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Optimal Trajectories for Highly Automated Driving
Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract—In this contribution two approaches for calculating
optimal trajectories for highly automated vehicles are presented and
compared. The first one is based on a non-linear vehicle model, used
for evaluation. The second one is based on a simplified model and
can be implemented on a current ECU. In usual driving situations
both approaches show very similar results.

Keywords—Trajectory planning, direct method, indirect method,
highly automated driving.

I. INTRODUCTION

IN recent years advanced driver assistance systems (ADAS)
have prevailed more and more in the vehicle. Initially

it was mainly longitudinal guidance systems or parking
systems. More recently, lateral vehicle guidance systems using
electronic power steering (EPS) have been introduced into
market. Thereby functions like lane-keeping assistance or even
highly automated driving can be implemented.
To ensure a safe operating, an exact planning of the vehicle’s
movement trajectory is necessary which explicitly account
for the time t. For this purpose (nonlinear) optimization
algorithms, based on the direct optimization, offer itself
perfectly. These algorithms are usually used for Model
Predictive Control (MPC), see for example [1], [2] or [3].
The limited computing power of current automotive ECUs
however prohibits the use of non-linear optimization methods.
Moreover, the proof of convergence is often difficult.
Therefore the nonlinear optimization algorithms are used for
evaluation within this work. In order to be implemented on an
automotive ECU, an algorithm based on a simplified vehicle
model is derived, using the indirect optimization method. The
approach is likewise to [4] where the problem is solved using
the indirect method by the usage of polynomials in a discrete
solution space. It has the advantage of being realizable on a
automotive ECU and convergence is guaranteed.
In this contribution both algorithms will be compared with
representative maneuvers.
After an overview on related work in Section II, the used
vehicle model is presented in Section III. In Section IV we
describe the optimization restrictions. Section V presents the
direct optimization-based approach and Section VI the indirect
optimization approach. Both approaches are compared and the
differences are outlined in Section VII. In Section VIII finally
a short summary is given.

Christian Rathgeber is with BMW AG, 80937 Munich, Germany (e-mail:
christian.rathgeber@bmw.de)

Xiaoyu Kang is with BMW AG, 80937 Munich, Germany (e-mail:
xiaoyu.kang@bmw.de)

Franz Winkler is with BMW AG, 80937 Munich, Germany (e-mail:
franz.winkler@bmw.de)

Steffen Müller is with Technical University of Berlin, 13355 Berlin,
Germany (e-mail: steffen.mueller@tu-berlin.de)

II. VEHICLE MODEL

For describing the vehicle movement the well-known
single-track model (STM) is used [5]. The yaw rate ψ̇, the
slip angle β and the vehicle velocity v represent the state
variables:

xT
STM =

[
ψ̇ β v

]
(1)

Its dynamics ẋSTM = f(xSTM , uSTM ) are described in the
Appendix. Usually the steering angle δ and the front and rear
wheel torques Twf and Twr are used as an input. In our
case however low-level controller generate these quantities.
The steering controller uses a desired curvature κd the vehicle
should follow as an input

δ = Gδ(s)κd (2)

generating a steering angle (see for example [6]). The
low-level longitudinal controller generates the front and rear
wheel torques from a desired longitudinal acceleration ad

Tw,f + Tw,r = Gl(s) ad. (3)

For the sake of simplicity, both transfer functions are treated
as having a PT1-behavior.
The vehicle movement in world coordinates xw and yw (see
Fig. 1) is given by

ẋw = v cos θ (4)

ẏw = v sin θ, (5)

with the course angle

θ = ψ + β. (6)

Often one is not interested in the vehicle’s position in world
coordinates, but the position relative to a given lane. Thus, dr
describes the distance to the lane and θv the differential angle
between the vehicle movement and the tangent to the lane.
The lane itself is described by its curvature κs.

θ

v
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dr

θs

1/κs

R

xw
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s

Fig. 1. Vehicle relative to a road R in world coordinates (xw, yw)
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III. OPTIMIZATION RESTRICTIONS

The vehicle motion is subject to various restrictions.
The given actuators have saturations and the wheels are
limited in traction. Moreover the freedom from collision with
predicted object trajectories must be guaranteed any time. Each
restriction is described in the next section.

