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Abstract—Fuzzy logic control (FLC) systems have been tested
many technical and industrial applications as dulisaodeling tool
that can handle the uncertainties and nonlinearifenodern control
systems. The main drawback of the FLC methodologieshe
industrial environment is challenging for selectitite number of
optimum tuning parameters.

In this paper, a method has been proposed forfinttie optimum
membership functions of a fuzzy system using partiswarm
optimization (PSO) algorithm. A synthetic algoritrmambined from
fuzzy logic control and PSO algorithm is used tsige a controller
for a continuous stirred tank reactor (CSTR) withe taim of
achieving the accurate and acceptable desiredtsegal exhibit the
effectiveness of proposed algorithm, it is used oftimize the
Gaussian membership functions of the fuzzy modea afonlinear
CSTR system as a case study. It is clearly prokatithe optimized
membership functions (MFs) provided better perforogathan a
fuzzy model for the same system, when the MFs \mergistically
defined.

minimizing the output error measures or maximizing
performance indexes. The PSO optimization technigue
stochastic search through an n-dimensional probdpace
aiming the minimization (or maximization) of the jettive
function of the problem [2]. Specifically, PSO-Fla@yorithm
can be applied for the Concentration Control of BST

This paper uses from a control strategy based @n th
combination of fuzzy logic and particle swarm op#ation
techniques. The purpose is to control the conceotraf the
CSTR in the presence of the set point changes. M¥BIL
software is used for designing and simulatingse controllers
and simulating in. The performance of the proposed
controllers has been considered based on the stime sfjuare
error (SSE). The results clearly show that the H&O-
control strategy gives an acceptable performantle mespect
to the functional changes of the process. Furthezmioizzy
based structure strategy gives more flexibility gmmcise
behavior in control action in comparison to thestesquare
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|. INTRODUCTION

CONTINUES Stirred Tank Reactor (CSTR) is an importan

branch of studies in chemical processes. Thereftbeze
is a various range of researches about CSTR iaréee of the
chemical and control engineering. Various contggraaches

have been used to control the CSTR parameters. RCSI{.

involves complex reactions with high nonlinearignd it is
very hard to be controlled by the conventional radth[11].
However, to avoid computational complexity broughtby
such nonlinear controllers, FLC can be a simple suithble
alternative [10]. The main reasons for startingappear the
powerful and flexible methods are the limitatioridgraditional
approaches in dealing with constraints [13].

Bio-inspired intelligent computing has been sucfidlys
applied to solve the complex problem in recent y¢a4]. The
PSO algorithm and fuzzy logic expressed the highabaity
to overcome the issues mentioned previously [14f8ss of
the fuzzy logic, remarks the robustness of thishoetin real
environment application [8]. But, there is the ne¢efficient
method for tuning the MFs with the aim of
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Il. FUzzy CONTROLLERALGORITHM

Fuzzy logic controllers (FLCs) are organized based
killed knowledge that is in the form of rule-badsehavior.
n general the FLC rules are explicit in the folfnnput 1 is

A and input 2 is B then output is C.

where antecedents A and B are declared by MFs [4].

There are two types of expressions for consequdi.Cn
agaki-Sugeno-type FLCs, the C is expressed asearli
combination of all inputs. On the other hand, iMamdani-
type of FLC is used, C is expressed by a set of[B]F§he
procedure that is used to calculate the overaltrobaction in
FLC is determined by different type of defuzzificat
process. In general, a centre of area (CoA) meihacually
used, where the output u* is computed as [5,8]:

. jun10(u)du
u=—-—
Im(u)du

The fundamental FLC loop is shown in Fig. 1. It sigts of
three major serial steps, namely Fuzzification,etlehce
engine and Defuzzification [9]. Fuzzifications centva crisp
value (real-value) into a member of fuzzy sets, lavhi
defuzzification converts the fuzzy output deterrdir®y the
inference engine into a crisp value [6].
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Fig. 1Block diagram for the FLC algorith

lll.  PARTICLE SWARM OPTIMIZATION

An optimization method that finds the optimal smat
using a population of particles [2] BSO algorithr. Each
swarm of PSO is a solution in the solution spache
algorithm can be explainexb follows [1]:

» Each individual particlé has the following properties:
current position in search spagg, a current velocityp,4, and
a personal best position in search spage, p

» The personal best positigng, corresponds to the positi
in search space where particlpresents the smallest error
determined by the objective functiof, assuming a
minimization task.

 The global best position marked by representgptisition
yielding the lowest error amongst all thg.

