
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1203

Abstract—The transfer rate of messages in distributed sensor

network applications is a critical factor in a system's performance.
The Sensor Abstraction Layer (SAL) is one such system. SAL is a
middleware integration platform for abstracting sensor specific
technology in order to integrate heterogeneous types of sensors in a
network. SAL uses Java Remote Method Invocation (RMI) as its
connection method, which has unsatisfying transfer rates, especially
for streaming data. This paper analyses different connection methods
to optimize data transmission in SAL by replacing RMI. Our results
show that the most promising Java-based connections were
frameworks for Java New Input/Output (NIO) including Apache
MINA, JBoss Netty, and xSocket. A test environment was
implemented to evaluate each respective framework based on
transfer rate, resource usage, and scalability. Test results showed the
most suitable connection method to improve data transmission in
SAL JBoss Netty as it provides a performance enhancement of 68%.

Keywords—Wireless sensor networks, remote method
invocation, transmission time.

I. INTRODUCTION
HE performance of a distributed application is largely
influenced by the speed at which it exchanges messages.

It becomes even more important when real-time processing of
data streams is required. The velocity of the message
exchange (or transfer rate), is a common issue as stream-
based distributed applications are found in several types of
businesses. Example applications include financial services,
network and infrastructure monitoring, manufacturing, and
sensor networks (SNs). Transfer rate latencies as little as one
second can have detrimental effects on these applications [1].

Transfer rate problems can be due to software, hardware, or
network related deficiencies. For example, the bandwidth of
the network can be insufficient or the server can be short of
resources. If the problem is software related, it may refer to
the message size being too big, or the message-parsing taking
too long. Furthermore, the connection methods (CMs) used by
the distributed system for handling the message exchange may
introduce delays that negatively affects performance.

This problem has occurred in the Sensor Abstraction Layer

M. Hammerton and W. Read are with the School of Engineering and
Physical Sciences, James Cook University, Townsville, Queensland, 4811,
Australia (phone: 6107 4042 5880; e-mail: Mark.Hammerton@my.jcu.edu.au,
Wayne.Read@jcu.edu.au).

J. Trevathan is with the School of Information and Communication
Technology, Griffith University, Brisbane, Queensland, 4111, Australia
(phone: 6107 3735 5046; e-mail: j.trevathan@griffith.edu.au).

T. Myers is with the School of Business (Information Technology), James
Cook University, Townsville, Queensland, 4811, Australia (phone: 6107 4781
6908; e-mail: Trina.Myers@jcu.edu.au).

(SAL) SN application [2]. SAL is a middleware integration
platform for abstracting sensor specific technology to provide
a user-friendly way of integrating heterogeneous types of
sensors. SAL is employed by the Davies Reef SN project [3]
and the SEMAT project [4], [5]. It uses RMI as its CM for
providing a client with data from one or more sensors.
However, RMI introduces delays while streaming data from
the sensors to the client, which limits SAL's effectiveness. To
improve SAL's performance, this paper concentrates on
exchanging the CM rather than optimising the processes in
SAL.

Numerous CMs exist for use in Java-based applications.
Examples are socket-implementations, Web Services, MPJ
Express, Ibis IPL, Java Fast Sockets, and CORBA2, which are
already partly the subject of performance studies [6]-[9].
However, the focus of this paper is not to give an analysis into
the performance characteristics and underlying mechanisms of
CMs, but rather to identify which CMs will provide an
immediate performance improvement to a wireless sensor
network application. Analysis for the causes for the
performance enhancement is beyond this paper's scope. Here,
the main goals are as follows:
• Determine alternative CMs to RMI for use in SAL;
• Implement a suitable test environment;
• Test/evaluate the CMs and recommend one or more as an

alternative to RMI; and
• Implement the alternative CM(s) in SAL and verify the

performance improvement.
For the purposes of this study we examined Java-based

connections from the Java New Input/Output (NIO)
framework. We considered several CMs including Apache
MINA, JBoss Netty, and xSocket. A test environment was
designed to evaluate each respective framework for its
suitability in SAL based on transfer rate, resource usage, and
scalability. Results showed that all NIO frameworks
outperformed RMI in terms of streaming data. Overall, the
most suitable connection method for improving the data
transmission in SAL is to replace RMI with JBoss Netty as it
provides a weighted performance enhancement of 68%.

