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Abstract—This article discusses the problem of estimating the 
orientation of inclined ground on which a human subject stands based 
on information provided by the vestibular system consisting of the 
otolith and semicircular canals. It is assumed that body segments are 
not necessarily aligned and thus forming an open kinematic chain. 
The semicircular canals analogues to a technical gyrometer provide a 
measure of the angular velocity whereas the otolith analogues to a 
technical accelerometer provide a measure of the translational 
acceleration.  Two solutions are proposed and discussed. The first is 
based on a stand-alone Kalman filter that optimally fuses the two 
measurements based on their dynamic characteristics and their noise 
properties. In this case, no body dynamic model is needed. In the 
second solution, a central extended disturbance observer that 
incorporates a body dynamic model (internal model) is employed. 
The merits of both solutions are discussed and demonstrated by 
experimental and simulation results.

Keywords—Kalman filter, orientation estimation, otolith-canal 
fusion, vestibular system.

I. INTRODUCTION

 HEN we walk, jump or run, our vestibular system 
detects motion of the head in space and in turn 

generates reflexes that are crucial for our daily activities, such 
as stabilizing the visual axis (gaze) and maintaining head and 
body posture. In addition, the vestibular system provides us 
with our subjective sense of movement and orientation in 
space. The vestibular sensory organs are located in the petrous 
part of the temporal bone in close proximity to the cochlea, the 
auditory sensory organ. The vestibular system is comprised of
two types of sensors: the two otolith organs (the saccule and 
utricle), which sense linear movement (translation), and the 
three semicircular canals, which sense rotation in three planes. 
The receptor cells of the otolith and semicircular canals send 
signals through the vestibular nerve fibers to the neural
structures that control eye movements, posture, and balance.

The utricle and the saccule of the otolith organ are sensitive 
to linear acceleration. The sensory epithelium of these organs 
consists of hair cells that release transmitter and thus produce 
activity in vestibular nerve fibers. The cilia which emerge 
from the hair cells are embedded in a gelatinous matrix 
containing solid CaCO3 crystals (the otoconia) which overlies 
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the cells. In response to linear acceleration, the crystals are left 
behind due to their inertia. The resultant bending of the cilia 
causes either excitation or inhibition of hair cells. Being 
sensitive to acceleration, the otolith organs detect the direction 
and magnitude of the resultant of gravity acceleration and 
transient linear accelerations due to head or body movement. 
As expected from Einstein’s equivalence principle, it is not 
possible to distinguish the two parts of this resultant 
acceleration based on the otolith organ alone.

The three semicircular canals, arranged in three orthogonal 
planes, are sensitive to angular (rotational) acceleration. Each 
canal is comprised of a circular tube containing fluid 
continuity, interrupted at the ampulla (that contains the 
sensory epithelium) by a water tight, elastic membrane called 
the cupula. Similar to the otoliths, the sensory cells exhibit 
release of neurotransmitters that is modified by the direction 
of cupula deflection. Although the stimulus on the 
semicircular canals is angular acceleration, the neural output 
from the sensory cells represents the velocity of rotation. This 
mathematical integration of the input signal is due to the 
mechanics of the canals; the viscous properties of the fluid are 
in part due to the small size of the canal (diameter of ~0.3 
mm). By combining the input of the three canals, the brain can 
create a 3-dimensional representation of the vector of the 
instantaneous speed of head rotation relative to space. 

The information encoded by the vestibular system becomes
strongly multisensory and multimodal at the central stages of 
processing. The vestibular nuclei receive inputs from a wide 
range of spinal, cortical, cerebellar, and other brainstem 
structures in addition to direct inputs from the vestibular 
afferents. Recent studies have emphasized the importance of 
extra-vestibular signals in shaping the ‘simple’ sensory-motor 
transformations that mediate vestibulo-ocular and vestibulo-
spinal reflexes. The multisensory and multimodal interactions 
that occur in vestibular processing also play an essential role 
in higher-order vestibular functions, like self-motion 
perception and spatial orientation [1].