During the iteration every particle in the swarnugdated using th
following two equations:

Via(t+1)=w.V; () +¢,.5.(Rg -Xig (D)€, .5 (R X (DX2)
Xig(t+1)=Xq () +Vy (t+1) 3

where \j4(t+1) and \y (t) are the updated and curn
particles velocities, respectively,igX t + 1) and 24 (t) are
the updated and current particles positions, resmdy, c;

and ¢ are two positive constants andand , are normalized
unit random numbers withithe range [0,l]), anww is the
inertia weight.

v ™
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Fig. 2Flow chart depicting the General PSO Algori

IV. OPTIMAL FLC DESIGN

The approach of using a PSO for MF tuning in FL(
shown in Fig.3. In the proposed PSO process, each partit
shaped to represent the MF parameters of the Fli@sts
and outputs. As the aim of the PSO is to minimiee ¢ontrol
error of the FLC, the objective function of PSQI&fined as

f(x(k))=i £? (4)

Where t is the total running time of the FLG, is the
Control error.

PSO

FLC
AN  AE—— —_—
Inference .
Fuzzifier Ensine L‘Defuzznfiel' Plant ¢

Fig. 3 ThePSC-FLC method

The model consists of mu-input single-output (MISO)
system with n number of inputs. Tnumber of fuzzy sets for
the inputs are m My ,.., M.

There are some assumptions in the model formule
These assumptions must be defined and availabéelvance
as a basic integration of this hybrid algorithm. €
assumptions are listed as belc

(i) Gaussian membership functions were used fontimd
output variables.

(i) Complete rulebase was considered. A r-base is
considered complete when all possible combinat@fnisput
membership functions of all the input variablestipgrate in
fuzzy rule-base formation.

The integration between optimizati@lgorithm and fuzzy
logic problem is as follow:

(i) The parameters are the mean value and stal
deviation of each fuzzy membership functi

(i) These parameters act as particles anking for the
global best fitness.

(iii) It starts with an initial set of paramete

(iv) After the parameters had been adjusted u
optimization method, this parameter will be usedheck the
performance of the fuzzy logi

(v) This process is repeated until the goal isectd.

The optimization method as shown Fig. 4 starts with the
initial set of parameters and employs the fitnagsction to
obtain new values for the parameters of the merhie
function. These new Uzes will be used in the case stt
considered in this paper.

These particle dimensions represent fuzzy membe
function parameter values. The first column sholes input
and output variables. All input and output MFs bmae
different depending on their new positicThe particle size for
representing the Gaussianembership functions of input a
output variables for a model given by () and (6).

Particles Dimension for Input Variab:

2(2m ) €

where, n -number of input variables and - number of fuzzy
sets.
Particles Dimension for Output Varia:
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le (2t) (6)

where,n - number of output véables anct - number of fuzzy
sets. The particle dimensions required for enapdie fuzzy

model can be obtained in table 1

Initialization

| Ewaluate the initial particles to get phest and ghest, |
v

—b{ Next iteration 1=f+] |
v
| Get particle positions |
h 4

‘ Evaluate updated particles to get new phest and ghest ‘
L 4

Update fuzzy set parameters (mean value € and
standard deviation @ ) to build Fuzzy MF modsl

No
Stopping criteria satisfied?

Yes
| Get the optimal fuzzy set values |

END

Fig. 4Flowchart of Particle Swarm Optimization tdjust Fuzzy
Membership Function

TABLE |
PARTICLE DIMENSION FOR REPRESENTING FUZZY MODE

c g ¢ ag ... .. C g
Input

X11  X11 X12 X12 .. XIm  Xim 2ml
var #1
Iput = o1 %21 Xx22  X22 .. ... X2m  X2m  2m2
var #2
put y1 X1 xn2  Xn2 ... .. Xnm  Xnm  2mn
var #r
output

variabl Y1 Y1 Y2 Y2
e

...... Yt Yt 2t

These particle dimensiongpresent fuzzy memberst
function parameter values. The first column shokes input
and output variabledn this column, number represents
input variable. Because MISO system was considers
model only one output variable is used here BecAli SO
system was considered as model.

First row describe mean value and standard dewiatit
each membership function. The number of membe
function represent untiin variables. In the last column, 2
can be noted which means that 2 positions had bs«d and
unlimited untilm variables.

V. PROCESS DESCRIPTIONND MODEL

To demonstrate the effectiveness of the proposé&a-FLC
method, a nonlinear system is simulated. In pdeicthe case
considered in this paper is a tioear CSTR benchmai
model as shown in Fig. 5.