This paper is organised as follows: Section I provides a
brief overview of SAL. Section III gives an introduction to the
Java CMs under consideration. Section IV explains the design
of the performance evaluation tests. Section V presents and
analyses the results of the performance tests. Section VI
implements and evaluates the best performing CM directly in
SAL. Section VII provides some concluding remarks.

M. Hammerton, J. Trevathan, T. Myers, W. Read

Optimising Data Transmission in Heterogeneous
Sensor Networks

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1204

II. SENSOR ABSTRACTION LAYER
SNs are becoming increasingly essential as sensors are

introduced into more areas of life. However, lack of standards
makes it difficult to integrate heterogeneous sensors in a
single SN. Therefore, middleware is important to have, as it is
able to manage all types of sensors. This middleware is often
implemented specifically for one SN, which makes it
hardware dependent. Changes in the network, such as adding
a new sensor, lead to manipulating the middleware code.

SAL is a middleware integration platform, which provides a
plug-in-based model where support for new types of sensors
can be loaded to the running system via plug-in. The system
automatically detects and configures new sensors, if permitted
by the hardware and operating system (OS). It provides a
unified interface to all sensors by abstracting the sensor
specific features. This simplifies access to a SN and the
management/control of its sensors [2]. SAL can be seen as a
low-level software layer as it bridges a network of sensors
with high-level applications or further middleware
technologies.

SAL consists of two components, the SAL client and the
SAL agent. The SAL client represents an interface either to the
user via a user interface or to other applications. SAL
implements the SAL agent Application Programming
Interface (API) in order to provide the SAL agent's
functionality. The API is grouped into the following three
categories:

1. Sensor Management - Methods to manage the pool of
sensors and including operations for enumerating, adding
and removing sensors.

2. Sensor Control - Methods to report on a sensor's
capabilities and control the streaming of the data.

3. Platform Configuration - Methods to adjust the platform,
e.g., add support for a new sensor type.

Each category uses a different markup language. The
Sensor Management methods use SensorML [10], which
describes a sensor's configuration. The methods in the
category Sensor Control use CommandML. The CommandML
documents contain a list of commands which are supported by
a sensor. The last category, Platform Configuration, uses
Platform Capabilities and Configuration Markup Language
(PCML). PCML documents contain information on the
platform configuration in order to support a certain type of
sensor technology.

The SAL agent implements the various features of SAL. It
runs on a platform which is connected to the sensors and
therefore is regarded as a sensor gateway. The connection
between the platform and the sensors can be either direct
using platform specific input/output (I/O) ports like USB or
indirect by using wireless technology. The SAL agent
manages the sensors which are directly connected and are
found by the agent and the indirectly connected sensors it has
been told of. The SAL agent consists of three layers: Agent
Layer, Communication Layer, and EndPoint Layer (Fig. 1).

Fig. 1 SAL components and software layers

The Agent Layer is responsible for the communication with
the SAL client. It receives messages, parses and forwards
them to the underlying Communication Layer and sends the
response back to the client.

The Communication Layer provides methods for managing
and controlling sensors. The managing methods are used to
configure and set up hardware while the controlling methods

translate a generic command into a sensor native command,
which then can be transmitted to the sensor. The generic
commands are provided in the SAL API. For translating the
generic commands two sub-layers are used. The Abstraction
Layer is an adapter layer where the generic commands are
implemented. From here the sensor-specific methods are
called, which are implemented in the Protocol Layer.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1205

The EndPoint Layer is tightly coupled to the I/O ports
available on the sensor gateway. It is responsible for
transmitting native sensor commands produced by the
Protocol sub-layer to the sensor, and data from the sensor is
transmitted to the SAL agent. This layer's software code layer
is normally included in the OS. SAL ensures it is available
and configured correctly.

The sub-layers Abstraction and Protocol and the EndPoint
Layer form a Logical Port. Each sensor is connected to a
Logical Port that allows a specific client to control multiple
agents. The logical port allows SAL to scale vertically in that
an agent can control other agents in a hierarchical manner.
The logical port treats an attached device as a data source,
independent of whether it is a sensor or another agent. The
ability to scale allows SNs of almost any topology or
configuration.

