
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

647

 

  
Abstract—Unmanned aerial vehicles (UAVs) performing their 

operations for a long time have been attracting much attention in 
military and civil aviation industries for the past decade. The 
applicable field of UAV is changing from the military purpose only to 
the civil one. Because of their low operation cost, high reliability and 
the necessity of various application areas, numerous development 
programs have been initiated around the world. To obtain the optimal 
solutions of the design variable (i.e., sectional airfoil profile, wing 
taper ratio and sweep) for high performance of UAVs, both the lift and 
lift-to-drag ratio are maximized whereas the pitching moment should 
be minimized, simultaneously. It is found that the lift force and 
lift-to-drag ratio are linearly dependent and a unique and dominant 
solution are existed. However, a trade-off phenomenon is observed 
between the lift-to-drag ratio and pitching moment. As the result of 
optimization, sixty-five (65) non-dominated Pareto individuals at the 
cutting edge of design spaces that are decided by airfoil shapes can be 
obtained.  

 
Keywords—Unmanned aerial vehicle (UAV), Airfoil, CFD, 

Shape optimization, Genetic Algorithm. 

I. INTRODUCTION 
HE UAVs are manufactured for various sizes from the 
hand-held Micro-Air Vehicle (MAV) [1] to the 

large-scaled UAV such as Global Hawk, Predator [2] and 
Theseus Helios and Strato 2C[3]. From the 1980s, the 
large-scaled UAVs have been developed and proved for their 
values of security, communication and battle management. 
Goraj [4] provided the overview of the design activity of civil 
HALE (high altitude long endurance) UAV (PW114) and 
reported that the cost of operation could be reduced by 
improvement of aerodynamic efficiency and optimization of 
aircraft structures. He redesigned the previous model (PW111) 
and developed a new airfoil shape with high aspect ratio via 
aerodynamics analyses for decreasing the load and increasing 
the lift force. For MALE (medium altitude long endurance) 
UAVs, Goetzendrof-Grabowski et al.[5] studied on the 
aerodynamic characteristics to achieve the required aircraft 
performances.  Their work was mainly focused on the 
reliability and redundancy issues and the high aspect ratio of 
airfoil was proposed to increase the lift-to-drag ratio. To avoid 
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the conversing to the local optima and to reduce the number of 
design variables, Painchaud-Ouellet et al. [6] assessed the 
suitability of non-uniform rational B-splines (NURBS) for the 
aerodynamic design optimization for various Mach numbers. 
Pines and Bohorquez [7] suggested that the MAV for urban 
missions is at least an order of magnitude smaller in length and 
two orders of magnitude lighter in weight than previously 
developed aircraft. They also showed that the maximum 
dimension is less than 15.24 cm and the target gross take off 
weights (GTOW) is up to 100g. Ng and Leng [8] performed the 
conceptual design of the flying- wing-type MAV with 
six-design variables including a winglet taper ratio. They 
employed a genetic algorithm (GA) which uses a real value 
instead of binary for searching the global optimum. They 
insisted that the genetic algorithm is more efficient than a 
conventional SQP-based non-linear optimization problem.  

In order to improve the aerodynamic performance of UAVs, 
designers have to consider many design factors. That is, the 
airfoil profile, aspect ratio of airfoil and wing taper ratio which 
are to be the critical design factors to obtain aerodynamically 
efficient, reliable and stable UAVs are considered as design 
variables simultaneously. Designer’s perceptions, however, are 
too complicate to understand multi- dimensional design spaces 
completely. 

In the present work, the best airfoil platform shapes of the 
long endurance UAVs for a high performance are obtained by 
the multi-objective optimization technique. SMOGA based on 
GA with multi-objective optimization technique can explore 
the multi-dimensional design space and find Pareto optima at 
the frontier of the space. The sectional airfoil profile for the 
design variables is parameterized with four-Bezier curves. For 
a three-dimensional wing configuration, two design variables 
such as a taper ratio and sweep should be added to the design 
variable. The lift coefficient, lift-to-drag ratio and pitching 
moment coefficient are adopted as the objective functions. It is 
difficult to find Pareto optima in three or more design spaces 
with typical gradient-based optimizers or weighting objective 
functions because the design space to explore is dramatically 
increased. Therefore, in order to obtain the optimal solutions of 
the design variables, the SMOGA which can include all 
possible designs in multi-dimensional objective space should 
be used and it is combined with a reliable solver for 
Navier-Stokes equation to compute the objective functions 
accurately. Because the trade-offs among the objective 
functions can be taken place for a multi-objective optimization 
or vector- optimization problem, Pareto optima instead of 
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single unique solution are generally existed and they lead to the 
Pareto frontier in a multi- objective design space. 

