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Optimization Approach to Estimate
Hammerstein–Wiener Nonlinear Blocks in Presence

of Noise and Disturbance
Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract—Hammerstein–Wiener model is a block-oriented model
where a linear dynamic system is surrounded by two static
nonlinearities at its input and output and could be used to model
various processes. This paper contains an optimization approach
method for analysing the problem of Hammerstein–Wiener systems
identification. The method relies on reformulate the identification
problem; solve it as constraint quadratic problem and analysing its
solutions. During the formulation of the problem, effects of adding
noise to both input and output signals of nonlinear blocks and
disturbance to linear block, in the emerged equations are discussed.
Additionally, the possible parametric form of matrix operations
to reduce the equation size is presented. To analyse the possible
solutions to the mentioned system of equations, a method to reduce
the difference between the number of equations and number of
unknown variables by formulate and importing existing knowledge
about nonlinear functions is presented. Obtained equations are applied
to an instance H–W system to validate the results and illustrate the
proposed method.

Keywords—Identification, Hammerstein-Wiener, optimization,
quantization.

I. INTRODUCTION

ONE of the famous categories of nonlinear systems

is named ‘block oriented systems’, in which the

system is assumed to consist of a combination of linear

dynamic blocks and nonlinear static blocks. This category

is further divided into different subcategories. Two of these

typical subcategories are known as Hammerstein systems and

Wiener systems, which are a serial combination of a static

nonlinear block and a linear dynamic one. By serializing a

Hammerstein and a Wiener system, a new subcategory named

’Hammerstein–Wiener’ emerged, which is also the focus of

this study [1].

The above mentioned categories could be used to

model different systems in various applications such as

continuous stirred tank reactors [2], Quality of Service

(QoS) performance and resource management of software

systems [3], pH neutralisation processes [4], or Brushless

DC (BLDC) motors [5]. Moreover, static nonlinearity can

be seen in sensors and actuators, so a linear system

having these sensors and actuators can be modelled as
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a Hammerstein–Wiener system [1]. Various methods have

been used in previous researches to identify Hammerstein,

Wiener, or Hammerstein–Wiener systems from 1998 till date.

Examples of a wide range methods for the identification of

Hammerstein systems is the algorithm uses the Singular Values

Decomposition (SVD) technique and triangular basis functions

and an approach for Wiener systems identification is the

semiparametric Bayesian [6], [7]. Regarding the identification

of Hammerstein–Wiener systems, one of the first methods used

was a two stage identification algorithm; the stages included

using the recursive least squares method and calculation

of singular value decomposition of two matrices, whose

dimensions are fixed and do not depend on the number of

the data points [8]. Four years later, the researcher presented a

blind approach to solve the problem [9]. In the first mentioned

method, nonlinear blocks were assumed to be approximated

by a polynomial or series of orthogonal functions while

in the second one there was no particular shape. Some

researchers deal with the identification of the H–W by iterative

solutions, such as the method in which nonlinear functions

are approximated by cubic splines [10]. Further, there are

frequency based methods which consider a combination of

sinusoids with a random phase as the system input [11].

Apart from these methods, the identification problem is also

solved with using refined instrumental variable method [12]

and maximum likelihood method [13].

The objective of this study is to propose a new evaluation

method for the H–W system identification problem and study

its requirements, useful approximations and assumptions. First,

by considering the state space form of the linear block, the

identification problem’s the relationships among the sample

data and unknown variables are formulated in the form

of a system of equations. Then, several unknown variables

and equations are reduced by means of matrix operations.

Following this, by considering the number of equations,

unknown variables and their coefficients, the number of

possible solutions is evaluated. Then, the matrix sizes are

reduced by applying elementary row operation on them,

and a solution to find values of nonlinear functions will

be proposed. Next, the effect of adding noise to input and

output signals of nonlinear blocks and disturbance to the

linear block on the mentioned equations is considered, and

values of unknown functions are found using the constrained

least–squares method. Finally, formulated knowledge about

nonlinear functions are described for reducing the number

of unknown variables and also proper assumptions that
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could increase the known parameters and limit the set of

solutions are considered. All proposed methods are examined

by applying them on a sample H-W system to validate the

equations. The approach presented here differs from existing

literature in followings; first, the focus is on arriving at an

analytical solution to the problem rather than a numerical

one, second, it considered multivariate systems and third, it

analysied the effect of adding noise to both input and output

of nonlinear blocks.