A. Actuator Limits and Kamm’s Circle

The built in EPS is saturated due to the allowed torque. This
results in a saturation of the desired curvature

u1 ∈ [κd,min, κd,max] (7)

and its derivative

u̇1 ∈ [κ̇d,min, κ̇d,max] . (8)

To consider limited traction of the tire, the relations of the
so-called Kamm’s circle are taken into account. This idealized
relationship between longitudinal and lateral forces at the
wheel of a vehicle allows an estimation of the attainable lateral
and longitudinal accelerations [7]:

a2x + a2y ≤ (μ g)2 (9)

with the friction coefficient μ. In addition, due to the maximum

ax,max

ay
μ g

ax

Fig. 2. Kamm’s circle with restrictions on the maximum longitudinal
acceleration and the traction potential

engine torque the longitudinal acceleration is limited to

u2 = ad ≤ ax,max. (10)

Fig. 2 shows the resulting ellipse approximation of the
combined lateral and longitudinal traction potential.

B. Collision Check

In addition to the actuator saturations and dynamic driving
limits, the freedom from collision with other road users must
be guaranteed. As shown in [8] the penalization of collisions
can be implemented directly in the non-linear optimization
algorithm. For the indirect method based approach (see
Section VI) a separate collision check for each trajectory is
necessary. For this a variety of efficient approaches exists:
Mostly they can be divided in continuous approaches where

no sampling of the trajectory in the time domain is necessary
(for example [9] and [10]) and discrete-time methods where
the trajectories are sampled in the time domain (for example
[11]).

IV. DIRECT OPTIMIZATION APPROACH

The direct optimization approach is based on the vehicle
model presented in Section III. It is represented in state-space
representation f(x(t),u(t)). The state-space vector and input
vector are given as

x =
[
ψ̇ β v ψ ωf ωr xw yw

]T
and u = [κ̇d ȧd]

T
. (11)

ωf and ωr corresponds to the wheel speeds. As a virtual
input the derivatives of the real system inputs κd and ad
are defined. The optimization objective is formulated as the
minimization of a cost function. The resulting maneuver
should be characterized by maximum comfort, thus the jerk is
considered in the cost function. The lateral and longitudinal
jerk represent the derivatives of the system inputs. As a
second part deviations from a reference state at the end of
the maneuver are penalized:

J =

∫ thor

0

(
kj1(κ̇d)

2 + kj2(ȧd)
2
)
dt+ kv (vref − v(thor))

2

(12)

+ kd (dref − d(thor))
2

The reference is given as a velocity vref in longitudinal
direction and lateral offset to the given lane dref . With
kj1, kj2, kd and kv the characteristics of the trajectory can
be shaped. The optimization is formulated as a standard
optimization problem [12]:

argmin
x,u

J(x(t),u(t)) (13)

subject to

ẋ(t) = f(x(t),u(t)),x(t0) = x0 (14)

g(x(thor)) = 0 (15)

h(x(t),u(t), t) ≤ 0 (16)

A direct multiple-shooting approach [13] will be used
with a prediction horizon of thor, divided in N subintervals:
the model dynamics are discretized on a uniform time grid
t0, ..., tN by numerical integration over the time intervals
[tj , tj+1]. The inequality constraints are discretized on the
same time grid. The control input u however is discretized as
piecewise constant u0, ...,uN−1 over the time intervals. The
discretization is done using Euler’s method. With g(x(thor))
it is ensured that the vehicle is parallel to the lane at
the end of the maneuver (θv = 0). The other restrictions
(see Section IV) are formulated as inequality constraints
(h(x(t),u(t), t)). For the multiple-shooting method, the
continuity of the state trajectory must be requested in addition
as a boundary condition (x(tj+1; tj ,xj) = xj+1). The
resulting minimization problem is solved using a standard
sequential quadratic program (SQP).
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V. INDIRECT OPTIMIZATION APPROACH

As mentioned before, the direct approach presented in the
foregoing section is hard to implement on a current automotive
ECU. Therefore an approach based on a simplified vehicle
model will be derived in the following.
The goal is the optimization of the vehicle movement along the
road. Usually one is not interested in the distance to the origin
but rather in the position of the vehicle relative to the lane.
As shown in [8] the vehicle motion can therefore be described
directly in the so-called Frenet coordinates of the road. This
facilitates the optimization compared to the optimization in
global coordinates. The Frenet coordinate system is described
relative to a reference curve, e.g. the center of the lane. The
vehicle position is thus described by the variables s(t) and its
derivatives in longitudinal direction and d(t) and its derivatives
in lateral direction.
Hence as a fist step the vehicle states are transformed into
Frenet space, see Fig. 3. The whole planning is done in
these coordinates. The calculated trajectory is afterwards
transformed back to vehicle coordinates and given to the
underlying control. The planning algorithm will be described
in the following.