In more technical words, the general problem to be solved 
can be summarized as follows. Given the information 
provided by the vestibular system (three dimensional linear 
acceleration produced by the otolith organs and three 
dimensional angular velocity produced by the semicircular 
canals including its integration mechanism) and any available 
other sensory relevant signals (visual, proprioceptive, and 
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maybe somatosensory) together with any available 
information about sensors and body dynamics, the aim it to 
find the best estimate of the body orientation in space, its 
angular velocity, direction of gravity vector, and inertial
translational acceleration. Further, it is desirable and beneficial 
to estimate the orientation (and motion) of supporting ground.

Many approaches have been proposed in the literature to 
address this problem. They can be classified according to 
number of sensors incorporated, the filtering or estimation 
technique used, the degree of reliance on sensor and body 
dynamics, or the scale of the sub problems solved. For 
example, Oman [2] and Glasauer and Merfeld [3] employed 
the formalism of observer theory where they assumed that the 
brain uses an internal representation of the motion variables 
and of the geometrical and physical relationships that link 
them. On the other hand, Mayne [4] and Mergner and 
Glasauer [5] emphasized the frequency characteristics of the
otolith and canal signals and proposed architectures to 
implement complementary filters. More advanced technical 
methods are proposed in recent publications, for example  
Laurens and Droulez suggested particle filters and Bayesian 
processing [6]. Finally, a variety of extended- Kalman-filter 
and sigma-point-Kalman-filter based methods are proposed 
[7].

In this article, we consider sagittal-plane motions and in 
particular those that take place on an inclined ground. For 
estimating the unknown ground inclination, we address the 
direct otolith-canal interaction question and present two 
solution paradigms. The first evolves around a stand-alone 
Kalman filter to optimally fuse angular velocity and 
acceleration measurements to estimate head orientation. The 
other paradigm assumes that all measurements are 
incorporated in one central extended observer that has access 
to an internal model replicating the body kinematics and 
kinetics. The merits of both are discussed and demonstrated by 
simulation results.

In the sequel, it is assumed that a human subject, modeled 
in the sagittal plane as a two-segment body (free ankle and hip 
joints), stands (moves) on an inclined surface of unknown 
orientation, see Fig. 1. The joint positions are accessible 
through proprioception. Thus estimating the ground 
orientation calls for estimating the head absolute orientation.

A. Dynamic Characteristics of the Vestibular System
 The effective employment of canal and otolith generated 

signals in estimating the body orientation and hence other 
quantities of interest, calls for a deep understanding of these 
signals in terms of their frequency characteristics and noise 
distributions.  

On the physiological level, thermal movements of the 
endolymph molecules in the semicircular canals cause a noise-
like acceleration phenomenon. So, noise hits the semicircular 
canals at the acceleration level which leads through integration 
to a drift in the generated angular velocity output. This 
velocity drifts represent low frequency signals. 

Fig. 1 Schematic diagram for a two-segment body on an inclined 
surface

On the other hand, the otolith system reacts to translational 
acceleration (gravitational-inertial acceleration GIA) and 
produces a signal proportional to translational acceleration. 
Gravity can be identified as the constant part of the signal 
whereas the inertial acceleration as the transient part. It is 
worth noting here that humans’ accelerations encountered 
normally tend to be periodic and for short time. Accordingly, 
low frequency component of otolith acceleration is interpreted 
as tilt of the head (or body) relative to gravity. Furthermore,
high frequency tilts create high frequency variations in the 
GIA and at the same time they activate the canals. Neural 
activity along the otolith pathways is also subject to stochastic 
fluctuations, the amount of noise added to the otolith signal is 
small [6].

II. ESTIMATION PARADIGMS

A. Estimation based on a stand-alone  Kalman filter
The method presented here is based on a method developed 

for and tested on a single-segment humanoid robot [9]. It first 
assumes that the vestibular human system can serve as a 
stand-alone inclinometer [10]. The need of sensory fusion is 
due to sensor dynamics and noise characteristics of the two 
components of the vestibular systems, the otolith and the 
semicircular canals. So the goal of the fusion is to optimally 
filter out noise (including drift) by utilizing the frequency 
complementarity of the two sensors in obtaining a broadband 
estimate. The method presented in [9] and followed here is 
based on a stand-alone Kalman filter that explicitly models the 
semicircular canal drift as one of the filter states. It is worth 
mentioning here that the estimation of spatial orientation by 
humans has been the subject of intensive research where 
different models and methodologies have been proposed. The 
review of MacNeilage et al. [11] summarizes the field 
milestones. 

