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 
Abstract—With the incessant increase of power systems capacity 

and voltage grade, the safety of grounding grid becomes more and 
more prominent. In this paper, the designing substation grounding 
grid is presented by means of genetic algorithm (GA). This approach 
purposes to control the grounding cost of the power system with the 
aid of controlling grounding rod number and conductor lengths under 
the same safety limitations. The proposed technique is used for the 
design of the substation grounding grid in Khalda Petroleum 
Company “El-Qasr” power plant and the design was simulated by 
using CYMGRD software for results verification. The result of the 
design is highly complying with IEEE 80-2000 standard 
requirements. 
 

Keywords—Genetic algorithm, optimum grounding grid design, 
power system analysis, power system protection, single layer model, 
substation. 

I. INTRODUCTION 

N every electrical installation, one of the most important 
aspects is the adequate grounding; more specifically the 

grounding of high voltage substation [1]. Grounding, generally 
mean an electrical connection to the general mass of earth, the 
latter being a volume of soil, rock etc. whose dimensions are 
very large in comparison to the electricity system being 
considered. It is worth noting that, in Europe they tend to use 
the term “Earthing” whilst in North America, the term 
“Grounding” is more common [2]. A power plant with a 
reasonable grounding system is the key to the safe operation 
of a power system. The working grounding is designed for 
different operation modes of the power system. Grounding has 
a lot of purposes like, reducing the insulation level of 
electrical equipment, ensuring safe operation of power system, 
ensuring personnel safety, eliminating electrostatic accidents, 
detecting ground faults, and ensures that externally exposed 
conductive bodies of a device have the same potential by 
means of equipotential bonding, reducing the electromagnetic 
interference. Finally, some equipment needs to be grounded 
functionally like cathodic protection [3]. It is very important to 
design the grounding system correctly so that there is no 
danger for human life. After high-voltage substations are 
constructed, solving the problems related to grounding system 
can be expensive and difficult. Hence, grounding grid design 
must be carried out consistently [4]. The grounding system 
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includes all of the interconnected grounding facilities in the 
substation area, including the ground grid, overhead ground 
wires, neutral conductors, underground cables, foundations, 
deep well, and so on. The ground grid consists of horizontal 
interconnected bare conductors (mat) and ground rods. The 
design of the ground grid to control voltage levels to safe 
values should consider the total grounding system to provide a 
safe system at an economical cost [5]. At the event of short 
circuit or any ground fault occurrence at any substation, the 
current may flow across many paths. All these paths are 
depending on its impedance. So, the ground fault current may 
flow through the overhead transmission lines or through the 
substation and surrounding earth or across all these paths 
together. The first guide for the substation grounding design 
was introduced on 1961: the ANSI/IEEE 80-2000 standard, 
and it was based on a lot of experience and models. This 
document and other three revisions on 1976, 1986, and 2000 
are the main helping tools for engineers in designing a 
substation grounding mat systems [6]-[8]. The IEEE definition 
of grounding is: a conducting connection, whether 
international or accidental by which an electric circuit or 
equipment is connected to the earth or some conducting body 
of relatively large extent that serves in place of the earth [2]. A 
lot of studies were made to describe and analyze the substation 
grounding grid design criteria. In 2011, Hellany et al. made a 
study to view the safety restrictions of substation grounding 
grid design [9]. In 2014, Lantharthong presented the electrical 
effect of two neighboring distribution substation during the 
construction phase and they found that the size of auxiliaries 
grounding grid have an effect on the entire grounding system 
[10]. CYMGRD is a software program specialized in the 
substation grounding mat design. It may be used to make a 
new design for new grids or to optimize and enhance an 
existing one of any shape. This module can evaluate the 
estimate places for the danger voltage points in the grid and its 
adopting with IEEE 80-2000 STD. The CYMGRD software 
enables choosing the most economical way for any installation 
through a lot of design alternatives [11]. CYMGRD has been 
used to investigate the effect of increasing in grounding grid 
resistance on transient overvoltage which is caused by short 
circuit, switching, and lightening on the interior equipment 
and safety in a grounding grid at substation. The indices for 
ground grid safety are expressed and grounding grid analysis 
had done with the CYMGRD software. In 2009, Uzunlar and 
Kalenderli used CYMGRD software to make a computer 
model for analysis of grounding systems conforming to IEEE 
standards. Their method and computer software were 
supported with a real case measurement [12].  
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GA is a commonly used technique to solve the optimization 
problems even if these problems were constrained or 
unconstrained. At each iteration, it generates a lot of points 
called population. The best point in this population is the 
nearest one to the optimum solution [13]. In 1998, Otero et al. 
used the GA method to minimize the total cost of the 
grounding grid design [14]. In 2004, Neri used the GA method 
to control the touch voltage in the grounding grid design [15]. 
In 2009, Yi-min et al. used the GA method to make an optimal 
design for grounding grids [16]. In 2009, Yang et al. used the 
GA method to make analysis on soil structure for the 
grounding projects [17]. In 2009, Gursu and Ince used the GA 
method to limit the GPR in a two-layer soil model [18]. In 
2011, Zhiqiang and Bin used the GA method to make the soil 
model inversion calculations [19].  