The main objective of this project is to improve SAL's
performance. The evaluation of the CMs needs to take into
account the following three requirements:
1. Increase the transfer rate of messages between the SAL

client and agent;
2. Improve the SAL agent's resource usage in terms of CPU

utilisation and memory consumption; and
3. Improve the SAL agent's scalability.

III. CONNECTION METHODS
The following programming paradigms exist for

implementing network communication between Java
components [11]:
• Sockets: the communication is based on a one-to-one,

duplex connection. The developer takes care of the data
packing/unpacking and appropriate protocol usage.

• Remote Procedure Calls (RPC) / RMI: RPC enables
calling remote methods as if they were local methods.
The developer does not need to take care about the
communication details. RMI is the object-oriented
equivalent to RPC as it enables calling a method of a
remote object.

• Message based communication: the communication is
based on the exchange of messages with a predefined
format. The communication details are hidden in an API.

A sensor gateway's resources can be limited. As this
research aims to improve data transmission performance, only
sockets are considered as an alternative communication
method to RMI. Message based communication, e.g., SOAP3,
would require sending and parsing of XML structures, which
is performance hungry and increases the message size due to
the XML overhead. Either the Java I/O API or the Java New
I/O (NIO) API can be used to implement sockets. This paper
uses NIO as it allows for a non-blocking implementation and
therefore better performance and scalability.

A. Java Remote Method Invocation (RMI)
RMI enhances the creation of distributed Java applications,

enabling the developer to invoke methods of objects running
in a remote Java virtual machine. It provides an API for

invoking remote methods with the same syntax/semantics as
for local method calls. RMI is based on the principle of
separating the definition and implementation of behaviour by
using interfaces (called remote interfaces).

A remote interface contains the definition of the methods
being offered by the server as services for remote components.
A server class implements the remote interface. Its instantiated
objects (called remote objects) are registered with a naming-
service, e.g., RMI-Registry. The clients connect to the
naming-service and look up the references to the remote
objects. They can then use the server's services as if they were
local method calls. When using a method, its parameters are
transmitted to the remote object, the appropriate method is
invoked on the server and the result is transferred back to the
client.

B. Java New Input/Output (NIO)
NIO introduced a range of features/improvements for I/O

operations. These include buffer management, character set
support, pattern matching with regular expressions, and
scalable I/O operations for sockets and files.

NIO extends the I/O classes found in the java.io package.
The developer chooses which approach to use depending on
the application's requirements. Java I/O offers a stream-based
approach using sockets for networking connections. However,
this has scalability disadvantages due to its blocking nature.
The I/O operations behave in a synchronous way - a read
operation waits until all the data is available and a write
operation waits until all the data is sent. The thread
performing the I/O is blocked and cannot proceed with other
tasks. A separate thread is needed for each connection,
resulting in a large number of resource consuming threads.

NIO provides non-blocking I/O operations, addressing the
scalability problem faced with streams. This has the advantage
that threads do not wait until an I/O operation is finished. A
thread performing a write operation puts the data into an OS
buffer and returns immediately. A thread performing a read
operation instantly gets the available data rather than waiting
until all data has arrived. Furthermore, NIO includes buffer
management to improve performance issues. Buffers allow
data to be transferred in bigger pieces than with streams,
which mainly transfer data in small pieces, e.g., single bytes.

Since the introduction of NIO in J2SE 1.4 a variety of
frameworks evolved, including Apache MINA, JBoss Netty,
Grizzly, xSocket, and NIO Framework. These simplify the
building of network applications by encapsulating the
complexity of low-level I/O programming and extending the
functionality of NIO concepts. Due to scope constraints, this
paper restricts its attention to the following frameworks:
• Apache MINA (or MINA) provides an abstract,

asynchronous, and event-driven API, which supports TCP
and UDP. MINA (version 2.0.0) was chosen due to its
popularity.

• JBoss Netty (or Netty) is also an asynchronous event-
driven network application framework which provides a
unified API for differing transport types, a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1206

flexible/extensible event model, and a customisable
thread model. Netty (version 3.0.2) was chosen because it
is the fastest out of all the aforementioned frameworks in
tests conducted by T. Lee in [12].

• xSocket encapsulates low-level programming, has
connection pool management, and connection timeout
detection. xSocket (version 2.4.6) was chosen due to its
popularity, and it is a lightweight easy-to-use framework.

