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Abstract—The transfer rate of messages in distributed sensor 

network applications is a critical factor in a system's performance. 
The Sensor Abstraction Layer (SAL) is one such system. SAL is a 
middleware integration platform for abstracting sensor specific 
technology in order to integrate heterogeneous types of sensors in a 
network. SAL uses Java Remote Method Invocation (RMI) as its 
connection method, which has unsatisfying transfer rates, especially 
for streaming data. This paper analyses different connection methods 
to optimize data transmission in SAL by replacing RMI. Our results 
show that the most promising Java-based connections were 
frameworks for Java New Input/Output (NIO) including Apache 
MINA, JBoss Netty, and xSocket. A test environment was 
implemented to evaluate each respective framework based on 
transfer rate, resource usage, and scalability. Test results showed the 
most suitable connection method to improve data transmission in 
SAL JBoss Netty as it provides a performance enhancement of 68%. 
 

Keywords—Wireless sensor networks, remote method 
invocation, transmission time.  

I. INTRODUCTION 
HE performance of a distributed application is largely 
influenced by the speed at which it exchanges messages. 

It becomes even more important when real-time processing of 
data streams is required. The velocity of the message 
exchange (or transfer rate), is a common issue as stream-
based distributed applications are found in several types of 
businesses. Example applications include financial services, 
network and infrastructure monitoring, manufacturing, and 
sensor networks (SNs). Transfer rate latencies as little as one 
second can have detrimental effects on these applications [1]. 

Transfer rate problems can be due to software, hardware, or 
network related deficiencies. For example, the bandwidth of 
the network can be insufficient or the server can be short of 
resources. If the problem is software related, it may refer to 
the message size being too big, or the message-parsing taking 
too long. Furthermore, the connection methods (CMs) used by 
the distributed system for handling the message exchange may 
introduce delays that negatively affects performance.  

This problem has occurred in the Sensor Abstraction Layer 
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(SAL) SN application [2]. SAL is a middleware integration 
platform for abstracting sensor specific technology to provide 
a user-friendly way of integrating heterogeneous types of 
sensors. SAL is employed by the Davies Reef SN project [3] 
and the SEMAT project [4], [5]. It uses RMI as its CM for 
providing a client with data from one or more sensors. 
However, RMI introduces delays while streaming data from 
the sensors to the client, which limits SAL's effectiveness. To 
improve SAL's performance, this paper concentrates on 
exchanging the CM rather than optimising the processes in 
SAL. 

Numerous CMs exist for use in Java-based applications. 
Examples are socket-implementations, Web Services, MPJ 
Express, Ibis IPL, Java Fast Sockets, and CORBA2, which are 
already partly the subject of performance studies [6]-[9]. 
However, the focus of this paper is not to give an analysis into 
the performance characteristics and underlying mechanisms of 
CMs, but rather to identify which CMs will provide an 
immediate performance improvement to a wireless sensor 
network application. Analysis for the causes for the 
performance enhancement is beyond this paper's scope. Here, 
the main goals are as follows:  
• Determine alternative CMs to RMI for use in SAL; 
• Implement a suitable test environment;  
• Test/evaluate the CMs and recommend one or more as an 

alternative to RMI; and  
• Implement the alternative CM(s) in SAL and verify the 

performance improvement. 
For the purposes of this study we examined Java-based 

connections from the Java New Input/Output (NIO) 
framework. We considered several CMs including Apache 
MINA, JBoss Netty, and xSocket. A test environment was 
designed to evaluate each respective framework for its 
suitability in SAL based on transfer rate, resource usage, and 
scalability. Results showed that all NIO frameworks 
outperformed RMI in terms of streaming data. Overall, the 
most suitable connection method for improving the data 
transmission in SAL is to replace RMI with JBoss Netty as it 
provides a weighted performance enhancement of 68%. 

This paper is organised as follows: Section I provides a 
brief overview of SAL. Section III gives an introduction to the 
Java CMs under consideration. Section IV explains the design 
of the performance evaluation tests. Section V presents and 
analyses the results of the performance tests. Section VI 
implements and evaluates the best performing CM directly in 
SAL. Section VII provides some concluding remarks. 