In this paper, a method for constructing a grounding grid 
substation is proposed by using an approach based on hand 
calculations, CYMGRD software, and GA technique. The aim 
is to minimize the cost of the grounding system by minimizing 
the total length of conductors and the quantity of grounding 
rods while the safety restrictions required by the IEEE Std.80-
2000 regulations are met. Although, here, only rectangular 
grids are considered for simplicity, the method is totally 
applicable to systems with any other shape.  

II. SUBSTATION GROUNDING GRID DESIGN, SAFETY CHECK 

AND OPTIMIZATION 

The main objective of this research is not only to develop a 
method to design a grounding grid mat but also to optimize the 
construction and material costs of a grounding grid mat while 
still satisfying the maximum GPR, and step and touch 
voltages, and GA is the technique which had been used for 
this optimization. 

A. Hand Calculations Design 

It is important to use the hand calculations method in the 
substation grounding grid design because it allows us to get 
the appropriate distance between conductors. Total length of 
conductors and the appropriate number of rods will be used. 

In this paper, a real case study from Khalda Petroleum 
Company “El-QASR” power plant substation had been 
designed. This power plant lies on the western desert South 
Matrouh, Egypt, with Latitude: 300 38’ 46.82’’ N, Longitude: 
260 44’ 18.13’’ E, and Altitude: 800 ft. The preliminary layout 
of 92 m × 134 m grid with equally spaced conductors, with 
spacing D= 10 m, grid burial depth h= 0.5 m, grid with 20 
ground rods. Each rod is 2 m long, and it is placed around the 
perimeter of the grid. The Decrement factor Df= 1, the current 
division factor Sf= 0.6. Fault duration tf=0.5 sec. An average 
soil resistivity of 100 Ω.m is assumed, based on soil resistivity 
measurements with asphalt surface layer with 0.5 m thickness. 
The total fault current is 40 kA and the X/R ratio is 10. Using 
copper annealed hard drawn and an ambient temperature of 45 
°C, the person’s weight can be expected to be at least 70 kg, 
consequently the area occupied by such a grid is A= 12328 
m2.  

 

Fig. 1 Substation Grounding Grid Design and Optimization Block 
Diagram 
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2. Calculating the Maximum Grid Current 

Iୋ ൌ I୤ ൈ D୤ ൈ S୤                                                                    (5) 
 

IG=40×1.069×0.6=24000 A 

3. Calculating the GPR 

GPR=IG × Rg 
                                                                                                                  (6) 

 
The revised ground potential rise GPR is (24000) × (0.435) = 
10464 V.  
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4. Calculating the Touch and Step Voltage 
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5. Calculating the Mesh Voltage 
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h0=1m “grid reference depth” 
 
n=na × nb × nc × nd                                         
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nc & nd=1 “rectangle grid” 
 
na =11.909 & nb =1.008 
 
n=12.014 
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6. Calculating the Step Voltage 
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“For usual buried length 0.25<h<2.5 m” 
 
Ls= (0.75×2402) + (0.85×40) =2052.7 m 
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The calculated corner mesh voltage is lower than the 

tolerable touch voltage (1782.9 V versus 3252.23 V) and the 
computed Es is well below the tolerable step voltage (538.68 
V versus 12344.95 V).  A safe design has been established. 
Note that all these results had been calculated by using IEEE 
Std. 80-2000 [2] as shown in Fig 2. 