IV. TEST DESIGN
A test framework was designed to reflect the

communication between a SAL client and agent in order to
evaluate the CMs. It is implemented as an independent
application to prevent interference from background processes
in SAL.

A. Test Criteria, Factors and Methods
The performance objectives outlined in Section II are to

improve SAL's transfer rate, resource usage (CPU and
memory) and scalability. Transfer rate and resource usage can
be measured in a distinct dimension unit (e.g., bits-per-second
or percentage). Scalability is measured by combining one of
the two previous criteria with a factor, such as the number of
clients. Other factors, which influence the criteria, include:
• Data size or the amount of data that is sent between a

client and a server in a single message.
• Data type of a message (e.g., Integer, Byte, String, etc.).
• Number of simultaneous clients connected to the server.
• Transmission mode for how the requests are sent from the

client to the server (e.g., blocking or non-blocking.).
A set of test methods were used to analyse the CMs

regarding the aforementioned criteria. These included the
Transfer Rate (TR), resource usage and scalability.

TR deals with the velocity of the message transportation
between a client and a server. Two types of requests exist in
SAL: synchronous and asynchronous. TRs for synchronous
requests are measured using two different methods. Round
Trip Time (RTT) measures the average time for sending a
message from the client to the server and back. Two
measuring points are needed on the client side: one before
sending the request and the second directly after receiving the
response. Throughput (TP) measures the number of messages
that can be sent from the client to the server and back during a
certain time span. This should be inverse proportional to RTT.
The measuring point for counting the number of received
messages is placed on the client side after receiving the
response from the server.

Testing TR for asynchronous requests require a streaming-
like approach. The Streaming test measures the number of
messages received by a client in a certain time span. After
receiving a request, a server continuously sends messages to a
client until the client requests the server to stop. The
measuring point is implemented on the client side by counting

the number of messages received.
Resource usage refers to the server's resources (i.e., CPU

utilisation and memory consumption). The applied test
methods are implemented on the server side.

Scalability is addressed by both TR and resource usage
performed with different numbers of clients.

B. Test Scenarios
A test scenario defines the settings used in a test method.

The definitions include the general test factors and test
method-specific factors, such as time span or number of
method calls. All test scenarios were performed at least three
times to ensure that the collected data is representative. To
reduce the interference of the Just-In-Time compiler, a large
number of preliminary interactions were performed before the
actual tests.

The data types/sizes are based on the values common in
messages exchanged between a SAL client and agent. For
example, String is often used for sending XML structures. It is
included as data type with a size of 3408B. The maximum
client number is 100 as a sensor gateway has limited
resources. The transmission mode reflects both modes in
which clients request data from the server. This can either be
in a synchronous mode, where the client blocks until it
receives the response from the server or in an asynchronous
mode, where the client requests a data stream without
blocking.

Each test method is performed with all possible values of
the factor Number of Clients. The method RTT is performed
with the data types Integer, Object, and String with their
according data sizes. The transmission mode is synchronous.

In order to receive reliable results, the method is performed
with 1000 method calls per client. The time is measured in
nanoseconds.

The method TP has similar settings. It is performed with the
data types Integer, Object, and String with their according
data sizes and the transmission mode is synchronous. The time
span for the message exchange is 60 seconds.

The method Streaming is performed using the data type
Byte with the sizes 20KB, 40KB, and 80KB.The transmission
mode is asynchronous and the time span for the client to
receive messages is 30 seconds.

The test method CPU Utilisation and Memory Usage has
two components, the client-server application and the
monitoring tool. The transmission mode for the client-server
application is synchronous and the data type is Byte. The data
sizes are 10B, 100B, and 1024B. The monitoring tool reads
the CPU utilisation and memory usage twice per second. The
time span for exchanging the messages and the monitoring of
the resources is 30 seconds. The previous scenario is also
repeated whereby the transmission mode of the client-server
application is asynchronous. The data type is Byte with the
sizes 20KB, 40KB, and 80KB.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1207

Fig. 2 Weighted Performance Analysis of Java Connection Methods with RMI as a Baseline

C. Test Environment and Implementation
The test setup used two PCs connected in a 100MBit/s

LAN by a D-Link DSL-G604T router. One PC was used as a
server (running Linux) whereas the second (Windows) was

used for the client-application. The server simulates a sensor
gateway running a SAL agent and the client simulates one or
more SAL clients. The test framework was developed by
using the Sun Java SE Development Kit Version 6 Update.
The test platform is implemented as a client-server application

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1208

written in Java. The client component manages the test
methods, and the server processes the clients' requests. Both
parts allow for easy integration of different CMs. A
monitoring tool (BASH script) was used on the server side to
record statistics on CM performance.