This paper is organized as follows. In Section II the problem

formulation is presented, and it is simplified and discussed in

Section III. Section IV provides details the enhancement of the

method in the presence of noise and disturbance; the solution

to the problem using a constrained least–squares algorithm is

presented. Section V presents simulation results, and lastly,

the conclusions are discussed in Section VI.

II. PROBLEM STATEMENT

For a single input single output (SISO) system with an SISO

linear block, the H–W model with an injective output function,

which is illustrated in Fig. 1, can be written as shown below

by considering the state space form of the linear system.

Fig. 1 Hammerstein–Wiener system block diagram

[
xt+1

zt

]
=

[
A B

C D

][
xt

yt

]

→
[

xt+1

g−1 (yt)

]
=

[
A B

C D

][
xt

f (ut)

] (1)

If the samples from input u and output y are gathered during

t=1 to T times of an arbitrary time unit, all gathered samples

can be formulated, as seen in (3) in the matrix form, after

defining the matrices shown in (2).

X=

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xT

x0

⎤
⎥⎥⎥⎥⎥⎥⎦
, U=

⎡
⎢⎢⎢⎢⎣

u1

u2

...

uT

⎤
⎥⎥⎥⎥⎦ , F=

⎡
⎢⎢⎢⎢⎣

f(u1)

f(u2)

...

f(uT )

⎤
⎥⎥⎥⎥⎦

Y=

⎡
⎢⎢⎢⎢⎣

y1

y2
...

yT

⎤
⎥⎥⎥⎥⎦ , G=

⎡
⎢⎢⎢⎢⎣

g−1(y1)

g−1(y2)

...

g−1(yT )

⎤
⎥⎥⎥⎥⎦ , φ=

⎡
⎢⎢⎢⎢⎢⎢⎣

X

−
F

−
G

⎤
⎥⎥⎥⎥⎥⎥⎦

Ψ=

⎡
⎢⎣

Ψ (1,1) | Ψ (1,2) | Ψ (1,3)

− + − + −
Ψ (2,1) | Ψ (2,2) | Ψ (2,3)

⎤
⎥⎦

(2)

Ψφ= 0

Ψ (1,1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 −A

−A I . . . 0 0

0 −A . . . 0 0

...
...

. . .
...

...

0 . . . −A I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Ψ (2,1)=

⎡
⎢⎢⎢⎢⎣

−C 0 · · · 0 0

0 −C . . . 0 0

...
...

. . .
...

...

0 0 . . . −C 0

⎤
⎥⎥⎥⎥⎦

Ψ (1,2)= −IT∗T ⊗B ,Ψ (1,3)= −0T∗T⊗B

Ψ (2,2)= −IT∗T ⊗D,Ψ (2,3)= −IT∗T

(3)

As it can be seen, if the linear system has an order of n,

the number of rows in Ψ will be T(n+1), while the number of

columns is (T+1)n+2T which is equal to unknown variables

that are collected in the Φ vector. Therefore, the problem can

have several solutions. It is worth mentioning that the above

homogenous system always has the trivial solution Φ=0 which

means f(u)=g−1(y)=0 for every u and y. In the following

sections, methods of evaluating and limiting these solutions

will be considered.

III. PROPOSED METHOD FOR NOISE FREE SYSTEM

The static behaviour of f and g−1 implies the same outputs

in the presence of the same inputs. By defining F∗ and G∗ and

changing the above equation to the following form, the static

behaviour of the first and last blocks will be considered. It is

worth mentioning that a unique function returns the same data

as in its input but with no repetitions.

U∗=unique (U)∈Rk, Y ∗=unique (Y )∈Rl

F ∗=

⎡
⎢⎢⎢⎢⎣

f(u∗
1)

f(u∗
2)

...

f(u∗
k)

⎤
⎥⎥⎥⎥⎦ ,G∗=

⎡
⎢⎢⎢⎢⎣

g−1(y∗1)
g−1(y∗2)

...

g−1(y∗l )

⎤
⎥⎥⎥⎥⎦

φ∗=

⎡
⎢⎢⎢⎢⎢⎢⎣

X

−
F ∗

−
G∗

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Γ
(1)
t,i =

{
1 ut=u∗

i

0 ut �=u∗
i

∈RT∗k

Γ
(2)
t,j =

{
1 yt=y∗j
0 yt �=y∗j

∈RT∗l

Ψ∗(1,2)= −Γ (1) ⊗B,Ψ∗(2,2)= −Γ (1) ⊗D

Ψ∗(2,3)= −Γ (2)

