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Optimal Design of Multimachine Power System
Stabilizers Using Improved Multi-Objective Particle
Swarm Optimization Algorithm

Badr M. Alshammari, T. Guesmi

Abstract—In this paper, the concept of a non-dominated sorting
multi-objective particle swarm optimization with local search
(NSPSO-LS) is presented for the optimal design of multimachine
power system stabilizers (PSSs). The controller design is formulated
as an optimization problem in order to shift the system
electromechanical modes in a pre-specified region in the s-plan. A
composite set of objective functions comprising the damping factor
and the damping ratio of the undamped and lightly damped
electromechanical modes is considered. The performance of the
proposed optimization algorithm is verified for the 3-machine 9-bus
system. Simulation results based on eigenvalue analysis and
nonlinear time-domain simulation show the potential and superiority
of the NSPSO-LS algorithm in tuning PSSs over a wide range of
loading conditions and large disturbance compared to the classic PSO
technique and genetic algorithms.

Keywords—Multi-objective ~ optimization,  particle ~ swarm
optimization, power system stabilizer, low frequency oscillations.

I. INTRODUCTION

OW frequency electromechanical oscillations in power

system has attracted much attention in the recent years.
These oscillations are very poorly damped and may result a
serious consequence such as overload in several lines of the
system and fatigue at the generators. Several works [1], [2]
have demonstrated that PSSs are very effective for
improvement of power system stability. The main function of
PSS is to introduce damping torque to the rotor oscillations
through the excitation system. Recently, considerable
researches have been focused on the designing and using of
adequate PSSs for damping of low frequency oscillations [3]-
[11] such as phase compensation in the frequency domain and
root locus [3], eigenvalue sensitivity analysis [4], and poles
placement [5]. In [6], [7], the PSS tuning problem is converted
into linear matrix inequality (LMI) problem whose solution
determines the stabilizer parameters. A novel LMI feasibility
problem with a rank condition has been described in [8] to the
design of robust low order PSS. However, simulation results
are carried out based on a one machine test system.
Unfortunately, some of above approaches are sequential
methods which only consider the damping enhancement of
one critical electromechanical mode at a time. In addition,
they are iterative techniques and require an initialization step.
For this reason, the search process can converge to local
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optima. To overcome the limitations of these techniques, some
soft computing-based methods have been proposed during this
decade. In [9], [10], genetic algorithms were implemented for
the robust PSS design. Two objective functions based on the
eigenvalue analysis have been considered to place the closed-
loop system eigenvalues in a pre-specified zone in the s-plan.
The multi-objective problem (MOP) is converted into mono-
objective problem by evaluating the objectives with distinct
weights. So, there is a loss of diversity in the Pareto solutions.
In [11], the authors have presented a bat-based fuzzy
algorithm for robust design of PSS where time-domain based
objective functions are wused. Another evolutionary
computation algorithm, called bacteria foraging algorithm
(BFA) based optimal neuro-fuzzy scheme, is developed in
[12], [13] to design intelligent adaptive PSSs for enhancement
of the transient and dynamic stability of multimachine power
systems. Nevertheless, The BFA depends on random search
directions which may lead to delay in reaching the global
solution.

In recent years, PSO algorithms have attracted much
attention for solving various power system problems [14],
[15]. This heuristic technique was introduced by Kennedy and
Eberhart [16]. It was presented as a robust and well-balanced
mechanism to enhance and adapt the global and local
exploration abilities within a short calculation time.

A PSO based approach for optimal tuning of PSS
parameters is proposed in [17], [18]. However, the main
drawback of the conventional PSO is its premature
convergence, while the problem has multiple minima and with
nonconvex objective functions. To overcome this drawback
and exploit this technique for MOPs, many researchers
suggested  different changes in the original PSO.
Unfortunately, these modified PSO approaches have been
applied to optimize one objective function [18]. Thus, if it is a
MOP, all objectives are weighted as per the importance and
added together to form a single objective function. Thus, there
is a loss of diversity in Pareto optimal solutions.