II. MULTI-OBJECTIVE OPTIMIZATION 

A. Genetic Algorithm 
GAs are originated from Fraser’s work [9] on the simulation 

of genetic systems, Holland’s study [10] on adaptation in 
natural and artificial systems and Goldberg’s development [11] 
on various applications and multi-objectives. The GA mimics 
evolutionary characteristics of nature works with artificial 
populations which are collections of the searching elements in 
the entire design space. It is a unique global optimum algorithm 
based on the mechanism of reproductions and mutations 
[11]-[12]. The creatures in the nature have adjusted themselves 
to their circumstance even though it has dynamically changed 
every moment. The well-fitted individuals can only survive and 
have more chances to mate with the others and finally to get the 
similar and superior offspring.  

B. Genetic Operations 
New individuals for the next generation can be obtained by 

genetic operations such as selection, crossover, and mutation. 
The selection is a series of processes to choose a parent for the 
next generation and also provides a guide of evolutions. For the 
multi-objectives like this study, the tournament selection is 
generally used instead of a general roulette wheel. Pairs of 
candidates are randomly picked from the population. An 
individual with higher fitness or a non-dominated Pareto 
individual is copied into the mating pool. The competitions are 
performed for the number of tournament (n) and these can 
manage the selection pressure. The high selection pressure may 
find the local optima although it leads to a fast convergence 
because of insufficient exploration of the design space. Pareto 
domination is defined as follows; 

 
( ) ( )( ) ( ) ( ) ( )i i j jp

x y iF x F y jF x F y> ⇔ ∀ ≥ ∩ ∃ ≥           (1) 

 
where x , y , iF and jF represent the vector values of 
individual x  and y . Subscripts i and j are i-th and j-th 
objective function, respectively. 

The number of crossover points is closely related to the 
survival of schema that is the meaningful pattern in the gene. 
Short and/or low-fit schema becomes a longer and higher one 
as the evolution is proceeded. Booker [13] suggested that the 
two-point crossover is favorable for the schema’s survival. 
Therefore, it is used and a single-point crossover is also 
adopted as an option in the present work. Since the selection 
and crossover are deterministically progressed, it is difficult to 
generate new genes completely in order to extend the searching 
area. The deficiency of searching design space can lead to the 
local optima solution. The mutation helps to keep the balance 
between the exploration and exploitation to find the global 
optima. In the present work, a new individual that has a genetic 
twin in the new generation is ignored for keeping the diversity 

of the population. The properties of adjacent individuals in the 
design space are similar to each other. It is necessary to control 
the number of individual within the radius of niche for 
extending the exploration. The existence of local optima is very 
attractive at the early stage of evolution. The offspring tends to 
come together around the local optimum points instead of 
global ones, which leads early mature convergence. The niche 
is able to control the exploration of the design space and 
prevent a GA from early mature convergence. In the present 
work, the binary distance between two individuals instead of 
the n dimensional norm is adopted which is defined as the 
following equation; 

 

1 1 1

ij
L L L

r i j
R

k kk k kk

d d m x m
R n x n= = =

⎡ ⎤− ⋅ Δ⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⋅ Δ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
∑ ∑ ∑           (2) 

 
where i jd d−  is the distance between i and j individuals in k 
variable, m is the binary distance, and n is the niche binary 
distance. The niche radius in the real design space cannot 
represent all niches at once and therefore the niche radii for 
each design variable are required. In the case of binary 
distance, however, only one niche radius is sufficient.  