Ψ∗=

⎡
⎢⎣

Ψ (1,1) | Ψ∗(1,2) | 0

− + − + −
Ψ (2,1) | Ψ∗(2,2) | Ψ∗(2,3)

⎤
⎥⎦

→Ψ∗φ∗= 0

(4)
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Owing to the special form of (1,1) and (2,1) matrix blocks

in Ψ, matrix elementary row operations can be used to reduce

the number of equations and unknown variables. The effect of

elementary row operation on Ψ is shown in (5) and (6).

Ψ ′(1,1)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 −A

0 I . . . 0 −A2

0 0 . . . 0 −A3

...
...

. . .
...

...

0 . . . 0 I −AT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Ψ ′(2,1)=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −∑k
i=1 ciA(i,:)

0 0 . . . 0 −∑k
i=1 ciA

2
(i,:)

...
...

. . .
...

...

0 0 . . . 0 −∑k
i=1 ciA

T
(i,:)

⎤
⎥⎥⎥⎥⎥⎦

Ψ ′(1,2)
t,i =

∑t−1
l=0

(
AlΨ

(1,2)
t−l,i

)
= −∑t−1

l=0

(
AlBΓ

(1)
t−l,i

)

Ψ ′(2,2)
t,i =

(∑k
p=1 cp

(
Ψ

(1,2)′

t,i

)
p

)
+Ψ

(2,2)
t,i =

−D∗Γ (1)
t,i −

∑t−1
l=0

((∑k
p=1 cp

(
Al

)
p

)
∗B∗Γ (1)

t−l,i

)

Ψ ′(2,3)= −Γ (2) ⊗IT

(5)

Ψ
′
=

⎡
⎢⎣

Ψ ′(1,1) | Ψ ′(1,2) | 0

− + − + −
Ψ ′(2,1) | Ψ ′(2,2) | Ψ ′(2,3)

⎤
⎥⎦

→Ψ
′
φ∗= 0

(6)

If the state–space realization of the linear system has an

observable canonical form, it can be reduced even further by

applying elementary row operation, as observed in (7) and (8).

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −an

1 0 . . . 0 −an−1

0 1 . . . 0 −an−2

...
...

. . .
...

...

0 0 . . . 1 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B=

⎡
⎢⎢⎢⎢⎣

bn

bn−1

...

b1

⎤
⎥⎥⎥⎥⎦ C=

⎡
⎢⎢⎣

0 . . . 0 1

...
...

. . .
...

0 . . . 0 1

⎤
⎥⎥⎦

At
n,::=nth row of At , a0:=1

{
At

n,:=An−t+1,:−
∑t−1

i=1 aiA
t−i

n,: t≤n∑n
i=0 aiA

t−i
n,:= 0 t>n

(7)

∀n<t≤T :

{
Ψ”

(1)
t−n,i=

∑n
r=0 arΨ

′(2,2)′
t−r,i

Ψ”
(2)
t−n,j=

∑n
r=0 arΨ

(2,3)
t−r,j

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ψ”
(1)
t−n,i= −∑n

r=0 arXr

Xr = DΓ
(1)
t−r,i+

∑t−r−1
h=0 Xh

Xh =
(
Ah

)
n,:

BΓ
(1)
t−r−h,i

Ψ”
(2)
t−n,j= −∑n

r=0 arΓ
(2)
t−r,j

Ψ”=
[
Ψ”(1) | Ψ”(2)

]
, φ”∗=

⎡
⎢⎣

F ∗

−
G∗

⎤
⎥⎦

→Ψ”φ”∗= 0

(8)

The equation can be easily simplified to what is shown in

(9).

Ψ”∗=
[
Ψ”∗(1) | Ψ”∗(2)

]

Ψ”
∗(1)
t−n,i=D∗Γ (1)

t−n,i+
∑t−n−1

h=0

((
Ah

)
n,:

BΓ
(1)
t−n−h,i

)

Ψ”
∗(2)
t−n,j=Γ

(2)
t−n,j

Ψ”∗φ”∗= 0

(9)

The number solutions to the above problem can be infinite

if the rank of Ψ is less than the number of elements in Φ. By

considering (9), number of free variables can be determined

using (10).⎧⎪⎨
⎪⎩

rank (Ψ”∗)≤min(T−n, l+k)

φ”∗ elements=l+k≤2T

free variables=l+k−rank (Ψ”∗)

→
{

free variables≥l+k+n−T

free variables≥0

(10)

According to definition of Γ(1) and Γ(2), the number of

free variables is equal to values of F* and G* that should

be known to find unique solutions to other elements of them.