To overcome the above problems, this paper proposes a
new elitist multi-objective PSO (MOPSO) approach with local
search based on the nondominated sorting concept for the
enhancement of power system stability. Two eigenvalue-based
objective functions have been considered. This proposed
nondominated sorting MOPSO with local search (NSPSO-LS)
incorporates the main mechanisms of the NSGAII given in
[19] into the MOPSO algorithm. Local search procedure was
added to facilitate the convergence of the NSPSO-LS to the
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real Pareto optimal front.

To demonstrate the effectiveness and robustness of the
proposed controllers, the 3-machine 9-bus system is
considered. Eigenvalue analysis and nonlinear simulations
show the superiority of the proposed stabilizers to provide
efficient damping over wide range of loading conditions and
severe fault compared to PSO and genetic algorithms (GA).

II.  OVERVIEW OF PSO METHOD

PSO firstly introduced by Kennedy and Eberhart [16],
emulates the social behavior of organisms such as flocking of
birds and schooling of fish. PSO system can be considered as
artificial intelligence based heuristic optimization techniques,
in which a population of random solutions called particles is
initialized. These particles fly through a multidimensional
search space. During flight, each particle adjusts its position
according to its own experience, and the experience of the
neighboring particles to search for the optimal solution.

In a physical-dimensional search space with the dimension
n, the i™ particle at iteration k is presented by its position
X =(x_‘f,...,x_k) and velocity V¥ =(vk,...,v_k). The

updated velocity and position of this particle at the next

k+1)

generation ( can be governed, respectively, by:

Vik+1 = wVik +c1h ( pbest_k - Xik )+c2r2 (gbestk - Xik) @)

Xik+1 _ Xik +Vik+1 )

whereW is the inertia weight factor, ¢; and ¢, are

acceleration constants. The coefficients W, ¢; , and C, can be

determined according to [16]. r; and I, are two random

numbers between 0 and 1. pbestik and gbestk are the best
position of the i particle achieved based on its own
experience and the best position among all the particles in the

swarm at the k™ iteration, respectively.

III. PROPOSED NSPSO-LS APPROACH

In the literature [20], [21], PSO technique has been
considered as an effective engine for multi-objective
optimization. Therefore, several MOPSO algorithms have
been proposed. These algorithms use an archive or repository
to stock the nondominated solutions found so far by the search
process using the concept of Pareto dominance. Each particle
randomly selects a nondominated solution from this repository
as the global guide of its next flight. Nevertheless, it has been
mentioned in some researches that MOPSO [20] cannot ensure
diversity of the Pareto front and they may have difficulties
when solving complex problems because of its limited
operators. Recent researches [19] have demonstrated that
elitism can improve performance of optimization algorithms
and ensure the survival of good candidates once they have
been found. Therefore, a new version of the MOPSO approach

based on the nondominated sorting concept, has been
developed in this paper and used for optimum PSS design. At
each iteration K, this elitist approach extends the basic form of

PSO by combining the pbest of N particles PX and the N
particles Qk . The
RX = PXUQX of size 2N will be sorted into different

nondomination levels Fj [19]. Therefore, we can write.

RK :Urjzl':i ?3)

where, I is the number of fronts.
Once the nondominated sorting is completed, a crowding
distance, as given in [19], is assigned to each solution of the

offspring combined population

combined population R to provide an estimate of the density
of solutions surrounding that solution in the same front F; .

Thus, every solution in R¥ has two indices, nondomination
level and crowding distance. Then, particles of the next
population P**! will be the first N individuals of the
subsequent nondominated fronts in the order of their levels.

i.e., members of F; have priority to will be in pk+l , followed
by members from F,, and so on until the number of these

individuals is greater than or equal to N. Let us consider that
Fj is the last nondominated set. Then, individuals of Fj will

be selected to fill PX*! according to their crowding distance in
the descending order. The global best position is selected
randomly from the 5% of the top crowded solutions of F;.