Ingredients in

Coolant in

Coolant out
——

Product ont

Fig. 5The schematic of CSTR[1

A common chemical system in many chemical proces
plants, known as a continuous stirred tank rea@&TR), is
utilized as a suitable test for P-Fuzzy control. within the
CSTR two chemicals are mixed, and react to proda

product compound with coentration Ca(t). The temperature

of the mixture is T(tf) A schematic representation of 1
system is shown in Figl. The reaction is exotherm
producing heat reduce the reaction rate. By intcody a
coolant flow rate gc(t), the temperature can bered and
hence the product concentration controlled. Thistesy car
be described by following nonlinear simultaneousiagipns
which effectively combine the laws of chemical téaT and
thermodynamic:

C.() =q(Cy —C, (1)) /V —K,C, (t)e¥ %

T() =T, ~T®))/V +KkC, ()™ +kaC(t).

(- €S OYT =T t)) ®)
TABLE Il
THE CSTR PARAMETER
parameter value
Process flow ratey (I min™) 100
Feed ConcentratiorC_ (mol I™*) 1
Feed temperaturey (K) 350
Inlet coolant temperatur T_, (K) 350
CSTR volumey (1) 100
Heat transfer termhA(cal min* K™*)  7x1¢°
Reaction rate constark, (min™) 7.2x10°
Activation energy term,g (K) 10"
Heat of reactionAH (cal mol™) -2x10

Liquid densities,p, 0. (gI™) 10°
Specific heatsC ,C . (cal g*K™*) 1

VI. SIMULATION AND RESULTS
To solve the CSTR model equations numerically

equationbased simulator should be used, in this article

MATLAB simulink environment is carried ot
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Fig. 6shows the feedback control system used to cons
the control system. In this diagram y (k) is thépo signal of
the plant, g(k) is the set point signal, and égkthe error. |
was implemented in MATLABwhere controllers wer
designed independently to follow the input as class
possible.

vik)
—

T ek

afk)

S

FLC CSTR

v

At
S -

p—

Random noise

Fig. 6Block diagram of the fuzzy control syste

As it shown in Fig5, uncertainty is added to the systel
output as random noise with normal distribution. e
reference input is stable and without noise butféleelback a
the summing junction is noisy since we introdu
deliberately noise for simulating the overall isting
uncertainty in the system. In consequence, theraibts
inputs e(k) (error) contain uncertain data.

The FLC outputs are equal to required temperathamges
of coolant operator valve to achieve desired cotmagar. To
control the process, twieuzzy controllers (Conventional FL!
PSO tuned FLC) is used and the results are comg

Gaussian shapes are considered for the membe
functions. For such functions seven input and dugpe uset
with the locations and centers that are showFig. 7 and 8.
Gaussian shape is selected because it is a consirfunction
and can be easily coded in a digital computer. Almaber of
fuzzy sets is chosen arbitrary, however increasivegn will
increase the number of control rules at the litt@rovenent
benefit. The relative location of their center wik adjuste:
automatically using our proposed tuning method iasudsec
later.

A. Conventional FLC

The initial MFs of the FLC for the inputs and outpare
shown in Fig6 and 7, seven fuzzy Gauss MFs are defined:
NB, NM, NS, ZE, PS, PM, and PB. The universe of discc
for these MFs are in the range df,[1] and their initial mear
are -1, -0.66,0.33, 0, 0.33, 0.66 and 1 respectively. The in
standard deviation for all MFs is 0.14. Sevuzzy rules have
been considered to construct the fuzzy rule badeasm takel
follows. Fuzzy controllers have been designed and te
based on Mamdani inference mechanism.

Membership function plots  PIot points: 181

g e ms zZE Ps M PB

input variable "error”

Fig. 7input MFs for conventional FL

Mermbership function plots  PIot points: 181 |

NS ZE = P p:a
]

04 0.2 [ 0.2 0.4
output variable “control ignal™

Fig. 8output MFs for conventional FL

Fig. 8 represents the schematic of the CSTR sima
model implemented in the MATLAB Simulink environnie

Seven fuzzy rules have been considered to construct the fuzzy
rule base. Theserules are as follows:

If (e is NB) then (valve is Pl

If (e is NM) then (valve is PN

If (e is NS) then (valve is P

If (e is ZE) then (valve is ZI

If (e is PS) then (valve is N

If (e is PM) then (valve is NN

If (e is PB) then (valve is NI

NogokrwbpE

For the FLC, the minimum operator is used as[Inorm,
and centroid methodf defuzzificatior

To evaluate the merit of each fuzzy controller, Sofnthe
Square Error (SSE) that is given by equati9) is used as
performance criteria.