III. SHAPE OF AIRFOIL 
There are many ways to represent the airfoil profile:  

combination of a few basic airfoils, using a spline curves and 
Bezier curves. Among them, it is well known that the Bezier 
curves with a few number of control points can reproduce 
various airfoils easily and precisely.  

Fig. 1 shows the schematic diagram of airfoil using the 
Bezier curves. The airfoil is parameterized with four Bezier 
curves: 4th-order Bezier curves for the leading edge and 
3rd-order for the trailing edge. As shown in Fig. 1(a), the airfoil 
is consisted of six-control points on each side. Except for some 
continuous or fixed points (i.e., maximum thickness, smooth 
leading and trailing edges), the number of the design variables 
are to be eighteen. The selection of same coordinate for three 
control points at the maximum thickness can guarantee that 
continuity 0c  and 1c  are satisfied so that the design variables 
for an airfoil can be reduced by eleven [14]. Lee et al. insisted 
that the reduced design variables (i.e., from 18 to 11) can be 
obtained by performing the correlation analyses for the design 
variables, objective functions and deviation of the design 
variables. Especially, for three-dimensional airfoil 
specification, the taper ratio ( CR ) and sweep (ω) should be 
added as the design variables as shown in Fig. 1(b). Thus, in 
this study, the number of design variables becomes thirteen. 

The baseline geometry of airfoil is placed along the trailing 
edge and the chord at the tip shrinks according to the taper ratio.  
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(a) Cross-sectional wing shape and design variables 

 
(b) Taper ratio (CR = Ct / Cr) and sweep (ω) 

Fig. 1 Three-dimensional wing specification for optimization 
 

The sweep of zero ( 0ω = ) means that two trailing edges 
both at the root and tip are located side by side at 1CR = . On the 
other hand, when the value of sweep is a positive one (+), the 
wing sweep goes forward. In this work, the half span is 
considered as a computational domain due to the symmetrical 
configuration of airfoil. 

IV. RESULTS AND DISCUSSION 
The SMOGA based on GA which was developed by the 

authors is adopted for the optimization of UAV airfoil. This can 
handle the intricate multi-objective optimization problems 
without both the weighting factors and normalizations. The 
target of this work is to obtain the three-dimensional optimal 
shape of the UAV airfoils. For this, the SMOGA is integrated to 
the CFD analyzer [15] which can predict the aerodynamic 
characteristics accurately. It is assumed that the fluid is 
incompressible and the flow is steady-state and turbulent.  

In the multi-objective optimization problem, the optimal 
solutions are classified as the dominated and non-dominated 
ones. The latter is called as the Pareto optima which are placed 
along the front line of the multi-dimensional design space and 
they can be obtained by the SMOGA. Before the direct 
evaluation is performed, the values of objective functions for 
the new individual are searched in the running pool where the 
calculated values are already saved in the previous iterative 
step. If the same design is not found, the computational analysis 
is performed by the CFD analyzer that independently executes 
a series of jobs: grid generation, flow analysis, evaluation of the 
results, and creation of files including the value of objective 
function. The first generation is randomly generated and then 
the offspring are created by the genetic operations such as 
selection, crossover and mutation. 

A. Formulation of Optimization Problem 
The optimization problem considered in this study can be 

expressed mathematically and it is written as, 
 

Find  { }1 2, ,X = T
mX X X                                      (3) 

to maximize 1( ) = LF X C                                 (4) 
to maximize 2 ( ) /= L DF X C C                        (5) 
to minimize 3 ,1/ 4( ) = MF X C                          (6) 

subjected to   X X X≤ ≤L U
i i i for 1 ~ 13i = .              (7) 

 
The lift (CL), lift-to-drag ratio (CL / CD) and pitching moment 

about a quarter chord (CM,1/4) are the objective functions. There 
are no explicit constraints except for the upper and lower 
bounds of the design variables ( ,L U

i iX X ) as shown in Eq. (7). 
The optimization is carried out under the normal cruise state 
such as 2α = (angle of attack), AR = 17.5 and Re = 62.8 10× . 