In order to facilitate the convergence of the NSPSO to the
true Pareto-optimal front and maintain the diversity of the
external archive, a local search procedure is incorporated at
the end of each iteration. This procedure explores the less-
crowded area in the current archive in order to obtain more
nondominated solutions nearby. The flowchart of the local
search algorithm applied for an iteration k is shown in Fig. 1.
However, the basic steps of the proposed NSPSO-LS are
illustrated in Fig. 1.

IV. SYSTEM MODELING

A. Generator Modeling

In this study, each i synchronous machine is modeled by
the following third-order nonlinear differential equations [1].

5 =y (0 -1) ()
: 1
oi :M_i(Pmi —P; - D (@ —1)) (5)
L N [ RV P
qu Td'm Efdl (Xdl Xdl)ldl Eq|) (6)
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where 6, and @; are rotor angle and angular speed of the
machine. ¢, is the base frequency in rad/sec. P,; and P, are
the mechanical input and the electrical output powers for the
machine i, respectively. D; and M; are the damping
coefficient and inertia constant, respectively. E¢; and Eai are
the field and the internal voltages, respectively. iy is the d-
axis armature current.Xy and Xy are the d-axis transient
reactance and the d-axis reactance of the generator,
respectively. Ty, is the open circuit field time constant.

Select randomly 10% solutions from REP
S = random(10% of REP)

v

For each particle X; of S, generate two random

numbers A; and A, within O and 1.

v

No Yes

Z = Xi - (XM - ) z:xi+xz(xmax—xi)

Update PX and REP

Fig. 1 Flowchart of the local search algorithm

The electrical torque T, can be expressed by

T, = Eq ig _(Xqi ~Xg ) Igi Tgi 0

B. PSS with Excitation System Structure
The IEEE type-ST1 excitation system with PSS shown in
Fig. 2 is considered in this paper, where Kpj and Tp; are the
regulator gain and the regulator time constant of the excitation
system, respectively. Vi and Vi are reference and

generator terminal voltages of the i machine, respectively.
The field voltage can be modeled by:

: 1
Efi =—
T

(— Eai + Kai (Vrefi Vi +U; )) (®)
Ai

As shown in Fig. 2, the PSS representation consists of a
gain K, a washout block with time constant T,,;, and two

lead-lag blocks. Its input signal is the normalized speed

deviation, Awj, while the output signal is the supplementary
stabilizing signal, U .
In Fig. 2, the washout bloc with time constant Ty, is used as

high-pass filter to leave the signals in range 0.2-2 Hz
associated with rotor oscillation to pass without change. In
general, it is in the range of 1-20 s. In this study, T, =55 .The

two first order lead-lag transfer functions serve to compensate
the phase lag between the PSS output and the control action
which is the electrical torque.

V.DAMPING CONTROLLER DESIGN

After linearizing the power system model around the
operating point, the closed-loop eigenvalues of the system are
computed and the desired objective functions can be
formulated using only the unstable or lightly damped
electromechanical modes that need to be shifted.

In this paper, two eigenvalue-based objective functions are
considered in order to solve the problem of parameters tuning
of the PSS controllers. The first one consists in shifting the
unstable and lightly damped electromechanical modes into the
left-side of the line defined by o =0 in the s-plan. This

function is expressed by J, in (9). The second function J,

given by (10) aims to place these modes in the wedge-shape
sector defined by & ; > ¢&,.

np
> (%‘Ui,j)z C)

J:1 O-i,jZGO

np 2
Jy = E )3 (go_fi,j) (10)

1 §i<&

where np is number of operating points. o;; and & ; are

respectively, real part and damping ratio of the i eigenvalue
corresponding to the j™ operating point.

In the design process, the adjustable parameter bounds
given by (11)-(15) must be respected.

KM < K < K™ (11)
T ST, < T (12)
T < T, < T (13)
T < T, < T (14)
T < T, < T (15)
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STy | 1+8Ty; | 1+5Ts; Ao
1+ STzi 1+ ST4i :

min
U PSS

Fig. 2 IEEE Type-ST1 excitation system with PSS

VI. SIMULATION AND RESULTS

A. Test System

In this study, the 3-machine 9-bus (WSSC) shown in Fig. 3
is considered. The system data in detail are given in [22]. It is
assumed that all generators except G1 are equipped with PSS.