©)

where ethe difference between the set point and the addt
output at they sampling, and, is the number of sampling
instants.

1 cai

T ,H

Feed Concentrstion

CSTR Temperaturs

as0

Feed Temperatule

Fig. 9CSTR simulated model in Simulink with P- FLC

1181



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

Vol:5, No:11, 2011

B. PSO tuned FLC

All of The MFs used in this FLC are Gaussian forifise
parameters that define the MFs are the mean vahredche
standard deviatiorg of each MF. The membership function
is defined as:

f (x)= e—(x—c)z/(zzﬂ) (10)

Fig. 10 and 11, show the optimized MFs of FLC
respectively. This criterion is used by PSO to eatd the
fitness of each candidate solution. This criterisrused by
PSO to evaluate the fitness of each candidateisoluBince
there are 7 input MFs and 7 output MFs, there dotad of 28
parameters that need to be tuned. Therefore, P8, each
particle is to have 28 dimensions. It is set tlre are 50
particles in the swarm and the total searchingiiens are set
to be 200. The inertiev factor was set to be 0.5 and weighting
factorsc; andc, were set to be 1.2and 0.8, respectively (see
Table Ill). The objective function that evaluates fitness of
each particle was defined as (9). Therefore, afterproper
tuning of the MFs, the FLC will have a minimizedntwl
error. Table IV shows the MF parameters before aftet the
PSO tuning process.

Membership function plots  plot points: 181

HB MK NS ZE PS PM PP

-1 -0.8 -0.8 -0.4 -0.2 ] oz 0.4 08 0.8 1
input variable “input1™

Fig. 10 Optimized input MFs for PSO- FLC

Membership function plots  plot points: 181

NB NI NS ZE Ps P PB

4 -0.2 o 0z 0.4 08 0.3 1
output variable “output1™

Fig. 11 Optimized output MFs for PSO- FLC

= -0.8 -0.5 -0

Concentration

TaABLE I
MF PARAMETERS BEFOREAND AFTERTHE PSO
MF Before PSO After PSO
output Mean(c) STD§) Mean(c) STD§)
NB -1 0.14 -1.03 0.14
NM -0.66 0.14 -0.58 0.1
NS -0.33 0.14 -0.33 0.18
ZE 0 0.14 -0 0.06
PS 0.33 0.14 0.33 0.17
PM 0.66 0.14 0.59 0.09
PB 1 0.14 0.94 0.14
MF Before PSO After PSO
output Mean(c) STD§) Mean(c) STD§)
NB -1 0.14 -1.03 0.14
NM -0.66 0.14 -0.58 0.1
NS -0.33 0.14 -0.33 0.18
ZE 0 0.14 -0 0.06
PS 0.33 0.14 0.33 0.17
PM 0.66 0.14 0.59 0.09
PB 1 0.1 0.94 0.1
TABLE IV

SSE FOR THE FLC AND Pso- FLC

Control Structure SSE
conventional FLC 27.23
tuned FLC(PSO-FLC) 22.68

0l

ol

Concentration

0085

0.08

0095

Set Point o

——FEC

L
0 15
Time

Fig. 13 Step response

for FLC

Set Point

PSO - FLCH

10 35

TS
Time

7S

Fig. 14 Step response for PSO-FLC

TABLE Il
PSOPARAMETERS FOR CSTH PROBLEM
Parameter Value
C, 1.2
G 0.8
Inertiaw factor 0.5
Number of particle 50
Searching iterations 200
Fitness SSE

Comparison between the control results obtainech frd.C
and PSO-FLC (in Fig. 13 and 14 respectively) cleaHows
that PSO-FLC has more accurate and acceptabldseather
than conventional FLC in control of the concentmatiof a
CSTR in presence of additive random noise. Theeefiris
clear that the PSO-FLC control can achieve therelésiutput
better than conventional FLC.The superior of PS@Fiver

1182



than FLC also can be seen in Tablerhere the sum of square

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:11, 2011

error (SSE) of PSO-FLC is less than conventional FL

VIlI. CONCLUSION

The results show clearly, that the optimized FLG hatter
performance in compare with a conventional corgroih
presence of additive random noise. The concentradi a

CSTR is controlled by means of two different fuzzy
controllers. According to the

simulation, the FLC with PSO algorithm is bettearhthe

conventional FLC without PSO algorithm.

disadvantage of the fuzzy controller is lacking Igtical
technique design (the selection of the rules, tlenbership
functions and the scaling factors). Therefore tI®OHFLC
controller gives robustness improvement and vendgesults
in compare with the conventional FLC controller.
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