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Abstract—Since the actuator capacity is limited, in the real 

application of active control systems under sever earthquakes it is 
conceivable that the actuators saturate, hence the actuator saturation   
should be considered as a constraint in design of optimal controllers. 
In this paper optimal design of active controllers for nonlinear 
structures by considering actuator saturation, has been studied. The 
proposed method for designing optimal controllers is based on 
defining an optimization problem which the objective has been to 
minimize the maximum displacement of structure when a limited 
capacity for actuator has been used. To this end   a single degree of 
freedom (SDF) structure with a bilinear hysteretic behavior has been 
simulated under a white noise ground acceleration of different 
amplitudes. Active tendon control mechanism, comprised of pre-
stressed tendons and an actuator, and extended nonlinear Newmark 
method based instantaneous optimal control algorithm have been 
used. To achieve the best results, the weights corresponding to 
displacement, velocity, acceleration and control force in the 
performance index have been optimized by the Distributed Genetic 
Algorithm (DGA). Results show the effectiveness of the proposed 
method in considering actuator saturation. Also based on the 
numerical simulations it can be concluded that the actuator capacity 
and the average value of required control force are two important 
factors in designing nonlinear controllers which consider the actuator 
saturation.   
 

Keywords—Active control, Actuator Saturation, Distributed- 
genetic algorithms, Nonlinear. 

I. INTRODUCTION 
N recent years intensive research efforts have been made to 
improve the reliability and safety of structures under 

earthquake and strong winds. To this end the use of protective 
systems such as passive, active, semi-active or hybrid control 
systems have received considerable attention. 

In the area of passive control systems much progress has 
been accomplished in base isolation and different types of 
mechanical energy dissipater and in some cases these systems 
have been installed in actual buildings [1] .While passive 
control systems are effective in some cases they also suffer 
from a number limitation such as dependency to nature of 
earthquake. 

Active control systems such as active mass dampers , active 
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tendon systems and active tuned liquid column dampers  have 
been developed and tested in the laboratory and in a few cases 
installed in pro-type full scale buildings[2]-[3].  

There are many active control algorithms proposed in the 
literature, most of which have been developed for linear 
systems. Some examples are the classical optimal control, pole 
assignment, bounded state control and predictive control 
methods [4] as well as intelligent control methods such as 
neural network and fuzzy logic based control [5]-[6].  

In reality many buildings undergo large deformations or 
yielding when subjected to earthquake ground motions, hence 
exhibit nonlinear elastic or inelastic behavior, also in the most 
hybrid control systems, passive devices such as sliding 
isolation system and lead-core rubber bearing isolation 
systems behave nonlinearly or hysterically. Consequently 
active control systems should be capable of dealing whit 
nonlinear structures.  

On the other hand in the most previous researches in the 
field of active control of linear and nonlinear structures it has 
been assumed that the actuator can provide any desired 
control force which is determined according to control law, 
while in practical applications of active control systems it is 
conceivable that the required control force be larger than the 
actuator capacity, consequently the actuators saturate. So in 
this paper, it has been decided to study the effect of actuator 
saturation on the performance of control systems and 
designing optimal controllers.  

There are some methods which have been developed for 
active control of nonlinear systems [7]-[8] such as active pulse 
control [8], optimal control of nonlinear strictures [9] and 
hybrid control of nonlinear and hysteretic structures 
[10].Chang and Yang [11] have developed an algorithm based 
on the Newmark integration algorithm and the instantaneous 
optimal control method in which the performance index 
includes displacement and velocity feed back. Bahar et al. [12] 
have improved the algorithm proposed by Chang and Yang 
[11] by using Wilson’s-θ instead of Newmark integration 
algorithm. They have proposed a control algorithm for the 
linear systems that weighting parameters in performance index 
are determined by try and error or some simplified 
assumptions. Joghataie and Mohebbi [13] have proposed an 
algorithm for active control of nonlinear frames which uses 
full feedback of response in performance index and applies 
genetic algorithm to determine the parameters of weighting 
matrices for optimal design of controllers. In this paper 
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following the method proposed by Joghataie and Mohebbi[13] 
for determining the weighting matrices , nonlinear Newmark 
based instantaneous optimal control method has been 
developed and used for optimal design of controllers for 
nonlinear frames considering actuator saturation. 