To have at least one non–zero solution, there should be more

than one free variables. So l+k+n should be less than T, and

the number of non–unique elements in U and Y should be

more than T+n. Hence, the number of known value points of

functions should be equal to the number of free variables; the

values for these points should be known to find the values at

other points. According to the samples’ quantities and their

similarities, if the repetition is sufficiently high, linear system

coefficients can be determined by setting the rank of Ψ”* equal

to l+k-1. In this case, only one known point in either the input

or output function values is sufficient to determine the values

of functions at all other points. By separation of the known

points and unknown points in Ψ”* and sending the known
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points plus their coefficients to the other side of the equality

sign in equation 9, another system of linear equations will

emerge that has only one solution which could be obtained as

explained below.

There are a variety of methods to solve a system of linear

equations. The following equation shows the simplest form of

solving the equation in which Ψ+ is called the pseudo–inverse,

left inverse, or generalized inverse of Ψ [14], [15].

Ψφ=Υ→φ=
(
ΨTΨ

)−1
ΨTΥ→φ=Ψ+Υ (11)

By considering the singular value decomposition of Ψ,

its pseudo–inverse could be calculated as follows. In this

equation, Σ is a diagonal matrix with singular values of Ψ
on the diagonal [15].

Ψ=UΣV T→Ψ+=V Σ+UT (12)

However, it should be considered that linking the H–W

identification problem to the above solution for a system

of equations makes it very sensitive to even small errors in

calculations and measurements.

IV. ROBUSTNESS ENHANCEMENT

First, to make the solution less sensitive to noise,

disturbance and errors, the effect of adding Gaussian noise and

disturbance to the H–W model in the emerged equations will

be considered. The error, noise, and disturbance will be added

to the system input or output as linear block inputs, outputs,

or states. Then, solutions of constrained linear least–squares

problems will be used to solve the system of linear equations

in a more robust manner.

A. Formulate Linear Block Noise Effect

Noise and disturbance could be added to linear block inputs,

states, and outputs as shown in Fig. 2. The addition of noise

to the system changes (1) into the following form:

Fig. 2 H–W system with additional noise to linear block

[
xt+1

g−1 (yt)

]
=

[
A B

C D

][
xt

f (ut)+ηt

]
+

[
μt

et

]

=

[
A B

C D

][
xt

f (ut)

]
+

[
μt+Bηt

et+Dηt

]
(13)

If the mentioned noises are independent of each other and

spread through the time with Gaussian distribution, (3) will

then be change to the following form.

⎧⎪⎨
⎪⎩

μt∼N(μ,ΣT
μ Σμ)

ηt∼N(η,ΣT
η Ση)

et∼N(e,ΣT
e Σe)

→Ψφ=Υ

Υ ∼ N

([
Υ1

Υ2

]
,

[
ΣT

1 Σ1 0

0 ΣT
2 Σ1

])

Υ1 = (μ+Bη)⊗IT+1

Υ2 = (e+Dη)⊗IT

ΣT
1 Σ1 =

(
ΣT

μ Σμ +BΣT
η ΣηB

T
)⊗IT+1

ΣT
2 Σ2 =

(
ΣT

e Σe +DΣT
η ΣηD

T
)⊗IT

(14)

Multiplying the matrix Ψ by Ξ, calculated from Cholesky

factorization of the variance matrix, the variance of the resulted

Υ is normalised as shown below.

ΞΞ T =

[
ΣT

1 Σ1 0

0 ΣT
2 Σ2

]
→

Ξ−1Ψφ ∼ N

(
Ξ−1

[
Υ1

Υ2

]
, I(n(T+1)+sizeztT )

) (15)

B. Formulate Measurement Noise Effect

When the Gaussian independent measurement noise is

added to the input and output of the system as illustrated in

Fig. 3, (14) changes as follows.