V. RESULTS AND ANALYSIS
Numerous preliminary tests were undertaken with each CM

in isolation to each other. These tests analysed each CM in
terms of the criteria and factors described in the previous
section. For brevity, the presentation and discussion of these
results have been omitted. However, the overall results are
used as input for the analysis that follows.

To analyse and evaluate the CMs against the background of
improving SAL's performance, its specific requirements need
to be taken into account. Each CM's test results are brought
into relation with the results of RMI set to 100% as reference
point. This highlights the differences between RMI and the
tested NIO frameworks. For the final evaluation, a weighting
of the conducted test methods and the criteria is applied. The
weightings were chosen based on significance as follows: TR
(50%); scalability (30%); and resource usage (20%). The
overall scalability is composed of the scalability regarding TR
(70%) and the resource usage (30%).

A test method's weighting is based on its importance in
SAL. SAL mainly retrieves data using a streaming approach.
Therefore, asynchronous mode is considered most important
and gets a weighting of 70%. Consequentially the
synchronous mode is weighted with 30%. Within the
synchronous mode tests for determining TR, RTT and TP
contribute equally and each get a weighting of 50%. The
situation for CPU utilisation and memory usage is similar and
both get a weighting of 50%. Note that these weightings
represent the authors' judgement of their relative importance
to SAL and wireless sensor network applications. Future work
involves more formally defining the justifications behind each
respective weighting.

A. Round Trip Time
The results for the RTT tests indicate that RMI is the best

for one client, followed by Netty (see Fig. 2 A). Netty
outperforms the other CMs for 10 or more clients (up to 35%
better than RMI). Although the performance increase
deteriorates with increasing client numbers, it is still 22% for
100 clients. MINA and xSocket are 45 to 65% less efficient
than RMI.

B. Throughput
Netty outperforms the other CMs, being more than 30%

better than RMI for 10 and 30 clients (see Fig. 2 B). Its
performance decreases slightly for 70 and 100 clients, but
with a gain of 23% it is still significantly better. In general,
MINA's performance is not as good as RMI, with 19% for 1
client to 42% for 100 clients. xSocket is 50% worse than RMI,
only showing a slight increase with increasing client numbers.

 The cumulative results of the RTT and TP tests are

strongly influenced by a distinct data type. While the String
test results impact on the cumulative results in the RTT tests,
their influence on the cumulative results of the TP tests nearly
vanishes. The Integer tests have the biggest effect. This is
apparent when observing MINA's results. Its overall bad
performance for one client in the RTT tests is due to its String
value results. Its performance in the TP tests is mediocre
which is clearly owed to its outcome in the tests conducted
with Integer values.

C. Streaming
The NIO frameworks perform similarly - approx. 30%

better than RMI (see Fig. 2 C). The maximum increase is
achieved by Netty for one client with 34%. Its performance
then decreases slightly for 10 or more clients but is still at
least 26% better. MINA has a steep decline for 10 clients
decreasing to only 18% better, but then recovers to 28% better
than RMI. xSocket is the best CM for 10 or more clients.

D. Resource Usage for synchronous Requests
Netty scales the best in CPU utilisation for synchronous

requests (see Fig. 2 D). For one client it uses 5% less CPU and
23% for 100 clients. The remaining CMs have similar CPU
utilisation.

In terms of memory usage, MINA and Netty show a
performance increase of 20% for 1 client, extending to 35%
and 45% for 100 clients respectively (see Fig. 2 E). xSocket is
generally worse than RMI, but scales a slightly better. Its
performance for 1 client is 60% worse, reducing to 30% for
100 clients.

E. Resource Usage for Asynchronous Requests
xSocket has a slight advantage in CPU utilisation compared

to RMI (see Fig. 2 F). MINA and Netty are the worst
performers. xSocket's gain compared to RMI is between 2 and
3% for 30 and 10 clients respectively. MINA's performance is
20% more than RMI for one client, but decreases significantly
for 10 or more clients. MINA and Netty use up to 57% more
CPU resources than RMI.

