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Abstract—A key element of many distribution systems is the 

routing and scheduling of vehicles servicing a set of customers. A 

wide variety of exact and approximate algorithms have been 

proposed for solving the vehicle routing problems (VRP). Exact 

algorithms can only solve relatively small problems of VRP, which is 

classified as NP-Hard. Several approximate algorithms have proven 

successful in finding a feasible solution not necessarily optimum. 

Although different parts of the problem are stochastic in nature; yet, 

limited work relevant to the application of discrete event system 

simulation has addressed the problem. Presented here is optimization 

using simulation of VRP; where, a simplified problem has been 

developed in the ExtendSimTM simulation environment; where, 

ExtendSimTM evolutionary optimizer is used to minimize the total 

transportation cost of the problem. Results obtained from the model 

are very satisfactory. Further complexities of the problem are 

proposed for consideration in the future. 

 

Keywords—Discrete event system simulation, optimization using 

simulation, vehicle routing problem.  

I. INTRODUCTION 

HE vehicle routing problem (VRP) is one of the most 

intensively studied problems in operations research, and 

this is due to its structural charm as well as practical 

relevance. Many papers have been devoted to the development 

of optimization[1-3]and approximation algorithms for vehicle 

routing and scheduling problems[4, 5]. This interest is due to 

the practical importance of effective and efficient methods for 

handling physical distribution situations as well as to the 

intriguing nature of the underlying combinatorial optimization 

models.The standard Vehicle Routing Problem (VRP)is an 

extension of the Travelling Salesman Problem (TSP), 

introducing demand at the customers and a fleet of vehicles, 

each having the same fixed capacity [6, 7]. 

Numerous methods have been proposed to solve the TSP. 

Finding the optimal route for a particular problem has not 

been practical for such problems when they contain many 
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points or require a solution to be found quickly. 

Computational time on the fastest computers for optimization 

methods has been too long for many practical problems. 

Cognitive, heuristic, or combination heuristic-optimization 

solution procedures have been good alternatives [8]. 

The aim of this work is threefold; to present a new 

mathematical formulation of the VRP problem that uses fewer 

decision variables, to show how to model the TSP problem as 

a discrete event simulation model, and to employ the 

developed simulation model in finding the optimum/near 

optimum solution of the problem. 

This paper is organized as follows: in Section II, the basic 

concepts of VRP and the solution techniques found in literature 

will be briefly discussed. In Section III, proposed problem 

formulations will be presented followed by the simulation model 

development and optimization using simulation in sections IV 

and V. Finally, in section VI, the conclusions drawn from this 

work are presented. 

II. LITERATURE REVIEW 

A. Problem Types 

The most addressed problem types in literature related to 

this work are: 

1. The Travelling Salesman Problem 

The TSP is one of the simplest, but still NP-hard, routing 

problems. In this problem, a set of cities to be visited and a 

way to measure the distances between any 2 cities is given. 

The tour is not complete until the vehicle returns back to its 

starting point (depot). The objective is to find the shortest tour 

that visits all cities exactly once [8, 9]. 

2.  The m-Travelling Salesman Problem 

The m-TSP is a generalization of the TSP that introduces 

more than one salesman. In the m-TSP;n citiesare given, m 

salesmen, and one depot. All cities should be visited exactly 

once by one of the msalesmen. Each tour must start and end at 

the depot and salesmen are not allowed to be unassigned to 

cities [9]. 

3.  The Vehicle Routing Problem 

The VRP calls for the determination of a set of minimum 

cost routes to be performed by a fleet of vehicles to serve a 

given set of customers with known demands; where, each 

route originates and terminates at a single depot. Each 

customer must be assigned to only one vehicle and the total 

demand of all customers assigned to a vehicle does not exceed 
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its capacity [10]. 

4. The Vehicle Routing Problem with Time Windows   

This VRPTWis an extension of the basic VRP in which 

vehicle capacity constraints are imposed and each customer i 

is associated with a time interval [ai , bi], called a time 

window, during which service must begin. In any vehicle 

route, the vehicle may not arrive at customer i after bito begin 

service. If a vehicle arrives before ai, it waits[10]. 

In these problems, the special aspect of routing is blended 

with the temporal aspect of scheduling which must be 

performed to ensure the satisfaction of the time window 

constraints[11]. 

B. Solution Approaches 

Vehicle Routing Problems have been studied extensively in 

the Operational Research literature. A good overview of exact 

and heuristic methods, together with descriptions of some 

application areas is to be found in The vehicle routing problem 

book by Toth and Vigo [12]. 

1. Exact 

Vehicle routing problems are classified as NP-hard 

optimization problems; where, solving this class ofproblemsto 

optimality has proven to be difficult to achieve. Only 

moderately sized problems can be solvedto optimality 

consistently[9]. 