M. Hammerton, J. Trevathan, T. Myers, W. Read 

Optimising Data Transmission in Heterogeneous 
Sensor Networks 

T



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1204

 

 

II. SENSOR ABSTRACTION LAYER  
SNs are becoming increasingly essential as sensors are 

introduced into more areas of life. However, lack of standards 
makes it difficult to integrate heterogeneous sensors in a 
single SN. Therefore, middleware is important to have, as it is 
able to manage all types of sensors. This middleware is often 
implemented specifically for one SN, which makes it 
hardware dependent. Changes in the network, such as adding 
a new sensor, lead to manipulating the middleware code.  

SAL is a middleware integration platform, which provides a 
plug-in-based model where support for new types of sensors 
can be loaded to the running system via plug-in. The system 
automatically detects and configures new sensors, if permitted 
by the hardware and operating system (OS). It provides a 
unified interface to all sensors by abstracting the sensor 
specific features. This simplifies access to a SN and the 
management/control of its sensors [2]. SAL can be seen as a 
low-level software layer as it bridges a network of sensors 
with high-level applications or further middleware 
technologies. 

SAL consists of two components, the SAL client and the 
SAL agent. The SAL client represents an interface either to the 
user via a user interface or to other applications. SAL 
implements the SAL agent Application Programming 
Interface (API) in order to provide the SAL agent's 
functionality. The API is grouped into the following three 
categories: 

1. Sensor Management - Methods to manage the pool of 
sensors and including operations for enumerating, adding 
and removing sensors.  

2. Sensor Control - Methods to report on a sensor's 
capabilities and control the streaming of the data.  

3. Platform Configuration - Methods to adjust the platform, 
e.g., add support for a new sensor type. 

Each category uses a different markup language. The 
Sensor Management methods use SensorML [10], which 
describes a sensor's configuration. The methods in the 
category Sensor Control use CommandML. The CommandML 
documents contain a list of commands which are supported by 
a sensor. The last category, Platform Configuration, uses 
Platform Capabilities and Configuration Markup Language 
(PCML). PCML documents contain information on the 
platform configuration in order to support a certain type of 
sensor technology.  

The SAL agent implements the various features of SAL. It 
runs on a platform which is connected to the sensors and 
therefore is regarded as a sensor gateway. The connection 
between the platform and the sensors can be either direct 
using platform specific input/output (I/O) ports like USB or 
indirect by using wireless technology. The SAL agent 
manages the sensors which are directly connected and are 
found by the agent and the indirectly connected sensors it has 
been told of. The SAL agent consists of three layers: Agent 
Layer, Communication Layer, and EndPoint Layer (Fig. 1). 

 

 

Fig. 1 SAL components and software layers 
 

The Agent Layer is responsible for the communication with 
the SAL client. It receives messages, parses and forwards 
them to the underlying Communication Layer and sends the 
response back to the client.  

The Communication Layer provides methods for managing 
and controlling sensors. The managing methods are used to 
configure and set up hardware while the controlling methods 

translate a generic command into a sensor native command, 
which then can be transmitted to the sensor. The generic 
commands are provided in the SAL API. For translating the 
generic commands two sub-layers are used. The Abstraction 
Layer is an adapter layer where the generic commands are 
implemented. From here the sensor-specific methods are 
called, which are implemented in the Protocol Layer.  
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The EndPoint Layer is tightly coupled to the I/O ports 
available on the sensor gateway. It is responsible for 
transmitting native sensor commands produced by the 
Protocol sub-layer to the sensor, and data from the sensor is 
transmitted to the SAL agent. This layer's software code layer 
is normally included in the OS. SAL ensures it is available 
and configured correctly.  

The sub-layers Abstraction and Protocol and the EndPoint 
Layer form a Logical Port. Each sensor is connected to a 
Logical Port that allows a specific client to control multiple 
agents. The logical port allows SAL to scale vertically in that 
an agent can control other agents in a hierarchical manner. 
The logical port treats an attached device as a data source, 
independent of whether it is a sensor or another agent. The 
ability to scale allows SNs of almost any topology or 
configuration. 