Table I represents the optimization parameters and the upper 
and lower bounds of the design variables are listed in Table II. 
Two cutting lines are used to maximize the life of schema 
effectively. The dimensions of a design space, which consists 
of the number of design variables and resolutions of each 
design variable, are the most important factors for the 
optimization. The dimension of a design space is exponentially 
increased as the number of design variables is linearly 
increased. The last two design variable ( 12x and 13x ) in Table II 
represents the taper ratio and sweep, respectively.  

B. Validation of CFD Model           
To validate the accuracy of present CFD model and to check 

the grid dependency, numerical analysis for the pressure 
 

TABLE I 
 PARAMETERS FOR GENETIC ALGORITHM 

 Values 

Population 
Generation 
Cross over rate 
Mutation rate 
Tournament level 
Niche binary radius 

30 
25 
0.8 
0.5% 
2 
1 

 
TABLE II 

UPPER AND LOWER LIMITS OF DESIGN VARIABLES 

iX  L
iX  U

iX  iX  L
iX  U

iX  

x1 
x2 
x3 
x4 

x5 

x6 

x7 

0.040 
0.100 
0.055 
0.550 
0.010 
0.700 

-0.030 

0.060 
0.150 
0.065 
0.600 
0.030 
0.950 

-0.025 

x8 

x9 
x10 
x11 

x12 

x13 

 

0.190 
-0.057 
-0.030 
0.730 
0.500 
0.000 

 

0.260 
-0.053 
-0.010 
0.750 
1.000 
3.500 

 

Ct 

Cr 

ω 

(0,0) 

(0, f ) 

(x1, x2) 
(f,x3) 

(f,x3) 
(x4,x3) 

(x5,x6 )

(0, x7) 
(x4, x5) 

(x8, x9) (f, x9) (f, x9) 

(0,1)
(x10, x11) 
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Fig. 2 Pressure distributions of this model and experiments for various 

grid systems at z/span = 0.49 
 

distribution of an un-tapered rectangular shape of airfoil(CR=1) 
is carried out. The results are also compared with those of 
experimental ones that were conducted by McAlister and 
Takahashi [16] for the NACA 0015 with the aspect ratio (AR) 
of 6.6 and Reynolds number of 62.8 10× . Fig. 2 presents the 
pressure distribution (Cp) for various grid systems (i.e., base, 
refine#1 and refine#2, corresponding to the number of meshes 
are 220,000, 290,000 and 790,000). The numerical analysis 
shows a good agreement with the experiment data at except for 
near the tip. The RNG k-ε turbulence model was used and the 
near-wall flow was computed using wall functions. To test the 
grid dependency, the maxy+  values are calculated for three grid 
systems. For the finest grid, the number of the grid is 
dramatically increased to match the distributions in the whole 
domain. According to the pressure distribution and the 
computational cost, the refine#01 grid (total number of grid is 
290,000) is used for the optimization. 

C. Optimization 
Fig. 3 shows the convergence history for the sweep ( w ) and 

taper ratio (CR), which are the design variables for 
three-dimensional airfoil, according to the individual numbers. 
It can be seen in Fig. 3 that they spread between the lower and 
upper bounds at early stages and become to converge after 7th- 
or 8th- evolutions. Finally, the sweep is approached to its lower 
bound ( 0ω → degree) while the taper ratio is close to its upper 
bound. This means that the optimized airfoil shape for Pareto 
optima has a rectangular wing, that is, the sweep of about zero 
( ~ 0ω ) and taper ratio of about unit (CR=1). This phenomenon 
is resulted from the following reasons: because the only 
aerodynamic forces exerted on the wing surface and the 
pitching moment at a quarter-chord axis are considered in the 
present work. The pitching moment is increased as the sweep is 
increased because the distances between the exerted forces are 
also increased. Thus, the un-sweep with rectangular wing shape 
can be a potential candidate of the optimal design. However, it 
is known that the structure of the wing with a taper ratio is more  
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Fig. 3 Convergence history of the taper ratio (CR) and sweep (ω ) 

according to the individual numbers 
 
stable than that of the rectangular wing. This result can be 
easily validated from the previous applications such as 
Predator, Helios and Global Hawk. That is, the straight 
(un-sweep) and tapered wing shape can be the optimized one in 
real-world long endurance UAVs. 