All NIO frameworks have a better memory usage than RMI
for one client (see Fig. 2 G). xSocket retains satisfactory
performance with an increasing number of clients, but MINA
and Netty show an increased memory usage. At its peak,
Netty uses more than three times the memory as RMI for 100
clients.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1209

TABLE I

WEIGHTED TRANSFER RATE (WITH RMI AS A BASELINE)
 Ratio Weighted Ratio Total
 RTT TP Streaming Synchronous Asynchronous

MINA 35.29% 80.51% 130.83% 17.37% 91.58% 108.95%
Netty 92.05% 93.94% 133.90% 27.90% 93.73% 121.63%

xSocket 43.25% 48.86% 129.03% 13.82% 90.32% 104.14%

TABLE II
WEIGHTED RESOURCE USAGE (WITH RMI AS A BASELINE)

 Ratio Weighted Ratio Total
 Synchronous Asynchronous Synchronous Asynchronous
 CPU Memory CPU Memory

MINA 96.82% 118.86% 79.82% 118.84% 32.35% 69.53% 101.88%
Netty 105.16% 118.11% 50.33% 110.10% 33.49% 56.15% 89.64%

xSocket 95.77% 40.98% 104.13% 116.52% 20.51% 77.23% 97.74%

TABLE III

WEIGHTED SCALABILITY (WITH RMI AS A BASELINE)
 Weighted Ratio Total
 Transfer Rate Resource Usage Transfer Rate Resource Usage
 Synchronous Asynchronous Synchronous Asynchronous

MINA 17.12% 88.60% 33.53% 17.70% 75.51% 13.64% 90.15%
Netty 36.21% 89.46% 36.65% 9.19% 89.77% 13.10% 102.86%

xSocket 16.13% 90.39% 22.39% 81.79% 76.09% 29.77% 105.85%

F. Overall Comparison of CMs
To compare the CMs, all criteria are weighted as described

in Section V. Each criterion is evaluated using a separate
weighted table and the overall performance is combined in a
final weighted table. RMI is used as a reference point,
therefore it always has the value 100\%.

TABLE IV

FINAL WEIGHTING OF THREE TEST CRITERIA (WITH RMI AS A BASELINE)
 Transfer Rate Resource Usage Scalability Total

MINA 54.48% 20.38% 27.05% 101.90%
Netty 60.81% 17.93% 30.86% 109.60%
xSocket 52.07% 19.55% 31.76% 103.37%

Table I lists the TR ratios with RMI as a reference point and

the weighted ratios. MINA and xSocket clearly have a
disadvantage for synchronous requests but this is offset by
their good performance for asynchronous requests. Applying
the weighting results in both CMs being a little better than
RMI with a total value of 104% for xSocket and 109% for
MINA. Netty has the best TR result of 122%. It has a slight
disadvantage for synchronous requests but the best
performance for asynchronous requests.

Table II contrasts resource usage. xSocket's poor memory
usage for synchronous requests is nearly levelled out by its
performance for asynchronous requests leading to a total value
of 98%. MINA's bad ratio for the CPU utilisation is equalised
by the better memory usage resulting in a total weighted value
of 102%. Netty performs worst with a decrease of 10% due to
its poor CPU utilisation for asynchronous requests.

Table III presents the scalability results. MINA performs

the worst with a decrease of 10% compared to RMI. Netty
scales are well in terms of TR but have problems in the
resource usage regarding asynchronous requests. It has a total
value of 103%. xSocket scales best at 106%. Its good
performance for asynchronous requests offsets its bad
performance for synchronous requests.

Table IV combines all three weighted criteria to give an
overall evaluation. All NIO frameworks outperform RMI,
with Netty being the best (110%), followed by xSocket
(103%), then MINA (102%). As Netty had the most
significant increase (10%), it was chosen for testing in SAL.

VI. IMPLEMENTATION IN SAL
This section pits Netty against RMI in a performance

evaluation when implemented in SAL. The tests for the
synchronous mode are performed by requesting a list of
sensors, while asynchronous mode tests request a data stream
from a sensor. RMI is used as reference point.