The main objective of this project is to improve SAL's 
performance. The evaluation of the CMs needs to take into 
account the following three requirements: 
1. Increase the transfer rate of messages between the SAL 

client and agent;  
2. Improve the SAL agent's resource usage in terms of CPU 

utilisation and memory consumption; and  
3. Improve the SAL agent's scalability. 

III. CONNECTION METHODS 
The following programming paradigms exist for 

implementing network communication between Java 
components [11]:  
• Sockets: the communication is based on a one-to-one, 

duplex connection. The developer takes care of the data 
packing/unpacking and appropriate protocol usage.  

• Remote Procedure Calls (RPC) / RMI: RPC enables 
calling remote methods as if they were local methods. 
The developer does not need to take care about the 
communication details. RMI is the object-oriented 
equivalent to RPC as it enables calling a method of a 
remote object. 

• Message based communication: the communication is 
based on the exchange of messages with a predefined 
format. The communication details are hidden in an API. 

A sensor gateway's resources can be limited. As this 
research aims to improve data transmission performance, only 
sockets are considered as an alternative communication 
method to RMI. Message based communication, e.g., SOAP3, 
would require sending and parsing of XML structures, which 
is performance hungry and increases the message size due to 
the XML overhead. Either the Java I/O API or the Java New 
I/O (NIO) API can be used to implement sockets. This paper 
uses NIO as it allows for a non-blocking implementation and 
therefore better performance and scalability. 

A. Java Remote Method Invocation (RMI) 
RMI enhances the creation of distributed Java applications, 

enabling the developer to invoke methods of objects running 
in a remote Java virtual machine. It provides an API for 

invoking remote methods with the same syntax/semantics as 
for local method calls. RMI is based on the principle of 
separating the definition and implementation of behaviour by 
using interfaces (called remote interfaces). 

A remote interface contains the definition of the methods 
being offered by the server as services for remote components. 
A server class implements the remote interface. Its instantiated 
objects (called remote objects) are registered with a naming-
service, e.g., RMI-Registry. The clients connect to the 
naming-service and look up the references to the remote 
objects. They can then use the server's services as if they were 
local method calls. When using a method, its parameters are 
transmitted to the remote object, the appropriate method is 
invoked on the server and the result is transferred back to the 
client.  

B. Java New Input/Output (NIO) 
NIO introduced a range of features/improvements for I/O 

operations. These include buffer management, character set 
support, pattern matching with regular expressions, and 
scalable I/O operations for sockets and files. 

NIO extends the I/O classes found in the java.io package. 
The developer chooses which approach to use depending on 
the application's requirements. Java I/O offers a stream-based 
approach using sockets for networking connections. However, 
this has scalability disadvantages due to its blocking nature. 
The I/O operations behave in a synchronous way - a read 
operation waits until all the data is available and a write 
operation waits until all the data is sent. The thread 
performing the I/O is blocked and cannot proceed with other 
tasks. A separate thread is needed for each connection, 
resulting in a large number of resource consuming threads. 

NIO provides non-blocking I/O operations, addressing the 
scalability problem faced with streams. This has the advantage 
that threads do not wait until an I/O operation is finished. A 
thread performing a write operation puts the data into an OS 
buffer and returns immediately. A thread performing a read 
operation instantly gets the available data rather than waiting 
until all data has arrived. Furthermore, NIO includes buffer 
management to improve performance issues. Buffers allow 
data to be transferred in bigger pieces than with streams, 
which mainly transfer data in small pieces, e.g., single bytes. 

Since the introduction of NIO in J2SE 1.4 a variety of 
frameworks evolved, including Apache MINA, JBoss Netty, 
Grizzly, xSocket, and NIO Framework. These simplify the 
building of network applications by encapsulating the 
complexity of low-level I/O programming and extending the 
functionality of NIO concepts. Due to scope constraints, this 
paper restricts its attention to the following frameworks:  
• Apache MINA (or MINA) provides an abstract, 

asynchronous, and event-driven API, which supports TCP 
and UDP. MINA (version 2.0.0) was chosen due to its 
popularity.  