The stand-alone Kalman filter approach pays particular 
attention to noise and drift contaminating the canal and otolith 
measurements. The angular velocity obtained by the 
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semicircular canals is the combination of:

ω g = ω +ωdrift +νc                                                        (1)

where ω  is the actual angular velocity 
(ω = �ϕ = �θ1 + �θ2 + �θ3 ),νc is a measurement Gaussian white 
noise of varianceδc , and ωdrift  is the velocity drift that is 
assumed to be the integration of another Gaussian white noise 
νdrift  of variance δdrift  as:

�ωdrift = νdrift                                                                    (2)

On the other hand, there are two otolith components that 
can be employed, these are ax  and ay . However, if a linear 

model is used, then the normal component ay  does not 
provide useful information. Thus, only the tangential 
component ax  is considered. The tangential acceleration 
measurement as measured by the otolith is:

axa = ax +νa                                                                (3)

where ax  is the actual translational tangential acceleration, 
νa is a measurement Gaussian white noise of variance δa .
After linearization, the tangential acceleration has three 
components: the first is due to platform translation, the second 
due to body angular acceleration while the third is due to the 
tilt of the gravity vector:

ax = L2 + Lv( ) ��θ1 + L2 + Lv( ) ��θ2 + Lv ��θ3 + g(θ1 +θ2 +θ3 )
≈ �ωha + gϕ

(4)

where L2  is the distance between the ankle and hip joints, 
Lv is the distance between the hip joint and the vestibular 
organ, ha is the summation of the two distances, θ1 indicates 
the ground orientation, θ2 the ankle joint rotation, θ3 the hip 
joint rotation, ϕ is the orientation of the head in space. The 
approximation is done by assuming that the whole body 
rotates about the ankle joint. To avoid the use of any 
kinematic parameter and since the angular acceleration cannot 
continue in one direction for longer periods of time (due to 
physical limitations), only the gravitational part is considered 
and the rest is handled as a high-frequency noise. Thus Eq. 3 
becomes:

axa = gϕ +νa                                                                (5)

Equations 1 and 5 represent the sensor dynamics of the 
vestibular system (in one dimension) whereas the process 
dynamics is given by:

�ω = νω
�ωdrift = νdrift

                                                                 (6)

in which �ω  is considered to be solely generated by a process 
Gaussian white noise νω of varianceδω . The above equations 
can be collected together in state-space form as:
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The state vector xv = ϕ ω ωdrift⎡⎣ ⎤⎦  can be optimally 

estimated by a Kalman filter based on the two measurements 
yv = ω c ax[ ]  and given the process (w)  and measurements 
(ν )  noise variances. In other words, the two measurements 
can be fused optimally to find the best possible estimates in 
the presence of process and measurement noise. The Kalman 
filter is realized by:

�̂xv = Fv x̂v + LKF (yv − Hvx̂v )                                       (9)

where x̂v is the optimal estimate of xv  and LKF  is the static 
Kalman gain matrix that is obtained by solving the algebraic 
Riccati equation:

Fv ⋅P + P ⋅Fv
T +Q − P ⋅Hv

T ⋅ R−1 ⋅Hv ⋅P = 0             (10)

and

LKF = P ⋅Hv
T ⋅ R−1                                                     (11)

with R  being the covariance matrix of measurement noise and 
Q  being the covariance matrix of process noise. Both 
matrices are assumed to be diagonal with the variances of 
different noise signals placed on the diagonal: 
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and
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R =
δc 0

0 δa
⎡

⎣
⎢

⎤

⎦
⎥                                                              (13)

Based on the estimates ϕ̂  and ω̂ , the platform tilt variables 
are estimated by employing the proprioceptive measurement 
of the joint angles and velocities as

θ̂1 = ϕ̂ −θ2 −θ3                                                         (14)

and

�̂θ1 = �̂ϕ − �θ2 − �θ3                                                          (15)

B. Estimation based on an extended disturbance observer
The estimation method just presented, which is motivated 

by the assumption that the vestibular system fusion is a stand-
alone process, does not make use of the kinetic model to its 
full extent. It would be feasible to exploit the internal 
kinematic and kinetic models through an extended disturbance 
observer that incorporates all available measurements. This 
idea is already adopted by previous studies. For example, 
Oman  [13] and Glasauer and Merfeld [14] employed the 
formalism of observer theory where they assumed that the 
brain uses an internal representation of the motion variables 
and of the geometrical and physical relationships that link 
them. The novel idea in this article is the employment of the 
extended disturbance observer to estimate the external 
disturbance (ground inclination). 