The objective functions can be plotted in three-dimensional 
space and then Pareto optima are shown in Fig. 4(a). For easy 
explanation, they can be presented in two-dimensional space so 
that all individuals in three-dimensional figure are break down 
to two-dimensional graphs and all individuals are also 
projected to each direction as shown in Fig. 4(b)-(d). The 
relations between the lift (CL) and lift-to-drag ratio (CL / CD), 
which are maximized to obtain the optimal wing shape are 
presented in Fig. 4(b).  Fig. 4(b) shows that the lift-to-drag ratio 
is increased with the lift because they have to be maximized for 
the optimization as we expected. All Pareto optima are 
increased monotonically and Pareto#06 becomes a unique 
solution and it dominates all the individuals including Pareto 
optima in this projected design space (lift and lift-to-drag ratio). 
It is concluded that the relation of lift and lift-to-drag ratio is 
linearly dependent. However, both the lift to pitching moment 
and lift-to-drag to pitching moment show the trade-off 
phenomena as the results of optimization. Fig. 4(c) presents the 
pitching moment according to the lift. When we only consider 
them as the objective function, the figure shows that the Pareto 
optima are located at the lower-right space because the lift is 
maximized while the pitching moment is minimized. 
Non-dominated Pareto optima are placed along the frontier 
lines on the edge of design spaces. Numbered individuals from 
Pareto[17] optima are arbitrarily selected among the Pareto 
frontier. The Pareto#01 and Pareto#06 in Fig. 4(c) indicate that 
they have the lowest pitching moment and the largest lift, 
respectively. It is also found that the objective function for base 
model can be observed away from the frontier line and is 
located at the middle of the dominated individuals as shown in 
Fig. 4(c) and (d). 
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(a) Three-dimensional view for optimization results 
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Fig. 5 shows the pressure distributions on the wing surface 
according to the non-dimensional chord (x/chord) at the root 
for three selected Pareto optima (#01, #03 and #6). The 
corresponding airfoil profiles are also shown at the lower part 

o f 

0.00 0.15 0.30 0.45 0.60

12.5

15.0

17.5

20.0

01

02

03

04

05

06

 Dominated Individuals
 Pareto optima
 Pareto (Selected)
 Base Model

 

 

Li
ft 

/ D
ra

g

Moment Coefficient  
(d) Pitching moment vs. lift-to-drag for Pareto optima and dominated 

solutions 
 

Fig. 4 Comparison of objective functions  
 
the figure. Note that in this case, sectional airfoil profile 
becomes a significant factor for the optimization because it 
determines sectional pressure distributions and forces around 
the airfoil. It can be seen in the figure that for all Pareto optima 
the phenomenon of flow separation is not occurred at the 
location of maximum thickness (x/chord=0.3) because the 
optimization is carried out for the case of low angle of attack 
( 2oα = ). In addition, the pressure differences among the 
Pareto optima are apparently appeared near the trailing edge. 
This fact leads that a higher pitching moment which is resulted 
from a larger force is occurred at the trailing edge as the Pareto 
number is increased. It is also found in the figure that the wing 
configurations are varied due to the different lift and drag 
forces as the results of optimization. As shown in the lower box 
of Fig. 5, the configuration for Pareto#06 is thicker than others 
and this feature is kept to the trailing edge of wing. The wing 
shape for Pareto#01, however, is relatively thin and seems to be 
approximately symmetric airfoil because of the lower value of 
lift and the smallest pitching moment compared to other Pareto 
optima. Since the fuselage is excluded for the aerodynamic 
analysis, the profile and induced drags can only affect a total 
drag. The half of profile drag is a friction one resulting from 
shear stress on the wetted wing surface. However, the variation 
of the wetted surface area is not severely changed according to 
the variation of the wing profile. As a result, the friction drag 
among the listed Pareto optima has only small differences. It is 
clear that the pressure drag by wing profile and the induced 
drag by wing arrangement are important to obtain optimized 
wings. 