• JBoss Netty (or Netty) is also an asynchronous event-
driven network application framework which provides a 
unified API for differing transport types, a 
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flexible/extensible event model, and a customisable 
thread model. Netty (version 3.0.2) was chosen because it 
is the fastest out of all the aforementioned frameworks in 
tests conducted by T. Lee in [12]. 

• xSocket encapsulates low-level programming, has 
connection pool management, and connection timeout 
detection. xSocket (version 2.4.6) was chosen due to its 
popularity, and it is a lightweight easy-to-use framework. 

IV. TEST DESIGN 
A test framework was designed to reflect the 

communication between a SAL client and agent in order to 
evaluate the CMs. It is implemented as an independent 
application to prevent interference from background processes 
in SAL. 

A. Test Criteria, Factors and Methods 
The performance objectives outlined in Section II are to 

improve SAL's transfer rate, resource usage (CPU and 
memory) and scalability. Transfer rate and resource usage can 
be measured in a distinct dimension unit (e.g., bits-per-second 
or percentage). Scalability is measured by combining one of 
the two previous criteria with a factor, such as the number of 
clients. Other factors, which influence the criteria, include:  
• Data size or the amount of data that is sent between a 

client and a server in a single message.  
• Data type of a message (e.g., Integer, Byte, String, etc.).  
• Number of simultaneous clients connected to the server.  
• Transmission mode for how the requests are sent from the 

client to the server (e.g., blocking or non-blocking.). 
A set of test methods were used to analyse the CMs 

regarding the aforementioned criteria. These included the 
Transfer Rate (TR), resource usage and scalability.  

TR deals with the velocity of the message transportation 
between a client and a server. Two types of requests exist in 
SAL: synchronous and asynchronous. TRs for synchronous 
requests are measured using two different methods. Round 
Trip Time (RTT) measures the average time for sending a 
message from the client to the server and back. Two 
measuring points are needed on the client side: one before 
sending the request and the second directly after receiving the 
response. Throughput (TP) measures the number of messages 
that can be sent from the client to the server and back during a 
certain time span. This should be inverse proportional to RTT. 
The measuring point for counting the number of received 
messages is placed on the client side after receiving the 
response from the server.  

Testing TR for asynchronous requests require a streaming-
like approach. The Streaming test measures the number of 
messages received by a client in a certain time span. After 
receiving a request, a server continuously sends messages to a 
client until the client requests the server to stop. The 
measuring point is implemented on the client side by counting 

the number of messages received.  
Resource usage refers to the server's resources (i.e., CPU 

utilisation and memory consumption). The applied test 
methods are implemented on the server side. 

Scalability is addressed by both TR and resource usage 
performed with different numbers of clients. 

B. Test Scenarios 
A test scenario defines the settings used in a test method. 

The definitions include the general test factors and test 
method-specific factors, such as time span or number of 
method calls. All test scenarios were performed at least three 
times to ensure that the collected data is representative. To 
reduce the interference of the Just-In-Time compiler, a large 
number of preliminary interactions were performed before the 
actual tests. 

The data types/sizes are based on the values common in 
messages exchanged between a SAL client and agent. For 
example, String is often used for sending XML structures. It is 
included as data type with a size of 3408B. The maximum 
client number is 100 as a sensor gateway has limited 
resources. The transmission mode reflects both modes in 
which clients request data from the server. This can either be 
in a synchronous mode, where the client blocks until it 
receives the response from the server or in an asynchronous 
mode, where the client requests a data stream without 
blocking. 

Each test method is performed with all possible values of 
the factor Number of Clients. The method RTT is performed 
with the data types Integer, Object, and String with their 
according data sizes. The transmission mode is synchronous.  

In order to receive reliable results, the method is performed 
with 1000 method calls per client. The time is measured in 
nanoseconds. 

The method TP has similar settings. It is performed with the 
data types Integer, Object, and String with their according 
data sizes and the transmission mode is synchronous. The time 
span for the message exchange is 60 seconds. 