Exact methods guarantee that the optimal solution is found 

if the methodis given sufficiently time and space. These 

algorithms have been used for solving the vehicle routing 

problem undercapacity constraints and the vehicle routing 

problem with time windows. These were addressedseveral 

times in literature with their mathematicalprogramming 

formulationas in [1, 2]. 

2. Approximate 

A heuristic method is a procedure that is likely to discover a 

very good feasible solution, but not necessarily an optimal 

solution, for the specific problem being considered. No 

guarantee can be given about the quality of the solution 

obtained, but a well-designed heuristic method usually can 

provide a solution that is at least nearly optimal or conclude 

that no such solution exist. Heuristic methods are based on 

relatively simple common-sense ideas for how to search for a 

good solution. Heuristics tends to be ad hoc in nature. That is, 

each method usually is designed to fit a specific problem type 

rather than a variety of applications [13].  

Several families of heuristics have been proposed for the 

VRP. These can be broadly classified into two main classes: 

classical heuristics and metaheuristics. 

• Classical Heuristics 

Classical heuristics can be classified into three categories: 

constructive heuristics, two phase heuristics and improvement 

methods [14].  

Some of the well-known VRP heuristics found in literature 

are: the insertion algorithm [12, 15], the sweep algorithm [16], 

the Clarke and Wright algorithm, the Time-Oriented Nearest-

Neighbor Heuristic, and the Time-Oriented Sweep Heuristic 

[17]. 

• Metaheuristics 

A metaheuristic is a general solution method that provides 

both a general structure and strategy guidelines for developing 

a specific heuristic method to fit a particular kind of 

problem.The role of metaheuristics is to deal with problems 

that are too large and complicated to be solved by exact 

algorithms[13]. 

Metaheuristics are general solution procedures that explore 

the solution space to identify good solutions and often embed 

some of the standard route construction and improvement 

heuristics.In a major departure from classical approaches, 

metaheuristics allow deteriorating and even infeasible 

intermediate solutions in the course of the search process[5].  

The most discussed metaheuristics approaches in literature 

for the VRP are: tabusearch [6, 10, 14, 18], genetic algorithms 

[5, 14, 19], and simulated annealing [5, 14]. 

3. Simulation 

With the growing sizeof problems and the increasing 

uncertainties in the distribution environment, simple focusing 

on algorithm research is difficult to obtain satisfactory 

solution of VRP. Simulation can effectively handle the 

problem of complex systems[20]. However, as compared with 

other Operations Research fields, where simulation techniques 

are widely used, it is still in an early stage of implementation 

in the vehicle routing problem [21]. 

III. MATHEMATICAL MODEL DEVELOPMENT 

The traveling salesman problem (TSP) and the vehicle 

routing problem (VRP) are among the most widely studied 

combinatorial optimization problems. Both problems, as well 

as their numerous extensions, deal with optimally visiting 

customers from a central depot [14, 22]. 

In order to simplify the problem, if it isassumed that the 

fleet consists of mvehiclesof sufficiently large capacity, then 

the problem reduces to the m-Travelling Salesman Problem 

(m-TSP). Inits simplest version, if it is further assumed that 

there is only one vehicle of very large capacity, then 

theproblem reduces to the well-known Travelling Salesman 

Problem (TSP). It is for this reason that theformulation for 

TSP is taken as a core model for the development of the 

mathematical formulations for more complicated cases. 

Therefore, most of the mathematical formulations of VRP are 

variants and/orextensions of the well-known TSP [23]. 

TSP is a VRP involving only one uncapacitated vehicle, 

while the m-TSP involves muncapacitated vehicles [11]. 

A. Formulation of the Travelling Salesman Problem 

As mentioned earlier, in the TSP, a set of n cites and a way 

of measuring the distance between each city is given. The 

objective is to find shortest tour that visits all cities exactly 

once and returns back to the starting city (depot) [9].  

In the model below, the starting city is considered node 1 

(depot), where i represents the current visited node and j 
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represents the next node to be visited. A distance ���,��  is 

associated with each arc and represents the distance travelled 

from node ��  to node
�; as shown in Fig. 1. 

 

 

Fig. 1 Illustration of the TSP problem 

 

Given a symmetric network, the decision variable isY
; 
where,Y
 determines the value of the next customer to be 

visited by the vehicle. �� variable represents the value of the 

start node of the arc; while,
� represents the next destination 

node, which is then considered as the start node of the 

following arc. Generally the use of loop segments is not 

allowed (leaving a node then arriving to same node,�� �  
�), 

as all nodes must be visited exactly once.���,��  is a binary 

variable to represent the passing of the vehicle on arc ��� ,
�). 

