.3185 Unstable Unstable 

2 1.2921 3.7836 1.2921 3.1375 0.286589 0.880412 

3 2.9544 4.9265 2.9544 3.4493 0.144467 0.412838 

4 3.0772 5.0238 3.0772 3.4852 0.135662 0.391526 
 

 
Similarly, by choosing the values of linear shift point ‘a’ by 

H.M. (a = 1.2) and G.M. (a = 1.26), given by (15) and (16) 
respectively, for the same example, the reduced second order 
models are obtained as given in Table XII and XIII, 
respectively.  

 

 
 
 

TABLE  XII 
COMPARISON OF SECOND ORDER MODELS 

a = H.M. = 1.2 

j 
0d  1d  0e  1e  I  J  

0 4.4215 5.5667 4.4215 3.3559 0.070796 0.201389 

1 -3.3672 1.8630 -3.3672 3.5466 Unstable Unstable 

2 1.6358 4.0394 1.6358 3.2215 0.251752 0.755593 

3 3.0071 4.9693 3.0071 3.4657 0.140601 0.403552 

4 3.0873 5.0326 3.0873 3.4889 0.134925 0.389877 
 
 

TABLE  XIII 
COMPARISON OF SECOND ORDER MODELS 

a = G.M. = 1.26 

j 
0d  1d  0e  1e  I  J  

0 4.2941 5.5823 4.2941 3.4352 0.074431 0.218718 

1 -4.1885 1.3558 -4.1885 3.4500 Unstable Unstable 

2 1.4610 3.9101 1.4610 3.1796 0.269139 0.817122 

3 2.9756 4.9437 2.9756 3.4559 0.142905 0.409073 

4 3.0809 5.0271 3.0809 3.4866 0.135387 0.390916 

 
 

The results obtained by the proposed methods have been 
compared with some other existing order reduction techniques 
for a second-order reduced model, as shown in Table XIV. It 
can be seen in Table XIV, that the values of I and J are 
comparable for the proposed and the other existing 
techniques. The unit impulse and step responses of original 
and various reduced order models (obtained by matching of 4 
time moments and 4 Markov parameters), are shown in Fig. 2 
(a)-(b), respectively. 
 
 
 

 
(a) 
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(b) 

 
Fig. 2 (a) Impulse responses of 3( )G s and 2 ( )G s . (b) Step responses 

of 3( )G s and 2 ( )G s . 
 

 
TABLE  XIV 

COMPARISON OF REDUCED ORDER MODELS 
Method  of  
order reduction 

Reduced Models; 2 ( )G s  I J 

Proposed 
method 
(a=A.M.) 

2

5.0238 3.0772
3.4852 3.0772

s
s s

+
+ +

 0.135662 0.391526 

Proposed 
method 
(a=H.M.) 

2

5.0326 3.0873
3.4889 3.0873

s
s s

+
+ +

 0.134925 0.389877 

Proposed 
method 
(a=G.M.) 

2

5.0271 3.0809
3.4866 3.0809

s
s s

+
+ +

 0.135387 0.390916 

Lucas and Beat 
[13]  (a=0) 2

1.4076 0.4026
1.2063 0.4026

s
s s

+
+ +

 0.680474 2.176359 

Lucas and 
Munro [14]  
(a=0) 

2

4.0135 1.9248
3.0511 1.9248

s
s s

+
+ +

 0.240502 0.663259 

Chuang [20] 
2

8 7.6
4.2 7.6
s

s s
+

+ +
 0.022364 0.168013 

Parthasarathy et 
al. [22] 2

8 7.6
4.2 7.6
s

s s
+

+ +
 0.022364 0.168013 

Marshall [23] 
2

12.08696 4.34783
5.34783 4.34783

s
s s

+
+ +

 0.110296 0.293657 

Chen et al. [24] 
2

1.5 0.5
1.25 0.5

s
s s

+
+ +

 0.660304 2.050886 

Pal [25] 
2

1.375 0.5
1.125 0.5

s
s s

+
+ +

 0.693272 2.200096 

Lepschy and 
Viaro [26] 2

0.906268 0.350005
0.731265 0.350005

s
s s

+
+ +

 0.821271 3.053492 

Lepschy and 
Viaro [26] 2

0.055385 0.07407
0.083481 0.07407

s
s s

+
+ +

 1.017015 6.386533 

Pal [27] 

2( 2; 2)r= =α  2

6.5 5
4 5
s

s s
+

+ +
 0.044278 0.204652 

VI.    CONCLUSIONS 
The concept of order reduction by least-squares moment 

matching and generalised least-squares methods has been 
extended about a general point ‘a’, in order to have better 
approximations of  high order linear, time-invariant dynamic 
systems. Some heuristic criteria have been employed for 
selecting the linear shift point ‘a’, based upon the means 
(arithmetic, harmonic and geometric) of real parts of the poles 
of high order system. These criteria can also be applied to the 
systems in which the smallest magnitude pole is unity, where 
the existing technique [13] will be equivalent to the standard 
expansion about s = 0, similar to the one as suggested in [12]. 
A comparison of the results obtained by these criteria with the 
other existing order reduction techniques for a second-order 
reduced model is also shown as given in Tables VII and XIV, 
from which it is clear that the proposed methods are 
comparable in quality with the other existing techniques. The 
results show that the proposed criteria leads to good and stable 
reduced order models for linear time invariant systems and a 
vast improvement in the values of I and J can be achieved. 
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