The method Streaming is performed using the data type 
Byte with the sizes 20KB, 40KB, and 80KB.The transmission 
mode is asynchronous and the time span for the client to 
receive messages is 30 seconds. 

The test method CPU Utilisation and Memory Usage has 
two components, the client-server application and the 
monitoring tool. The transmission mode for the client-server 
application is synchronous and the data type is Byte. The data 
sizes are 10B, 100B, and 1024B. The monitoring tool reads 
the CPU utilisation and memory usage twice per second. The 
time span for exchanging the messages and the monitoring of 
the resources is 30 seconds. The previous scenario is also 
repeated whereby the transmission mode of the client-server 
application is asynchronous. The data type is Byte with the 
sizes 20KB, 40KB, and 80KB.  
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Fig. 2 Weighted Performance Analysis of Java Connection Methods with RMI as a Baseline 

 
C. Test Environment and Implementation 
The test setup used two PCs connected in a 100MBit/s 

LAN by a D-Link DSL-G604T router. One PC was used as a 
server (running Linux) whereas the second (Windows) was 

used for the client-application. The server simulates a sensor 
gateway running a SAL agent and the client simulates one or 
more SAL clients. The test framework was developed by 
using the Sun Java SE Development Kit Version 6 Update. 
The test platform is implemented as a client-server application 
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written in Java. The client component manages the test 
methods, and the server processes the clients' requests. Both 
parts allow for easy integration of different CMs. A 
monitoring tool (BASH script) was used on the server side to 
record statistics on CM performance. 

V. RESULTS AND ANALYSIS 
Numerous preliminary tests were undertaken with each CM 

in isolation to each other. These tests analysed each CM in 
terms of the criteria and factors described in the previous 
section. For brevity, the presentation and discussion of these 
results have been omitted. However, the overall results are 
used as input for the analysis that follows. 

To analyse and evaluate the CMs against the background of 
improving SAL's performance, its specific requirements need 
to be taken into account. Each CM's test results are brought 
into relation with the results of RMI set to 100% as reference 
point. This highlights the differences between RMI and the 
tested NIO frameworks. For the final evaluation, a weighting 
of the conducted test methods and the criteria is applied. The 
weightings were chosen based on significance as follows: TR 
(50%); scalability (30%); and resource usage (20%). The 
overall scalability is composed of the scalability regarding TR 
(70%) and the resource usage (30%).  

A test method's weighting is based on its importance in 
SAL. SAL mainly retrieves data using a streaming approach. 
Therefore, asynchronous mode is considered most important 
and gets a weighting of 70%. Consequentially the 
synchronous mode is weighted with 30%. Within the 
synchronous mode tests for determining TR, RTT and TP 
contribute equally and each get a weighting of 50%. The 
situation for CPU utilisation and memory usage is similar and 
both get a weighting of 50%. Note that these weightings 
represent the authors' judgement of their relative importance 
to SAL and wireless sensor network applications. Future work 
involves more formally defining the justifications behind each 
respective weighting. 

A. Round Trip Time 
The results for the RTT tests indicate that RMI is the best 

for one client, followed by Netty (see Fig. 2 A). Netty 
outperforms the other CMs for 10 or more clients (up to 35% 
better than RMI). Although the performance increase 
deteriorates with increasing client numbers, it is still 22% for 
100 clients. MINA and xSocket are 45 to 65% less efficient 
than RMI. 

B. Throughput 
Netty outperforms the other CMs, being more than 30% 

better than RMI for 10 and 30 clients (see Fig. 2 B). Its 
performance decreases slightly for 70 and 100 clients, but 
with a gain of 23% it is still significantly better. In general, 
MINA's performance is not as good as RMI, with 19% for 1 
client to 42% for 100 clients. xSocket is 50% worse than RMI, 
only showing a slight increase with increasing client numbers. 