relative movement

control, vehicle dynamics &

inverse transformation

trajectory planning

state transformation

adκd

[
d, ḋ, d̈, d(3)

][
s, ṡ, s̈, s(3)

]

[
d0, ḋ0, d̈0, d

(3)
0

][
s0, ṡ0, s̈0, s

(3)
0

]

Fig. 3. Structure of the planning algorithm based on indirect optimization

A. Trajectory Planning by 6th and 7th Order Polynomials

By using the Frenet coordinates and neglecting the vehicle
dynamics allows to describe the vehicle movement as an
integrator system. As a virtual input the derivative of the
jerk is introduced thereby. Thus the lateral and longitudinal
movement of the vehicle can be described as an optimal
control problem with the output d(t) = x1(t) respectively
s(t) = x1(t) of a integrator system. In contrast to [8] the
derivative of the jerk x

(4)
1 (t) is defined as the (virtual) input.

Therefore, as will be shown in the following, polynomials
of 7th order described the optimal solution. This procedure

corresponds to a standard procedure according to [14].
The system dynamics are described as

ẋ(t) =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦x(t)+

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦u(t) = f(x(t), u(t), t)

(17)
with xT = [x1, x2, x3, x4]. The cost function

J = h(x(tf ), tf ) +

∫ tf

t0

f0(x(t), u(t), t)dt (18)

with
f0(x(t), u(t), t) =

1

2
u(t)2 (19)

is selected. The Hamiltonian

H(x(t), u(t),λ(t), t) = −f0(x(t), u(t), t)+λT f(x(t), u(t), t)
(20)

and the control equation
(
∂H
∂u = 0

)
give us

u = λ4. (21)

The adjoint differential equation

λ̇ = −∂H

∂x
(22)

results to ⎛
⎜⎜⎝

λ̇1

λ̇2

λ̇3

λ̇4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
−λ1

−λ2

−λ3

⎞
⎟⎟⎠ . (23)

With λ4 = u = ẋ4, (23) can be combined to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

λ4

λ3

λ2

λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 t t2 t3 t4 t5 t6 t7

0 1 2t 3t2 4t3 5t4 6t5 7t6

0 0 2 6t 12t2 20t3 30t4 42t5

0 0 0 6 24t 60t2 120t3 210t4

0 0 0 0 24 120t 360t2 840t3

0 0 0 0 0 −120 −720t −2520t2

0 0 0 0 0 0 720 5040t
0 0 0 0 0 0 0 −5040

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0
c1
c2
c3
c4
c5
c6
c7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)
This can be transformed to

x(t) =

⎛
⎜⎜⎝
1 t t2 t3

0 1 2t 3t2

0 0 2 6t
0 0 0 6

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:M1(t)

c0123+

⎛
⎜⎜⎝

t4 t5 t6 t7

4t3 5t4 6t5 7t6

12t2 20t3 30t4 42t5

24t 60t2 120t3 210t4

⎞
⎟⎟⎠

︸ ︷︷ ︸
=:M2(t)

c4567.

(25)
The parameters cT0123 = [c0, ..., c3] result from the initial
conditions

c0123 = M−1
1 (0)x0 (26)

and the parameters cT4567 = [c4, ..., c7] from the not yet defined
final state

c4567 = M−1
2 (tf ) (x(tf )−M1(tf ) c0123) . (27)

The optimization problem is now to determine the final time
tf and the final state x(tf ).
Similarly to [8] the final state is defined relative to the
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reference trajectory xref (t). Deviations from this trajectory
will be penalized in the cost function with

h(x(tf ), tf ) = kttf +
1

2
kx (x1(tf )− xref (tf ))

2
. (28)

For driving a car we are not interested in any given final
state but rather in results parallel to a given reference. This
represents a target manifold with respect to the reference
trajectory. The first, second and third derivative correspond
to the reference trajectory and thus

z(x(tf )) =

⎛
⎝ x2(t)− ẋref (t)

x3(t)− ẍref (t)

x4(t)− x
(3)
ref (t)