The linearized body dynamics model is abstracted as [9]: 
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where  Fd = θ1
�θ1
��θ1⎡⎣ ⎤⎦

T
is the external disturbance vector 

arising due to ground motion, Bd and N  are the 
corresponding disturbance effect and state disturbance 
matrices. The extended disturbance observer is based on the 
assumption that the external unknown disturbance ��θ  can be 
considered  as a state by assuming that it can be approximated 
by a piece-wise constant function [12]. In other words:
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leading to the extended state-space representation:
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with  ye = θ2 θ3
�θ2
�θ3 ω ax⎡⎣ ⎤⎦

T
 as measurements. The 

extended-state vector xe  can be estimated given the 
measurements, if and only if the pair (Ae , Ce )  is observable 
which is straightforward to prove in this case. The assumption 
that the external disturbance is piece-wise constant calls for a 
fast observer. The extended disturbance observer is 
implemented by:

�̂xe = Aex̂e + Le (ye − Cex̂e )                                         (19)

where the observer gain matrix Le  can be found by pole 
placement for example. 

III. EXPERIMENTAL AND SIMULATION RESULTS

To test the validity of the proposed methods, a special-
purpose postural humanoid robot “PostuRob” which was built 
at the Department of Neurology – University of Freiburg is 
used for the purposes of this study, see Fig. 2. PostuRob is 
composed of two main segments: the body including the trunk 
and legs resembling a single inverted pendulum and the feet 
that rest freely on an in-house-built motion platform. It is 
capable of combining translational and rotational motions. 
PostuRob itself can produce voluntary lean motions in the 
presence or absence of platform motions. It is equipped with a 
gyrometer and an accelerometer  (Types ADXRS401 and 
ADXL203, respectively, Analog Devices, Norwood, USA) 
placed at a height of about 0.325m from the ankle joint (center 
of rotation). 

A. Stand-alone  Kalman filter

   A.1 Experimental results of PostuRob
To demonstrate the validity and performance of the 

proposed method, a set of experiments has been performed. 
These include a pure platform rotation, pure robot rotation, 
and a combination of both.

Figures 3 and 4 show the accelerometer and gyrometer 
noisy signals when the robot and platform were completely at 
rest. Although one can identify some sensor dynamics in both 
signals, it is assumed that the shown signals are pure Gaussian 
noises. Observing the measured signals when the robot and 
platform were at rest and offline experimenting with the 
Kalman filter yielded the following variances:
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Fig. 2 Photograph of humanoid robot ‘PostuRob’ standing on motion 
platform. 

and
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which lead to the filter gains:

LKF =
9.9 ×10-1 8.0 ×10-3
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These gains indicate that the Kalman filter relies more on 
the gyrometer measurement in comparison to the 
accelerometer due to the explicit approximation of Eq. 24 that 
considers the accelerometer as a noisy inclinometer.

First, the robot is commanded to follow a step function of 5 
degrees on a stationary platform. Figure 5 shows the actual 
and estimated angular displacement of the robot. The 
estimation based on the presented fusion algorithm 
demonstrates a fast response to the sudden changes as well as 
a good steady-state characteristics. 

Second, the robot is commanded to follow a sinusoidal 
trajectory of 5 degrees at a frequency of 0.2 Hz. Figure 6 
shows the actual and estimated angular displacement 
corresponding to that motion. Once again, the estimation 
exhibits accuracy and good dynamic characteristics. Here, the 

actual angular displacement is obtained by an optical encoder 
attached to the rotation joint.

Fig. 3 Accelerometer measurement noise as measured when the robot 
was at rest. 

Fig. 4 Gyrometer measurement noise as measured when the robot 
was at rest. 