 The cumulative results of the RTT and TP tests are 

strongly influenced by a distinct data type. While the String 
test results impact on the cumulative results in the RTT tests, 
their influence on the cumulative results of the TP tests nearly 
vanishes. The Integer tests have the biggest effect. This is 
apparent when observing MINA's results. Its overall bad 
performance for one client in the RTT tests is due to its String 
value results. Its performance in the TP tests is mediocre 
which is clearly owed to its outcome in the tests conducted 
with Integer values. 

C. Streaming 
The NIO frameworks perform similarly - approx. 30% 

better than RMI (see Fig. 2 C). The maximum increase is 
achieved by Netty for one client with 34%. Its performance 
then decreases slightly for 10 or more clients but is still at 
least 26% better. MINA has a steep decline for 10 clients 
decreasing to only 18% better, but then recovers to 28% better 
than RMI. xSocket is the best CM for 10 or more clients. 

D. Resource Usage for synchronous Requests 
Netty scales the best in CPU utilisation for synchronous 

requests (see Fig. 2 D). For one client it uses 5% less CPU and 
23% for 100 clients. The remaining CMs have similar CPU 
utilisation. 

In terms of memory usage, MINA and Netty show a 
performance increase of 20% for 1 client, extending to 35% 
and 45% for 100 clients respectively (see Fig. 2 E). xSocket is 
generally worse than RMI, but scales a slightly better. Its 
performance for 1 client is 60% worse, reducing to 30% for 
100 clients. 

E. Resource Usage for Asynchronous Requests 
xSocket has a slight advantage in CPU utilisation compared 

to RMI (see Fig. 2 F). MINA and Netty are the worst 
performers. xSocket's gain compared to RMI is between 2 and 
3% for 30 and 10 clients respectively. MINA's performance is 
20% more than RMI for one client, but decreases significantly 
for 10 or more clients. MINA and Netty use up to 57% more 
CPU resources than RMI. 

All NIO frameworks have a better memory usage than RMI 
for one client (see Fig. 2 G). xSocket retains satisfactory 
performance with an increasing number of clients, but MINA 
and Netty show an increased memory usage. At its peak, 
Netty uses more than three times the memory as RMI for 100 
clients. 
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TABLE I 

WEIGHTED TRANSFER RATE (WITH RMI AS A BASELINE) 
 Ratio Weighted Ratio Total 
 RTT TP Streaming Synchronous Asynchronous  

MINA 35.29% 80.51% 130.83% 17.37% 91.58% 108.95% 
Netty 92.05% 93.94% 133.90% 27.90% 93.73% 121.63% 

xSocket 43.25% 48.86% 129.03% 13.82% 90.32% 104.14% 
 

TABLE II 
WEIGHTED RESOURCE USAGE (WITH RMI AS A BASELINE) 

 Ratio Weighted Ratio Total 
 Synchronous Asynchronous Synchronous Asynchronous  
 CPU Memory CPU Memory    

MINA 96.82% 118.86% 79.82% 118.84% 32.35% 69.53% 101.88% 
Netty 105.16% 118.11% 50.33% 110.10% 33.49% 56.15% 89.64% 

xSocket 95.77% 40.98% 104.13% 116.52% 20.51% 77.23% 97.74% 

 
TABLE III 

WEIGHTED SCALABILITY (WITH RMI AS A BASELINE) 
 Weighted Ratio Total 
 Transfer Rate Resource Usage Transfer Rate Resource Usage  
 Synchronous Asynchronous Synchronous Asynchronous    

MINA 17.12% 88.60% 33.53% 17.70% 75.51% 13.64% 90.15% 
Netty 36.21% 89.46% 36.65% 9.19% 89.77% 13.10% 102.86% 

xSocket 16.13% 90.39% 22.39% 81.79% 76.09% 29.77% 105.85% 

 
F. Overall Comparison of CMs 
To compare the CMs, all criteria are weighted as described 

in Section V. Each criterion is evaluated using a separate 
weighted table and the overall performance is combined in a 
final weighted table. RMI is used as a reference point, 
therefore it always has the value 100\%. 