The endurance is one of the keys to achieve the high 
performance of UAVs. The endurance means the amount of 
time that the UAV can stay in the air on one load of fuel.  
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Fig. 5 Pressure distributions and cross-sectional wing shapes at the 

root for selected Pareto optima 
 
For the propeller-driven airplane, Anderson [18] showed the 

correlation of endurance (E) and approximated it as a function 
of the lift and drag coefficients. The endurance which was 
proposed by Anderson can be expressed as follows; 

 

( )
3 / 2 3 / 2

1/ 2 1/ 2
1 02pr L L

D D

C C
E S W W

c C C
η

ρ − −
∞= − ∼              (8) 

 
where prη , c , ρ∞ , S , 1W , and 0W  are the propeller efficiency, 
specific fuel consumption, density, wing area, gross weight of 
the airplane including everything and weight of the airplane 
when the fuel tanks are empty, respectively. Especially, 

3 / 2 /L DC C  indicates the endurance parameter in Eq. (8) and it can 
be obtained when the optimization is completed. Fig. 6 presents 
the endurance as a function of angle of attack (α ) for the three 
selected Pareto optima. For all ranges of α , Pareto#06 has the 
largest value of E compare with other Pareto optima because it 
also has the largest lift-to-drag. It is also found that the 
maximum value of endurance is occurred at 4oα = for 
Pareto#06 and its value is about 24. The interesting fact is also 
seen in Fig. 6 that the endurances for all Pareto optima have the 
same value at the angle of attack of 8 degree. It is deduced that 
increasing in the drag is more rapidly occurred than that of the 
lift from 4oα =  to 8oα = . 

In order to explain the results of shape optimization, the 
pressure contours around the wing and the optimal shapes of 
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Fig. 6 Endurances vs. angle of attack for Pareto optima 

 
airfoil at the root for the selected Pareto optima (solid lines) and 
base model (dotted lines) are presented in Fig. 7. It can be seen 
in Fig. 7(a) that the wing shape and the pressure distributions 
are almost same ones between the Pareto#01 and base model. 
The pressure contours of the Pareto#01 are, however, shifted to 
ahead compare with those of base model. This is resulted from 
the fact that both of them have the similar values of the lift and 
lift-to-drag ratio but the different value of the pitching moment 
as discussed in Fig. 4(c) and (d). For the case of Pareto#06 (Fig. 
7(b)), the distributions of pressure are dramatically changed 
compare with the base model. Note that the Pareto#06 indicates 
one of the optimal solutions of the maximized the lift and 
lift-to-drag ratio and the minimized the pitching moment. 

V. CONCLUSIONS 
The shape optimization for airfoil of UAV which is required 

a high payload, economic operation, easy maneuver and high 

 
(a) Pareto#01(solid line) and base model (dotted line) 
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(b) Pareto#06 (solid line) and base model (dotted line) 

Fig. 7 Pressure contours and shape of wing for selected Pareto optima 
and base model 

 
stability was performed numerically. The design variables were 
parameterized by the Bezier curve and its number can be 
reduced by 11 owing to our previous study for two-dimensional 
situation. In addition, the sweep and taper ratio are added as the 
design variables because of the optimization of three- 
dimensional airfoil shape. The lift, lift-to-drag ratio and 
pitching moment are adopted as the objective functions for 
maximizing and/or minimizing the performance functions. For 
the optimization, the SMOGA which was developed by the 
author and the full Navier-Stokes solver were used, 
simultaneously. The results showed that the rectangular shape 
without the sweep ( 0ω = and CR = 1) for a high aspect ratio 
(AR = 17.5) was favored from the point of aerodynamic 
characteristics. The lift and lift-to-drag ratio did not show a 
clear trade-off in the given design space while the relationship 
between the pitching moment and other two objective functions 
had a sharp trade-offs. As the results of optimization, sixty-four 
non-dominated individuals (i.e., Pareto optima) could be 
obtained after twenty- five evolutions by exploring the entire 
design spaces and they will be the potential solutions for the 
long endurance UAVs. Thus, the UAV designer can select one 
of them according to the aerodynamic design target. The 
SMOGA constructed both for global and multi-objective 
optimization problems was able to manage for finding all 
potential solutions in the given design environment. 
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