Fig. 3 H–W system with additional noise to system input, system output,
and linear block

Ψφ+Ψeφe=Υ

Fe=

⎡
⎢⎢⎢⎢⎣

f (u1+eu1)−f (u1)

f(u2+eu2)−f (u2)

...

f(uT+euT )−f (uT )

⎤
⎥⎥⎥⎥⎦ ,

Ge=

⎡
⎢⎢⎢⎢⎣

g−1 (y1+ey1)−g−1 (y1)

g−1(y2+ey2)−g−1 (y2)

...

g−1(yT+eyT )−g−1 (yT )

⎤
⎥⎥⎥⎥⎦ ,

φe=

⎡
⎢⎣

Fe

−
Ge

⎤
⎥⎦ , Ψe=

⎡
⎢⎣

Ψ (1,2) | Ψ (1,3)

− + −
Ψ (2,2) | Ψ (2,3)

⎤
⎥⎦

(16)

By considering the first order approximation and Taylor’s

theorem shown in (17), (16) is simplified to the form shown in
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(18), if the noise value is small enough. It is worth mentioning

that Df (u) represents the matrix containing partial derivatives

of the function f.

f (u+ e)− f (u) ≈ Df (u) e

if SISO case : Df (u) =
∂f
∂u (u)

≈ f(u+Δu1)−f(u)
2Δu1

− f(u−Δu2)−f(u)
2Δu2

→

f (u+ e)− f (u) ≈ eΔ

⎡
⎢⎣

f (u−Δu2)

f(u)

f (u+Δu1)

⎤
⎥⎦

Δ =
[ (

−1
2Δu2

) (
1

2Δu2
− 1

2Δu1

) (
1

2Δu1

) ]

(17)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ψ
(1,2)
e = Ψ (1,2) +Ψ (1,2)EuΔu

Ψ
(2,2)
e = Ψ (2,2) +Ψ (2,2)EuΔu

Ψ
(1,3)
e = Ψ (1,3) +Ψ (1,3)EyΔy

Ψ
(2,3)
e = Ψ (2,3) +Ψ (2,3)EyΔy

Ψ
′
e=

⎡
⎢⎣

Ψ (1,1) | Ψ
(1,2)
e | Ψ

(1,3)
e

− + − + −
Ψ (2,1) | Ψ

(2,2)
e | Ψ

(2,3)
e

⎤
⎥⎦

Ψ
′
eφ≈Υ

Ψ
′
e = Ψ +ΔΨ

mean (ΔΨ ) = 0

(18)

C. Optimal Solution

To find an optimal solution for (15), instead of a solution

to (11), algorithms to solve a constrained linear system of

equations, which are shown in (19), could be used. As it can be

seen in (19), these algorithms are linear least–squares’ solvers

with bounds or linear constraints [16], [17].

minφ
1
2‖Ψφ−Υ‖22 such that

⎧⎪⎨
⎪⎩

Aφ ≤ b

Cφ = d

φlb ≤ φ ≤ φub

(19)

Apart from adding some known elements of Φ to the

equations, using the above algorithm makes it possible to

limit the solution and enhance the problem by considering

other assumptions and approximations. These assumptions

could be the determining limits for elements of Φ; they could

even be determining limits for the derivatives of input or

output functions obtained from the approximations in (16)

by changing them to linear constraints. The gradients in this

case are calculated by subtracting the function values of two

consecutive outputs and dividing the result by their difference.

In case of a limited range assumption for function values,

the lower bounds and upper bounds for unknown variables

which are shown by Φlb and Φub are known. Additionally,

the gradient of input and output functions can be limited by

considering the first order approximation in calculating the

gradient and the construction of matrix A and vector b.

Another useful approximation could be the quantization of

the input and output range. From the point of view of a

linear system of equations, this approximation will reduce the

number of unknown variables by increasing the repetitions of

measured samples.

One of the trivial solutions for Φ is the unique value of X, Y

and Z elements, which obey the following equation. To avoid

this situation, if possible, the minimum difference between

two points in f or g−1 functions can be determined as another

assumption.

∀t : 1..T :

⎧⎪⎨
⎪⎩

xt = x0

f (ut) = f0

g−1 (yt) = g−1
0

,

⎧⎨
⎩

x0 = (I −A)
−1

Bf0

g−1
0 =

(
C(I −A)

−1
B +D

)
f0

(20)

The above examples present only a few of the various

constraints that could be applied to the system for obtaining

the desired solution and limit the number of possible solutions

to the mentioned system of linear equations. In other words,

by increasing the assumption set of possible solutions, number

of solutions will be decreased.