 
TABLE IV 

FINAL WEIGHTING OF THREE TEST CRITERIA (WITH RMI AS A BASELINE) 
 Transfer Rate Resource Usage Scalability Total 

MINA 54.48% 20.38% 27.05% 101.90% 
Netty 60.81% 17.93% 30.86% 109.60% 
xSocket 52.07% 19.55% 31.76% 103.37% 

 
Table I lists the TR ratios with RMI as a reference point and 

the weighted ratios. MINA and xSocket clearly have a 
disadvantage for synchronous requests but this is offset by 
their good performance for asynchronous requests. Applying 
the weighting results in both CMs being a little better than 
RMI with a total value of 104% for xSocket and 109% for 
MINA. Netty has the best TR result of 122%. It has a slight 
disadvantage for synchronous requests but the best 
performance for asynchronous requests. 

Table II contrasts resource usage. xSocket's poor memory 
usage for synchronous requests is nearly levelled out by its 
performance for asynchronous requests leading to a total value 
of 98%. MINA's bad ratio for the CPU utilisation is equalised 
by the better memory usage resulting in a total weighted value 
of 102%. Netty performs worst with a decrease of 10% due to 
its poor CPU utilisation for asynchronous requests.  

Table III presents the scalability results. MINA performs 

the worst with a decrease of 10% compared to RMI. Netty 
scales are well in terms of TR but have problems in the 
resource usage regarding asynchronous requests. It has a total 
value of 103%. xSocket scales best at 106%. Its good 
performance for asynchronous requests offsets its bad 
performance for synchronous requests. 

Table IV combines all three weighted criteria to give an 
overall evaluation. All NIO frameworks outperform RMI, 
with Netty being the best (110%), followed by xSocket 
(103%), then MINA (102%). As Netty had the most 
significant increase (10%), it was chosen for testing in SAL. 

VI. IMPLEMENTATION IN SAL 
This section pits Netty against RMI in a performance 

evaluation when implemented in SAL. The tests for the 
synchronous mode are performed by requesting a list of 
sensors, while asynchronous mode tests request a data stream 
from a sensor. RMI is used as reference point. 

For measuring TR, the synchronous and the asynchronous 
tests are set up as throughput tests meaning it is counted on 
the client side how many messages can be processed in a 30 
second time span. The monitoring tool measures the resource 
usage (refer to Section IV). The CPU utilisation and the 
memory usage are measured twice per second. For testing 
scalability, the aforementioned tests were conducted with 1, 
10, 30, 70, and 100 clients. “Dummy” (or fake) sensors, which 
return a constant value, were used for both types of tests. This 
ensures the sensor returns consistent data that is always the 
same size and no sensor specific latencies influence the test 
results. The list requested from the clients during the tests in 
synchronous mode contained 28 sensors. Eight of these 
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sensors were OS-related sensors, which are standard in SAL 
and 20 “dummy” sensors. The data for streaming in the 
asynchronous tests is requested from the “dummy” sensors. 

The results of the synchronous tests indicate RMI's TP and 
TR for one client is a little higher than the Netty's TP. Netty's 
performance increases proportionally to number of clients. For 
100 clients, Netty has an advantage of 37%. Netty's scalability 
regarding TR is clearly better in comparison to RMI. 

The average frames-per-second rate per client while 
streaming data from dummy sensors for one client show a 
performance increase of Netty compared to RMI of 140%. For 
10 and 30 clients, the increase is a little less but still nearly 
90%. For 70 and 100 clients, it rises again and reaches a 
maximum of 166% for 100 clients. 

The SAL agent's average CPU utilisation while processing 
the request for the list of sensors shows that the usage for 
synchronous requests of both CMs is very similar. For one 
client, both CMs have a CPU utilisation of about 76%. For 10 
and more clients, the utilisation rises to about 95 to 98%. The 
difference between Netty and RMI reaches a maximum of 2% 
when handling 70 clients with the slight advantage for RMI. 

The SAL agent's average memory usage while processing 
the request for the list of sensors shows that for 1, 10, and 30 
clients, both CMs have a memory usage of about 14%. While 
Netty's memory usage stays constant, RMI increases to a 
maximum of 15.3%.  