The frequency response of estimation is tested. A standard 
pseudorandom ternary sequence (PRTS) of numbers [13] is 
used for commanding the robot to move on a stationary 
platform. Briefly, the stimulus was created from a 242-length 
PRTS sequence by assigning a rotational velocity waveform a 
fixed value of +v, 0, or –v [°/s] according to the PRTS 
sequence for a duration of Δt = 0.25 s. The duration of each 
stimulus cycle was 60.5 s. The mathematical integration of 
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this PRTS velocity waveform gave a position waveform with 
which the platform was commanded to lean forward or 
backward. The PRTS stimulus has a spectral bandwidth (0.02 
– 2 Hz) with the velocity waveform having spectral and 
statistical properties approximating a white noise stimulus. 
The transfer function between actual and estimated orientation 
together with the coherence function are calculated by 
correlating the two. Figures 7 and 8 show the experimentally 
identified magnitude and phase frequency response curves of 
the  estimation transfer function. 

Fig. 5 Measured and estimated body angular displacement.

Fig. 6 Measured and estimated body angular displacement.

Fig. 7 Magnitude frequency response of Kalman filter body-
orientation estimation.

Fig. 8 Phase frequency response of Kalman filter body-orientation 
estimation. 

    A. 2 Simulation results for multi-segment humanoid
The Kalman filter detailed above is employed to estimate 

the platform orientation for a multi-segment humanoid. 
PostuRob II which is built with an extra hip joint to form a 
three-segment humanoid. Figures 9 and 10 show the estimate 
of the platform tilt variables. Platform tilt and its angular 
velocity are obtained directly from the Kalman filter based on 
the gyrometer and accelerometer measurements after 
subtracting ankle and hip angles and velocities according to 
Eqs. 14-15. 
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Fig. 9 Estimated and actual platform inclination as obtained by the 
stand-alone Kalman filter

Fig. 10 Estimated and actual platform angular velocity as 
obtained by the stand-alone Kalman filter

B. Extended disturbance observer
The other option of estimating the disturbance through a 

extended disturbance observer is, as well, experimented. Here, 
a linearized model of process kinematics and dynamics as well 
as that of sensory measurements is imbedded as an internal 
model in the extended disturbance observer. Based on Eqs. 17-
18 and given 

ye = θ2 θ3
�θ2
�θ3 ω ax⎡⎣ ⎤⎦

T
  (23)

as measurements and by assigning the extended disturbance 
observer poles, the observer gain matrix is found to be:

Le =

1.0 ×101 -2.0 ×10-1 -9.7 ×100 ...

-2.0 ×10-1 1.2 ×101 5.1×100 ...
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           (24)

The relative high gains corresponding to three angular 
velocity measurements (columns 3, 4, and 5) indicate that this 
extended disturbance observer relies primarily on these 
measurements in estimating the external disturbances. Figures 
11-13 show the estimates of the ground inclination variables 
(inclination, angular velocity, and angular acceleration) as 
directly obtained by the extended disturbance observer. Here, 
all estimates are smooth and accurate to a satisfactory limit. 

Fig. 11 Estimated and actual ground inclination as obtained by the 
extended disturbance observer

IV. CONCLUSION

To stabilize posture against non-stationary supporting 
grounds, humans need to have an estimate of the inclination 
and possibly the motion of the ground. For this, 
proprioception, vision, and vestibular systems contribute in an 
optimal estimation setup that take into consideration the 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:3, 2010

341

quality of each modality. In this article, optimal fusion 
paradigms of the otolith and semicircular signals are 
presented.  The first paradigm is based on the assumption that
the vestibular system can be considered as a stand-alone 
inclinometer that does necessarily require further information. 
Here, the two signal based on their noise characteristics (low-
frequency semicircular angular velocity noise versus high 
frequency otolith acceleration noise) are optimally fused 
through a Kalman filter. Experimental and simulation 
demonstrate the validity of the proposed algorithm. On the 
other hand, the second paradigm is based on the understanding 
that the estimation of the absolute head orientation in space 
together with external disturbances can be achieved by 
centrally incorporating all available information (internal 
model). In this context, it is possible to distinguish between 
self-produced motion and motions arising due to external 
disturbances (including ground motion). Thus, it is anticipated 
that this estimation option provides better results especially 
when self motion and external disturbances are superimposed. 
Simulation results of a multi-segment body demonstrate this 
anticipated result.

The two fusion algorithms, which are derived from by 
inspecting the biological system, are employed for a humanoid 
equipped by an accelerometer and a gyrometer. Simulation 
and experimental results show the suitability of the two 
biologically-inspired algorithms for technical systems.
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