For measuring TR, the synchronous and the asynchronous
tests are set up as throughput tests meaning it is counted on
the client side how many messages can be processed in a 30
second time span. The monitoring tool measures the resource
usage (refer to Section IV). The CPU utilisation and the
memory usage are measured twice per second. For testing
scalability, the aforementioned tests were conducted with 1,
10, 30, 70, and 100 clients. “Dummy” (or fake) sensors, which
return a constant value, were used for both types of tests. This
ensures the sensor returns consistent data that is always the
same size and no sensor specific latencies influence the test
results. The list requested from the clients during the tests in
synchronous mode contained 28 sensors. Eight of these

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1210

sensors were OS-related sensors, which are standard in SAL
and 20 “dummy” sensors. The data for streaming in the
asynchronous tests is requested from the “dummy” sensors.

The results of the synchronous tests indicate RMI's TP and
TR for one client is a little higher than the Netty's TP. Netty's
performance increases proportionally to number of clients. For
100 clients, Netty has an advantage of 37%. Netty's scalability
regarding TR is clearly better in comparison to RMI.

The average frames-per-second rate per client while
streaming data from dummy sensors for one client show a
performance increase of Netty compared to RMI of 140%. For
10 and 30 clients, the increase is a little less but still nearly
90%. For 70 and 100 clients, it rises again and reaches a
maximum of 166% for 100 clients.

The SAL agent's average CPU utilisation while processing
the request for the list of sensors shows that the usage for
synchronous requests of both CMs is very similar. For one
client, both CMs have a CPU utilisation of about 76%. For 10
and more clients, the utilisation rises to about 95 to 98%. The
difference between Netty and RMI reaches a maximum of 2%
when handling 70 clients with the slight advantage for RMI.

The SAL agent's average memory usage while processing
the request for the list of sensors shows that for 1, 10, and 30
clients, both CMs have a memory usage of about 14%. While
Netty's memory usage stays constant, RMI increases to a
maximum of 15.3%.

TABLE V

NETTY - WEIGHTED TRANSFER RATE FOR TESTS IN SAL (RMI AS A
BASELINE)

Ratio Weighted Ratio Total
Synchronous Asynchronous Synchronous Asynchronous

97.30% 240.45% 29.19% 168.31% 197.50%

TABLE VI

NETTY - WEIGHTED RESOURCE USAGE FOR TESTS IN SAL (RMI AS A
BASELINE)

Ratio Weighted Ratio Total
Synchronous Asynchronous Synchronous Asynchronous

CPU Memory CPU Memory
99.52% 99.59% 82.52% 96.61% 29.87% 62.70% 92.56%

TABLE VII

NETTY - WEIGHTED SCALABILITY FOR TESTS IN SAL (RMI AS A BASELINE)
Weighted Ratio Total

Transfer Rate Resource Usage Transfer Rate Resource Usage
Synch Asynch Synch Asynch

35.59% 160.37% 30.34% 47.13% 140.20% 29.16% 169.37%

TABLE VIII

NETTY - FINAL WEIGHTING FOR THE TESTS IN SAL
Transfer Rate Resource Usage Scalability Total

97.75% 18.51% 50.81% 168.08%

The SAL agent's average CPU utilisation while streaming

data from dummy sensors show that for one client Netty uses
17.5% more CPU than RMI. For 10 and more clients, both
CMs have a similar behaviour with both utilising more than

93% of the CPU. RMI proves to have a slight but constant
advantage compared to Netty.

The SAL agent's average memory use while streaming data
from dummy sensors is similar to the Memory Usage tests for
synchronous requests. The memory usage of Netty stays
nearly constant at about 14% for all client numbers. RMI's
memory usage increases from 13% for one client to 18% for
100 clients. This corresponds to an advantage for Netty of
24%.

The process described in Section V is used to evaluate the
test results. Netty has a clear advantage in TR at 198% (Table
V). However, Netty suffers at 93% in terms of resource usage
(Table VI). When evaluating scalability, Netty has an overall
positive value of 169% (Table VII). Table VIII combines the
total values of all three criteria. Netty offers SAL a
performance increase of 68% over RMI.

VII. CONCLUSIONS
This paper analysed three different NIO frameworks as

alternative CMs to RMI. The analysis was specifically for use
in SAL with the goal of increasing message transfer in wireless
sensor networks. A test platform was designed with a client-
server application and a monitoring tool to test the CMs
according to TR, resource usage, and scalability. The test
methods used synchronous and asynchronous transmission
modes. Results indicated that no particular CM outperforms
the others in all tests - each had strengths and weaknesses.