 
TABLE V 

NETTY - WEIGHTED TRANSFER RATE FOR TESTS IN SAL (RMI AS A 
BASELINE) 

Ratio Weighted Ratio Total 
Synchronous Asynchronous Synchronous Asynchronous  

97.30% 240.45% 29.19% 168.31% 197.50%

 
TABLE VI 

NETTY - WEIGHTED RESOURCE USAGE FOR TESTS IN SAL (RMI AS A 
BASELINE) 

Ratio Weighted Ratio Total 
Synchronous Asynchronous Synchronous Asynchronous  

CPU Memory CPU Memory    
99.52% 99.59% 82.52% 96.61% 29.87% 62.70% 92.56% 

 
TABLE VII 

NETTY - WEIGHTED SCALABILITY FOR TESTS IN SAL (RMI AS A BASELINE) 
Weighted Ratio Total 

Transfer Rate Resource Usage Transfer Rate Resource Usage  
Synch Asynch Synch Asynch    

35.59% 160.37% 30.34% 47.13% 140.20% 29.16% 169.37%

 
TABLE VIII 

NETTY - FINAL WEIGHTING FOR THE TESTS IN SAL 
Transfer Rate Resource Usage Scalability Total 

97.75% 18.51% 50.81% 168.08%

 
The SAL agent's average CPU utilisation while streaming 

data from dummy sensors show that for one client Netty uses 
17.5% more CPU than RMI. For 10 and more clients, both 
CMs have a similar behaviour with both utilising more than 

93% of the CPU. RMI proves to have a slight but constant 
advantage compared to Netty. 

The SAL agent's average memory use while streaming data 
from dummy sensors is similar to the Memory Usage tests for 
synchronous requests. The memory usage of Netty stays 
nearly constant at about 14% for all client numbers. RMI's 
memory usage increases from 13% for one client to 18% for 
100 clients. This corresponds to an advantage for Netty of 
24%. 

The process described in Section V is used to evaluate the 
test results. Netty has a clear advantage in TR at 198% (Table 
V). However, Netty suffers at 93% in terms of resource usage 
(Table VI). When evaluating scalability, Netty has an overall 
positive value of 169% (Table VII). Table VIII combines the 
total values of all three criteria. Netty offers SAL a 
performance increase of 68% over RMI. 

VII. CONCLUSIONS 
This paper analysed three different NIO frameworks as 

alternative CMs to RMI. The analysis was specifically for use 
in SAL with the goal of increasing message transfer in wireless 
sensor networks. A test platform was designed with a client-
server application and a monitoring tool to test the CMs 
according to TR, resource usage, and scalability. The test 
methods used synchronous and asynchronous transmission 
modes. Results indicated that no particular CM outperforms 
the others in all tests - each had strengths and weaknesses.  

A weighting was used for analysing and evaluating the 
CMs, which focused on the TR and the tests conducted with 
asynchronous requests. The weighting was chosen to reflect 
the importance for SAL. The NIO frameworks were brought 
into relation with RMI by using the test results of RMI as 
reference point. Against the background of the defined 
weightings, Netty turned out to be the best CM. Then xSocket 
and MINA followed, where both also had positive total results 
compared to RMI. All NIO frameworks perform better than 
RMI.  

As Netty appeared to be the most suitable replacement to 
RMI, it was implemented in SAL and its performance 
evaluated. In comparison to RMI, Netty improves TR and 
SAL's scalability significantly at the expense of slightly 
increased resource usage. The streaming capabilities of Netty 
were superior to RMI in SAL. Notably, the purpose of this 
paper was to identify a replacement CM to RMI. Analysing 
the underlying reasons for the performance increase is the 
focus of future work. 

Other future work involves improving performance by 
using compression to reduce the data size being transmitted. 
Alternately, we will look into mechanisms for optimising how 
the data is sent from the SAL agent to the client, or study if 
another thread model for data streaming would be more 
applicable. A further approach could consider the message 
delivery by pooling clients together who are interested in the 
same information to aggregate data transmissions. Finally, we 
could study how the performance changes when using UDP as 
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a transport protocol rather than TCP, as UDP has a stateless 
nature, which is normally faster than TCP. 
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