B. CYMGRD Implementation for “El-Qasr” Substation 
Design 

Although, the hand calculations were very important for the 
design to get D, Lc, and Lt, but this way has many 
disadvantages as: 
1. It cannot determine the potential at each point inside the 

grid along x-axis or y-axis. 
2. It cannot determine the potential at the boundaries of the 

grid which have the most critical values. 
3. It cannot determine the appropriate distribution of the 

rods along the grid perimeter.  
All these values can be determined, and safety is checked 

by using the CYMGRD software. The CYMGRD software is 
a substation grounding grid design and analysis program 
specially designed to help engineers to optimize the design of 
new grids and reinforce existing grids, of any shape, by virtue 
of easy to use, built-in danger point evaluation facilities. The 
main features of this software are: computation of Rg and GPR 
(Ground Potential Rise), touch and surface potential analysis, 
inside and outside the grid perimeter, with color display in 2D 
or 3D representation. 
 

TABLE I 
COMPARATIVE RESULTS FOR RECTANGLE GRID WITH GROUND RODS 

Properties Hand Calculations CYMGRD Software % Difference 

Max allowable 
touch voltage 

3252.23 V 3280.26 V 0.8% 

Max allowable 
step voltage 

12344.95 V 12455 V 0.8 % 

Reduction 
factor Cs 

0.919 0.918 0.1 % 

Ground 
Resistance 

0.435 Ω 0.419 Ω 3.8 % 

Ground 
Potential Rise 

10464 V 10372.4 V 0.8 % 

 
The data entered to the CYMGRD software is listed in 

Appendices (see Table III). The results obtained from the 
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TABLE V 
LIST OF USED SYMBOLS 

Symbol Nomenclature Units 

ρ Soil resistivity Ω.m 

ρୱ Surface Layer Resistivity Ω.m 

A Total area enclosed by ground grid m2 

Cs Surface Layer Derating Factor  

Ccond Cost of one meter of Conductor L.E 

Crod Cost of one rod L.E 

Coperator Cost of one operator L.E 

Cinstall Cost of installation L.E 

d Diameter of grid conductor M 

D Spacing between parallel conductors m 

Df Decrement Factor   

Em 
Mesh voltage at the center of the corner mesh for 

the simplified method 
Volt 

Es 
Step voltage between a point above the outer 
corner of the grid and a point 1 m diagonally 

outside the grid for the simplified method 
Volt 

Estep70 
Tolerable step voltage for human with 70 kg body 

weight 
Volt 

Etouch70 
Tolerable touch voltage for human with 70 kg 

body weight 
Volt 

hs Surface layer thickness m 

If Total fault current Ampere 
Iୋ
L୑

 
Average current per unit of effective buried 

length 
 

Iୋ
Lୱ

 
The average current per unit of buried length of 

grounding system conductor 
 

Ki Correction factor for grid geometry  

Kii 
Corrective weighting factor that adjusts for the 
effects of inner conductors on the corner mesh 

 

Km Spacing factor for mesh voltage  

Ks Spacing factor for step voltage  

LB Lower Bonds  

Lc Total length of grid conductor m 

Lp Perimeter of the grid m 

Lm Total length of grid conductor m 

LR Total length of ground rods m 

Lr Length of ground rod at each location m 

Ls Effective length of Lc+LR for step voltage m 

LT 
Total effective length of grounding system 
conductor, including grid and ground rods 

m 

LX Maximum length of grid conductor in x direction m 

LY Maximum length of grid conductor in y direction m 

NR Number of rods placed in area A  

n 
Geometric factor composed of factors na, nb, nc 

and nd 
 

na Factor used to calculate “n”  

nb =1 for square grids  

nc =1 for square and rectangular grids  

nd =1 for square, rectangular and L-shaped grids  

Rg Resistance of grounding system Ω 

Sf Fault current division factor (Split factor)  

ts 
Duration of shock for determining allowable 

body current 
Sec 

UB Upper Bonds  
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