A weighting was used for analysing and evaluating the
CMs, which focused on the TR and the tests conducted with
asynchronous requests. The weighting was chosen to reflect
the importance for SAL. The NIO frameworks were brought
into relation with RMI by using the test results of RMI as
reference point. Against the background of the defined
weightings, Netty turned out to be the best CM. Then xSocket
and MINA followed, where both also had positive total results
compared to RMI. All NIO frameworks perform better than
RMI.

As Netty appeared to be the most suitable replacement to
RMI, it was implemented in SAL and its performance
evaluated. In comparison to RMI, Netty improves TR and
SAL's scalability significantly at the expense of slightly
increased resource usage. The streaming capabilities of Netty
were superior to RMI in SAL. Notably, the purpose of this
paper was to identify a replacement CM to RMI. Analysing
the underlying reasons for the performance increase is the
focus of future work.

Other future work involves improving performance by
using compression to reduce the data size being transmitted.
Alternately, we will look into mechanisms for optimising how
the data is sent from the SAL agent to the client, or study if
another thread model for data streaming would be more
applicable. A further approach could consider the message
delivery by pooling clients together who are interested in the
same information to aggregate data transmissions. Finally, we
could study how the performance changes when using UDP as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:9, 2013

1211

a transport protocol rather than TCP, as UDP has a stateless
nature, which is normally faster than TCP.

ACKNOWLEDGMENT
This work was supported in part by the Queensland

Government National and International Research Alliances
Program.

REFERENCES
[1] M. Stonebraker, U. Çetintemel, and S. Zdonik, "The 8 requirements of

real-time stream processing," ACM SIGMOD Rec., vol. 34, pp. 42-47,
2005.

[2] G. Gigan and I. Atkinson, "Sensor Abstraction Layer: a unique software
interface to effectively manage sensor networks," in Third International
Conference Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP 07), Melbourne, Australia, 2007.

[3] C. Huddlestone-Holmes, G. Gigan, and I. Atkinson, "Infrastructure for a
sensor network on Davies Reef, Great Barrier Reef," in 3rd International
Conference Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP 07) Melbourne, Australia: IEEE Xplore, 2007.

[4] J. Trevathan, H. Ghodosi, and T. Myers, "Efficient Batch Authentication
for Hierarchical Wireless Sensor Networks," in Proceedings of the
Seventh International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP 2011), Adelaide,
Australia, 2011, pp. 217-222.

[5] J. Trevathan, I. Atkinson, W. Read, N. Bajema, Y. J. Lee, R. Johnstone,
and A. Scarr, "Developing Low-Cost Intelligent Wireless Sensor
Networks for Aquatic Environments," in Proceedings of the 6th
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP'10) Brisbane, Australia, 2010, pp. 13-
18.

[6] S. P. Ahuja and R. Quintao, "Performance evaluation of Java RMI: a
distributed object architecture for Internet based applications," in
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2000. Proceedings. 8th International
Symposium on, 2000, pp. 565-569.

[7] W. R. Cook and J. Barfield, "Web Services versus Distributed Objects:
A Case Study of Performance and Interface Design," in Proceedings of
the IEEE International Conference on Web Services: IEEE Computer
Society, 2006.

[8] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle, "Benchmarking
the round-trip latency of various java-based middleware platforms,"
Studia Informatica Universalis Regular Issue, vol. 4, pp. 7-24, 2005.

[9] M. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko,
"Comparison of performance of Web services, WS-Security, RMI, and
RMI SSL," Journal of Systems and Software, vol. 79, pp. 689-700,
2006.

[10] G. Aloisio, D. Conte, C. Elefante, G. P. Marra, G. Mastrantonio, and G.
Quarta, "Globus Monitoring and Discovery Service and SensorML for
Grid Sensor Networks," in Proceedings of the 15th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Manchester, United Kingdom 2006, pp. 201-206.

[11] S. Heinzl and M. Mathes, Middleware in Java: Leitfaden Zum Entwurf
Verteilter Anwendungen: Vieweg+ teubner Verlag, 2005.

[12] T. Lee. (2011) Rapid Network Application Development with Apache
MINA[Online].Available: http://developers.sun.com/learning/j
avaoneonlin e/2008/pdf/TS-4814.pdf