���,��  is given a value of  1 if arc  ��� ,
�) belongs to the 

optimum route, 0 otherwise.The problem can be formulated as 

follows: 
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The objective function (1) minimizes the total travel 

distance. Constraints (2) and (3) ensure that the route starts 

and ends at the depot. Constraint (4) ensures that routes are 

not segmented, that is, if a vehicle arrives at a city, it 

eventually leaves the city again; where,i and j are equal for the 

same arc. Constraints (5) and (6) state the range of values 

given (the number of nodes, n). Constraints (7) and (8) ensure 

that every city is visited exactly once. Finally, constraint (9) is 

the non-negativity constraint and guarantees that the variables 

can assume integer values only. 

B. Formulation of the m-Travelling Salesman Problem 

As mentioned earlier, the m-TSP is a generalization of the 

TSP that introduces morethan one salesman (m); hence, 

mnumber of tours can be done; each starting and ending at 

thedepot. None of the salesmen is allowed to remain 

unassigned to any city.For formulating the m-TSP, the starting 

city is considered node 1 (depot); where,i represents the 

current visited node and j represents the next node to be 

visited. Now, m routes are introduced to the model; where, 

distance ���,��  is associated with each arc and represents the 

distance travelled from node ��* to node
�*on route k, as 

shown in Fig. 2. 

 

 

Fig. 2 Illustration of the m-TSP problem 

 

The decision variables are 
�*; where,
�* determines the 

value of the next customer to be visited on route k. The ��* 

variable represents the value of the start node of the arc on 

route k. the binary variable ��� ,��
* +to a set of all possible arcs 

connecting any two nodes on route k.  ���,��
*  is given a value of  

1 if arc  ���*,  
�*) belongs to route k; 0 otherwise. The 

problem can be formulated as follows: 
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The objective function (10) minimizes the total travel 

distance on all k routes; where, m is the number of routes. 

Constraints (11) and (12) ensure that each route starts and 

ends at the depot. Constraint (13) ensures that routes are not 

segmented, that is, if a vehicle arrives at a city, it eventually 

leaves the city again, where i and j are equal for the same arc. 

Constraints (14) and (15) state the range of values given (the 

number of nodes, n). Constraints (16) and (17) ensure that all 

vehicles are being used; whereas, constraints (18) and (19) 

state that every city is visited exactly once. Finally, constraint 

(20) is the non-negativity constraint and guarantees that the 

variables can assume integer values only. 

C. Formulation of the Vehicle Routing Problem 

Further modifications are introduced to the m-TSP 

formulation to account for additional complexities of the 

capacitated vehicle routing problem in its basic form. 

Knowing that at each city, customers’ demand 1��  is present 

and that each vehicle has a limited capacity2*; constraint (21) 

ensures that the total demand of all customers assigned to a 

routek does not exceed the vehicle’s capacity. 

 

� � ���,��
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���
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Also, if there is a constraint on the total distance travelled by 

the vehicles on a route,3*, it can be presented as shown (22). 
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D. Models Validation 

In order to check the validity of the aforementioned models, 

a problem was taken from literature and was implemented in 

MS Excel. Then, using the Solver Add-in, the problem was 

solved to optimality. 

The problem, which will be used in the simulation model as 

well, assumes that a truck is to be routed from its depot to five 

stops (points coordinates are given in  

TABLE I). Stops and the origin point are identified with 

linear coordinate points. Euclidean (straight-line) distances are 

computed in terms of these coordinate points [8]. 
 

TABLE I 
DEPOT AND STOPS COORDINATES 

No. Stop X Y 

1 Depot 2 2 
2 Stop 1 3 4 

3 Stop 2 5 3 

4 Stop 3 4 1 
5 Stop 4 5 5 

6 Stop 5 4 3 

 

The optimal solution of the problem is as follows: Depot → 

Stop 1→ Stop 4→ Stop 2→ Stop 5→ Stop 3→ Depot; with a 

total route distance of 11.71. 

The other formulations were tested for validation using the 

MS Excel solver add-in, and results showed satisfactory, all 

constraints were fulfilled. 

IV. SIMULATION MODEL DEVELOPMENT 

A simulation model has been developed for the problem 

given in the previous section. The model is developed in the 

ExtendSim
TM 

environment and is divided into three main 

sections: router, customers, and total route distance calculator.  