⎞
⎠

tf

= 0. (29)

The transversality equation could now be solved, resulting in
a polynomial of the optimal final time tf . Its roots represent
the optimal solution in terms of the selected cost function. As
the constraints still have to be taken into account anyway,
the proposed procedure of [2] is applied to determine the
optimal time and final state: A set of trajectories is calculated
in discrete space and their cost functions (18) are compared.
Fig. 4 illustrates the procedure. The thick gray line depicts
the reference trajectory. The thinner gray lines are sampled
offsets. The blue lines are the calculated trajectories and in
green the optimal one according to the cost function. In some

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

2

3

t

x 1
(t

)

Fig. 4. Principle of discretization according to [2]: Blue the planned
trajectories, green optimal in terms of cost function and gray dashed reference

cases it’s not necessary to reach a defined position but only a
certain speed. In this case the optimal trajectory leading from
an initial state x0 to a final state xf is defined by a polynomial
of 6th order. The proof is similar to the previous one, except
for the additional transversality equation λ1 = −∂h

∂x = 0,
which leads to c7 = 0 [2].

B. Combined Longitudinal and Lateral Trajectory
Optimization

In order to guide a vehicle along a street, longitudinal and
lateral trajectories are necessary. The previous derivations will
be used for the optimization of the longitudinal and lateral
trajectories. Thus the whole planning consists of three steps:

1) calculating a set of longitudinal and lateral trajectories
with different final times and different final states
(relative to the reference line) according to the previous
section

2) combining each lateral with each longitudinal trajectory
and calculating its cost function

3) checking the best trajectory set for compliance with the
restrictions

The first step is done by using polynomials of 7th order in
lateral direction. In longitudinal direction polynomials of 6th
or 7th order are used depending on the given reference. As
a lateral reference serves for example the center line of the
road. According to the previous explained optimal problem
the cost function has to be defined. For the lateral trajectory
the cost function respects the integral over the 4th derivative
according to (18) and (19). In addition the deviation of the
final state from the reference trajectory and the final time tf
are weighted (see (28)):

Jd =
1

2

∫ tf

t0

(
d(4)(t)

)2

dt+kd (dref − d(tf ))
2
+kt,d tf (30)

With the weighting factors kd and kt,d the characteristic of
the trajectory can be parameterized.
For the optimization of the longitudinal movement, a
distinction between a position and velocity planning is done
similar to [8]. The position planning is carried out with 7th
order polynomials and therefore considers the integral of the
fourth derivative of s in the cost function:

Js =
1

2

∫ tf

t0

(
s(4)(t)

)2

dt+ ks(sref − s(tf ))
2 + kt,s tf (31)

In addition, the final time tf and the deviation from the
reference position sref are weighted. If only a certain speed
ṡref shall be reached (without desired reference position) one
can use 6th order polynomials and evaluate the costs with the
following cost function:

Jṡ =
1

2

∫ tf

t0

(
s(4)(t)

)2

dt+ kṡ(ṡref − ṡ(tf ))
2 + ktṡ tf (32)

As written before each lateral trajectory is combined with each
longitudinal trajectory and thus the whole cost functions is
given as

J = Jd + Js or Jd + Jṡ. (33)

The best trajectory according to this cost function is
now checked for compliance with the restrictions given

xw

yw

0

R

Fig. 5. Example of a set of planned trajectories leading the vehicle back to
the reference R: the optimal trajectory in green, the valid ones in blue and
the invalid ones in gray
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Fig. 7. Comparison of the evasion maneuver. Green the trajectories of the indirect optimization and blue dotted the direct optimization’s trajectories

in Section IV. If it satisfies the constraints it is selected.
Otherwise the next best trajectory is selected that complies
with the constraints. Unlike [8] the restriction check isn’t
performed in global coordinates but within the Frenet
space. The selected trajectory is transformed back to world
coordinates to give it to the underlying control and actuators.
Thereby the vehicle dynamics have to be considered (see for
example [15]).
Fig. 5 shows the resulting trajectory for guiding a vehicle back
to the reference (green line) with this approach. The blue lines
depict the valid and the gray lines the invalid trajectories.