In the following sections, first nonlinear Newmark based 
instantaneous optimal control algorithm extended for 
nonlinear structures will be briefly reviewed. An explanation 
of the Distributed GA and designing optimal controller 
including actuator saturation will be presented followed by an 
SDOF nonlinear frame example and conclusions. 

II. NEWMARK BASED NONLINEAR INSTANTANEOUS OPTIMAL 
CONTROL ALGORITHM 

In this paper for active control of nonlinear n-DOF 
structure, following the DGA based nonlinear optimal control 
[13] the Newmark based nonlinear instantaneous optimal 
control has been developed and used. The equation of motion 
of a controlled nonlinear n-DOF structure with m actuators at 
times (k-1) Δt and (k)Δt  can be written as:  
 

11 111 −− +=++
−−− kgSDk kkk

X DuMeFFXM &&&&          (1) 

kgSDk kkk
X DuMeFFXM +=++ &&&&                      (2)  

where t=time, gX&& =ground acceleration, X, X&  and X&& are 

displacement, velocity and acceleration vectors respectively, 
M= n×n mass matrix, FD= vector of damping forces which is 
a function of velocity, FS= vector of restoring forces which is 
a function of displacement, D= n×m location matrix of 
actuators, e= [-1,-1,…,-1]T=n-dimensional ground acceleration 
transformation vector, u(t)= m-dimensional  control force 
vector, k=integration time step . 
 Subtracting (1) from (2) gives:   
 

 )()()()( ttKtt PXXCXM ** Δ=Δ+Δ+Δ &&&        (3a)                                                                
  where   

 1kk)t( −−=Δ XXX &&&&&&                                                    (3b)                                                                                               

 1kk)t( −−=Δ XXX &&&                                                    (3c)                                                           
 1kk)t( −−=Δ XXX                                                    (3d) 
 )(tPΔ = 1−− kk PP                                                         (3e)                                                                                     

 kP = kg k
X DuMe +&&                                                    (3f) 

 1−kP = 11 −+
− kg k

X DuMe &&                                            (3g) 

Also *C and *K are tangential damping and stiffness 

matrices respectively.  
Based on Newmark method [14], by solving the set of (3a) to 
(3g) the response of a nonlinear structure can be obtained as 
follows:  
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where δγ , are  Newmark parameters [14] . 

A. Performance Index 
In the instantaneous optimal control, the performance index 

at time step k includes feedback of the system response and 
control force. To assess the effect of displacement, velocity 
and acceleration response on the performance of control 
system it has been decided to use full feedback of the system 
response and control force in the performance index as: 

( )k
T
kk3

T
kk2

T
kk1

T
kk 2

1J RuuXQXXQXXQX +++= &&&&&&     (8)                   

where Q1, Q2 and Q3 are n×n positive semi-definite weighting 
matrices corresponding to the penalty for large displacements, 
velocities and accelerations, and R is a m×m positive definite 
matrix representing the cost for applying large forces [4] .  

B. Determination of Control Force Vector 
In the instantaneous optimal control at each time step k, the 

control force uk is determined by minimizing the performance 
index Jk at that same step which has been defined in (8). To 
this end the equations of motion, (4a-c), are considered as 
constraints and the Hamiltonian of the optimization problem is 
formed according to Chang and Yang [11] as follows:  
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Where λis = Lagrangian multipliers. The necessary 
conditions for minimizing the performance index J (t) are:  
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Substituting (9) into (10) gives: 
01k1 =+ λXQ                                                       (11) 

02k2 =+ λXQ &                                                       (12) 
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03k3 =+ λXQ &&                                                       (13) 

( ) 0aa 31241
T*

n
T

k k
=++− − λλλKDRu                     (14) 

0k1kk =Δ−− − XXX                                            (15) 

( ) 0aaa1 k41k61k5k =Δ−+−− −− XXXX &&&&                (16) 

( ) 0aaa1 k11k21k3k =Δ−+−− −− XXXX &&&&&             (17) 
By substituting (11)-(13) into (14) and after some 

rearrangement the control force is determined as:  
( )k31k24k1

T*
n

T1
k aa

k
XQXQXQKDRu &&& ++−= −−              (18)                                        

where superscript (–T)  means transpose of inverse matrix. 
According to (18) it is obvious that the control force is 

dependent to full feedback of response and weighting 
matrices.  