2 7 8 9 3
Load C
! g
Load A 4 Load B

-

Fig. 3 Test system

The operating conditions corresponding to the nominal
load, heavy load, and light load are given in Table I. The
threshold parameters of the D-shape sector o, and &, are
respectively, -1 and 20%. The washout time constant T, is

fixed to 5 s. Typical ranges of the decision variables are [0.1-
50] for K; and [0.01-1.5] for T}; to Ty;.

TABLEI
LOADING CONDITIONS (IN PU.)
Nominal Heavy Light
Generator P [pu] Q[pu] P[pu] Q[pu] P[pu] Q [pu]
G, 072 027 221 109 033 112
G, 1.63 007 192 056 200 057
Gs 085 -0.11 128 036 150 038
A 125 050 200 080 1.50 0.90
B 090 030 1.80 060 120 0.80
C 1.00 035 1.50 0.60 1.00 0.50

B.NSPSO-LS Based PSS Design and Eigenvalues Analysis

The optimum PSS parameters obtained by the proposed
NSPSO-LS, GA and PSO are given in Table II.

TABLEII
OPTIMAL SETTING PARAMETERS
Method Gen K T T, T; T,
G2 17.012 0.4104 0.0500 0.4194 0.0500
NSPSO-LS
G3  4.8847 1.1979 0.0500 0.4771  0.0500
PSO G2 15.629 0.5928 0.4425 1.4801 0.3038
G3  5.8846 0.5310 0.7011 1.1244  0.0500
G2 8.7586 0.1574 0.0500 0.1697  0.0500
GA G3  0.0782 0.6049 0.0500 0.6748  0.0500

Table III shows the electromechanical modes corresponding
to the NSPSO-LS and PSO algorithms. It is clear that the
proposed approach gives the best results.

TABLE III
ELECTROMECHANICAL MODE AND DAMPING RATIOS
NSPSO-LS PSO
. -3.0193+j9.2272,0.3110 -2.1008+j9.7770, 0.2101
Nominal A ;

-4.5024+j12.8367,0.3310  -2.4967+j13.1934, 0.1859

q -3.65154j9.0255, 0.3750 -2.4865+j9.8908, 0.2438
eav:

Y -4.28884j12.9153,0.3151 -2.3821+j13.2230, 0.1773

. -3.47934j8.4131, 0.3822 -2.4136 4j9.2545, 0.2524
Light

-4.5289+j 13.1764, 0.3250  -2.5124+j13.4887,0.1831

C.Nonlinear Time-Domain Simulation

The effectiveness and robustness of the proposed approach
in improving the system damping characteristics are verified
by nonlinear time-domain simulation. A 6-cycle three-phase
fault at bus 7 at the end of line 5-7 is considered. The fault is
cleared by tripping the line 5—7 with successful reclosure after
1.0 s. The rotor speed deviations of generators for the
operating conditions are shown in Figs. 4-6. From these
figures, it can be seen that the response with NSPSO-LS based
controllers shows good damping characteristics to low
frequency oscillations, and the system is more quickly
stabilized than GA and PSO based stabilizers.

Figs. 7-9 show the variation of the PSS output over the
loading conditions. It is clear that the proposed stabilizer gives
the best oscillation damping.
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Fig. 6 Speed response for heavy load
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Fig. 9 PSS output for heavy load

VII. CONCLUSION

In this study, an improved version of NSPSO-LS is
presented for improvement of power system stability. A non-
dominated sorting concept with local search is incorporated in
the selection phase. Two eigenvalue-based objective functions

are used to shift the electromechanical modes into a pre-
specified zone in the s-plan. Eigenvalue analysis and nonlinear
simulations for the 3-machine 9-bus system have
demonstrated the effectiveness and robustness of the proposed
stabilizer over a wide range of loading conditions and under
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severe fault.
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