V. SIMULATION RESULTS

An example of an H–W system can be seen in Fig. 4.

The first subplot shows the measured input while the last

one shows the output of the system. Nonlinear functions are

illustrated by the second and fifth subplots. The third and

fourth subplots belong to the immeasurable input and output

of the linear block, respectively. The states are also shown at

the bottom of this figure.

Fig. 5 shows the result of solving (4) by calculating the

pseudo–inverse of matrix Ψ, illustrated in (11), to find the

values of nonlinear functions in sample points. In this system

T, n, l and k are equal to 201, 2, 197, and 201, respectively.

The red stars are the 203 known points of the functions while

the blue stars are the 603 calculated ones when solving the

problem. As it can be seen in most of the points, the blue

stars are superimposed on the real values which are shown by

green stars.

It is important to remember that determining the solution

using this method could generate many imperfect results

because of the existence of very small errors in calculation

or noise. This is because of the nature of the solutions for the

problem involving a system of linear equations. To reduce the

errors in this case, apart from using iterative algorithms for

the problem in (19), some assumptions based on the known

properties of input and output functions, such as a limited

value range, could be considered.

To solve the problem in the above example, an

approximation of equality is considered. The approximation

involves determining each two consequent input points in
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Fig. 4 An H–W system example, sample points in each subplot shown by red dots. (a), (b) Input & Output Signals. (c), (d) nonlinear
functions
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Fig. 5 Identification result of nonlinear static functions of example H–W system while some of the values are known

the functions that have the same output values. Using this

approach for all points reduce the number of unknowns in

(9) by half. Another similar approximation is to quantize the

input and output range, and assume equal function values for

each section. Each of these quantized discrete values should

contain at least one sample point, and the number of intervals

should be selected to have only one free variable according

to (9). Fig. 6 shows the result of input quantization in f and

g−1 to 12 parts in the u and y axes, in the example. As seen

in this example, only one known point is needed. The results

for input and output functions are limited between -10% and

110%.

As seen in Fig. 6, by applying this method to the sample

system shown in Fig. 4, the number of variables that should be

known before identification of nonlinear functions reduces to

one, and the result seems to be acceptable despite quantization

errors in input and output functions.

A. Simulation Results in Presence of Noise

To have an intuitive view of the effect of noise and

disturbance on the presented methods and compare them to

systems without noise, the simulations were repeated. Fig. 7

shows the signals in Fig. 3’s system in the presence of 3% of

signal range noise in each signal to which noise was added.

The noise is large enough to be seen in the picture shown in

Fig. 7.

The resulting output of the constrained iterative algorithm

for the above system in both quantized and non–quantized
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Fig. 6 Estimating input and output functions in instant H–W system by using constrained linear least–squares algorithm, after quantization input of f and
g−1 to 12 parts in u and y axes and considering only one known point
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Fig. 7 An H–W system example with noise and disturbance. (a), (b) Input & Output Signals. (c), (d) nonlinear functions

input and output functions is shown in Figs. 8 and 9,

respectively. As seen, the existence of Gaussian noise

makes the solution even better in case of quantization. The

non–Gaussian quantization error, which exists in this example

as the slope of the functions, affected the results and distanced

them from desired values.

VI. CONCLUSION

In this paper, an algorithm to identify the input and

output nonlinear functions of Hammerstein–Wiener systems

is presented. Also, the effects of adding noise and disturbance

to the system were evaluated. The mentioned problem is

formulated as a least-square optimization problem. As seen

in the presentation of the results, this problem could not be

solved in the absence of sufficient repetition in measured

data. So as a part of this method, it is illustrated how to

add some constrained approximations and iterative algorithms

to minimize errors. By formulating existing knowledge about

nonlinear functions and techniques like quantization, the

problem is solved and, the lack of repetition in measured data

has been compensated. Finally, the proposed method is also

validated by an example both in the absence and presence

of noise and disturbance. Additionally, the quantization

assumption is tested on this example to minimize the required

known parts of nonlinear functions for solving the problem.
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Fig. 8 Estimating input and output functions in noisy H–W system by using constrained solutions to linear least–squares problem and putting limits on
functions rates and values
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Fig. 9 Estimating input and output functions in noisy H–W system by using constrained solutions to linear least–squares problem, after quantization and
assuming limits for functions rates and values
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