VI. COMPARISON OF THE APPROACHES

Both algorithms are now evaluated. As the approaches are
to be applied both for comfort as well as emergency situations,
two representative maneuvers are selected:

• a comfortable overtaking maneuver (changing lane and
accelerating),

• an emergency braking with evasion.
In both situations a friction coefficient of 0.4 is assumed.
Actuator saturations are inactive for reasons of simplicity.
Fig. 6 shows the resulting accelerations for the overtaking

maneuver. Both approaches calculate trajectories that do not
run in the limit by the friction coefficient. It is noteworthy that
both algorithms calculate trajectories with a slow slope. With
the polynomial approach this is possible because 7th order
polynomials are used instead of 5th order polynomials [2].
At the emergency maneuver (Fig. 7), the results of the
approaches are different. Due to the limited friction the
polynomial approach has to take a slower trajectory than the
cost-function would suggest. The direct approach, however,
can take into account this limitation directly. Thus, the
resulting acceleration vector doesn’t lie within the traction
ellipse but exactly on its boundary (see Fig. 8). Therefore the
direct approach saves time leading to a faster stopping of the
car.
In summary, the resulting trajectories of both approach are
quite similar in usual driving situations. Notably this is
achieved in the indirect optimization without using a exact
model of the vehicle dynamics. In situations where the
optimization restrictions are active the direct optimization
shows its advantages and can calculate trajectories leading
faster to the reference compared to the indirect approach.
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Fig. 8. Kamm’s circle for the evasion maneuver

VII. CONCLUSION

The planning of a trajectory that takes into account all
relevant constraints is necessary for future driver assistance
systems. Therefore within this work two approaches for
optimizing a trajectory are presented. The first one is based
on direct optimization and a exact vehicle model. In contrast
the second one is based on indirect optimization and a
very simplified vehicle model. For usual driving situations
(like overtaking) both show similar results. In situations
where constraints, like actuator saturations or limited traction,
are active the direct optimization saves time by directly
considering the constraints within the optimization. The
indirect approach however has the big advantage of being
realizable on a current ECU and convergence is guaranteed
as was shown.

APPENDIX A
SINGLE-TRACK MODEL

The equations of the single-track model [5] results from
equilibrium of forces in lateral direction and longitudinal
direction and the moment equilibrium (see Fig. 9) and results
in the state equations [16]

v̇ =

(
1

m
(Fsf sin(β − δ) + Flf cos(β − δ)

+ Fsr sinβ + Flr cosβ

)
(34)

β̇ = −ψ̇ +
1

mv

(
Fsf cos(β − δ)− Flf sin(β − δ)

+ Fsr cosβ − Flr sinβ

)
(35)

ψ̈ =
1

J

(
lf (Fsf cos δ + Flf sin δ)− lrFsr

)
(36)

m describes the vehicle mass and J the moment of inertia
with respect to the yaw axis at the center of gravity (COG).
The distances between the COG and the front and rear axle are
referred as lf and lr. The wheelbase results as l = lr+ lf . Fsi

describes the side forces at each wheel and Fli the longitudinal
forces. The tire force characteristic is described as proposed

l

αr

αf

δ

ψ

βv

lrFsr

Fsf

Flr

Flf

Fig. 9. Single-track model

by [17]. Accordingly, the tire forces arise as a function of
the combined lateral and longitudinal slip. The force Fi =
[FliFsi]

T can be calculated by a nonlinear Pacejka tire model:

Fi = Ai sin

(
Ci arctan

(
Bi

||si||
μi

))
1

||si||si (37)

with the tire parameters Ai > 0, Bi > 0, Ci > 1. The tire slip
si is regarded as a vector given by the relative velocity of the
tire belt against the roadway caused the wheel contact [17]:

si = − (vui + vi)

||vi|| with vui = −riωi [cos δi sin δi]
T
. (38)

vi = [vxi vyi]
T describes the velocity of the wheel center and

can be calculated as

vf =

(
v 0 0
0 lf v

)⎛
⎝ cosβ

ψ̇
sinβ

⎞
⎠ (39)

vr =

(
v 0 0
0 −lr v

)⎛
⎝ cosβ

ψ̇
sinβ

⎞
⎠ (40)

The wheel speed ωi results from the differential equation at
the wheel

Jw,i ω̇i = Tw,i − Fl,ir − Frr (41)
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with
• Tw,i: wheel torque,
• Fr: wheel disturbance,
• Jw,i: inertia of the wheel.
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