A. Router 

The router (Fig. 3) is responsible for routing the vehicle and 

calculating travelling distance to next customer using a built-

in database having the inputs of the problem. 
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MOVE2NEXT

m

v

RS M

###
2

hold
From Depot to Next Customer

DB

FROM X

FROM Y

TO X

TO Y

Read f rom DB

D F

 

Fig. 3 Snapshot of the Router 

 

In Fig. 3, Block B is the create block which introduces 

items into the model; items here represent vehicles requiring 

routing starting at the depot. The vehicle’s next destination 

point is using the attribute Block C, which receives its 

attribute value from Block D. This attribute value is one of the 

decision variables and is defined in the optimizer Block A.  

The Euclidean distances between any two connected nodes 

is calculated at Block F using the XY coordinates of these 

nodes. XY coordinates of the current node and the destination 

node are retrieved from the built-in database using Block E. 

The database table shown in Fig. 4 includes the co-ordinates 

of all stops. After defining the attribute value of the next 

customer to visit, Block G routes the vehicle to that customer. 

 

 

Fig. 4 Input Data 

B. Customers 

The customers section (Fig. 5) represents stop points and 

basically determines the number of times this customer has 

been visited. If the number of visits is zero, a penalty is 

incurred; if it is greater than one (multiple visits), a penalty 

that is in multiples of the number of visits is incurred. Finally, 

if it is visited only once, no penalties occur. These penalties 

act as soft constraints that are required by the optimization 

block to ensure that each customer is visited exactly once. 

Also, that section of the model determines the customer to be 

visited next. 

 

#

Customer A {...}

Next Customer = 4

From = 2

DB

###
4

hold
From A to Next Customer

MOVE2NEXT

R L

no group

Penalty  1i

r L

#

y =f (x)

 

Fig. 5 Snapshot showing a customer 

 

Fig. 5 shows a part of the model representing one of the 

cities to be visited by the vehicle. This part is replicated 

according to the number of stops to be modeled. Block I 

receives the vehicle that is sent to the customer by Block G. 

Block J calculates the penalties based on the number of visits 

as described above. Block K is as same as Block D; where, at 

this block the following city to be visited is determined. 

Finally, the vehicle leaves the current city moving to Block H 

in Fig. 3, going through distance calculation and then to the 

next destination. 

C. Total Route Distance Calculation 

The third and final section of the model is the total route 

distance calculator (Fig. 6), which is responsible for 

calculating the total travel distance of the vehicle and ensuring 

that the vehicle returns back to its starting point (depot). 

Fig. 6 shows that after all the routing decisions are made, 

the vehicle returns back to the depot (Block M). The total 

distance travelled is calculated and reported in Block O. All 

penalties incurred for violations of the number of visits per 

customer are summed up at Block N and added to the total 

distance travelled. The vehicle then leaves the model through 

the exit Block P.  

 

1

Exit

#

Return2Depot

i

r L

#

av g I

CT

y =f (x)

no group

Sum of  Penalties

11.708203932499

Total trav el distance

 

Fig. 6 Snapshot of the total route distance calculation 

V. OPTIMIZATION USING SIMULATION 

After developing the model in ExtendSim
TM

, optimization 

using simulation to find the best route that minimizes the total 
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travelling distance and satisfies all constraints. ExtendSim
TM 

performs optimization using the Optimizer Block (Block A) 

shown in Fig. 3.  

This optimizeruses an evolutionary algorithm to reduce the 

number of times the model has to run before a solution is 

found. The “problem” is stated as an objective function or cost 

equation that ExtendSim
TM

 tries to minimize or maximize to 

save time going through the process of manually trying 

different values with each model run [24]; as shown in Fig. 7.  

Fig. 7 shows the optimizer parameters window; where, the 

decision variables and objective function are defined. 

 

 

Fig. 7 Optimizer parameters window 

 

The objective function is to minimize the total distance 

travelled that is reported by Block O. The different decision 

variables are the attribute values that define the next customer 

to visit; such as the values reported by Blocks D and K. 

After executing the optimization of the model, the 

minimum total distance is 11.7082 as shown in Fig. 7, which is 

the same total distance obtained using MS Excel solver. 

Finally, the route is reported back to the built-in database as 

shown in Fig. 8. 

 

 

Fig. 8 Results table 

VI. CONCLUSION 

In literature, binary decision variables are used to formulate 

VRP, this paper introduces a new mathematical formulation 

where integer decision variables are used to determine which 

city/customer to be visited next instead of which routing 

segment to be taken. Decision variables in the proposed 

mathematical formulations are relatively small if compared to 

other formulations found in literature. 

An optimization using simulation approach is introduced to 

the TSP and results showed satisfactory as the simulation 

output showed that the optimum solution can be obtained. 

For future work, it is recommended that further research 

shall be undertaken to model the VRP using discrete event 

simulation, seeking for optimum/near optimum solutions 

considering time windows and vehicles capacity constraints 

and the stochastic nature of customers demand, customers’ 

service time, and travel time. 
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