III. DISTRIBUTED GENETIC ALGORITHM (DGA) 
Genetic algorithm (GA) developed by Holland [15] and has 

been documented in his pioneering book in this area. GA is a 
computational method which is inspired by natural Darwinian 
evolution .In GAs chromosomes evolving under a certain 
environment are represented by bit strings or real-valued 
coding. In the early stages of string coding, design variables 
were represented in their binary format [16]-[17]. Whilst 
binary binary–coded GAs appear to be more suitable to 
complex problems, they have some drawbacks in taking 
continuous problems and it has been shown that for real- 
valued numerical optimization problems, real- valued coding 
representations offer certain advantages such as simple 
programming, less memory required, no need to convert 
chromosomes and greater freedom to use different genetic 
operators over binary versions [16].  

There are three genetic algorithm operators including 
selection, cross over and mutation. In every generation, a set 
of chromosomes is selected for mating based on their relative 
fitness. The fitters are given more chance of passing their 
genes into the next generation. This process of natural 
selection is operated by selection. The basic operator for 
producing new individuals in the GA is that of cross over. 
Cross over produces new individuals that have some parts of 
both parents genetic material. The role of mutation is often 
seen as providing a guarantee that the probability of searching 
any given string will never be zero. In this paper the elitist 
strategy has been used which allows the best chromosomes of 
the current generation to go to the next generation without 
modification.  

In Distributed Genetic Algorithms (DGA), a large 
population is divided into smaller subpopulations, and a 
traditional GA is executed on each subpopulation separately. 
Some individuals are selected from each subpopulation and 
migrated to different subpopulations periodically. For 
migration of individuals different methods has been proposed 
such as the ring topology, neighborhood migration and 
unrestricted migration. In this paper the unrestricted migration 
which is the most common used method, has been used. In the 

literature the use of DGA has shown that smaller number of 
individuals in DGA leads to quicker convergence and higher 
searching capability as compared to the conventional GAs 
[18]-[19]. 

IV. OPTIMAL CONTROLLERS CONSIDERING ACTUATOR 
SATURATION 

The control force is defined as a function of the weighting 
matrices R, Q1, Q2 and Q3 in (18) where the weight matrices 
R, Q1, Q2 and Q3 can be determined so that some constraints 
on the response or control force are satisfied .By assuming 
unlimited capacity for actuators for any set of weighting 
matrices the control force is determined according to (18). In 
practical application it is possible that the required control 
force be larger than the actuator capacity so it is required to 
consider the saturation of actuator in designing the controllers. 
To consider the actuator saturation for a pre-specified actuator 
capacity, usat, two strategies can be used as follows:  

A. Case (a):  
Considering actuator capacity as a constraint in 

optimization problem and designing optimal controller to 
minimize the maximum displacement, for this case the 
optimization problem can be defined as:  

 Find            Q = (Q1, Q2, Q3)                                    (19a) 
Minimize      X = Max. (Xk=|Xk| , k=1, 2,…, kmax  )   (19b) 
Subject to     g1 = umax/(usat)-1≤ 0.0                             (19c) 

where umax and usat are maximum required control force and 
the capacity of actuator respectively. Also: 

Xmax = max.(|Xk|,k=1,2,…,kmax)                                 (20a) 
kmax=total number of time steps                                 (20b) 

In this case the maximum required control force is equal 
with the actuator capacity. In the optimization problem 
defined in (19a-c), it is desired to find the set of weighting 
parameter Q* = (Q1*, Q2*, Q3*) so that both the maximum 
displacement is minimized and also the control force remains 
in specified limits. In this paper distributed genetic algorithm 
(DGA) which is an improved version of traditional genetic 
algorithm (GA), has been used to solve the optimization 
problem defined in (19a-c). 

B. Case (b):  
In this method the control force is determined based on 

control law and if the required control force is larger than the 
actuator capacity then the control force is considered equal 
with the capacity of actuator. In this case to design a controller 
which minimizes the maximum displacement of structure 
under the actuator capacity constraint, the optimization 
problem can be defined as:  

Find        Q = (Q1, Q2, Q3)                                       (21a) 
    Minimize X=Max. (Xk=|Xk| , k=1,2,…, kmax  )         (21b) 

          if umax ≥  usat   then  umax= usat                          (21c) 

V. NUMERICAL EXAMPLE 
For numerical analysis a single degree of freedom (SDOF) 

structure has been considered as shown in Fig.1 which its 
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structural properties have been taken from Yang et al. [9] and 
modeled according to bilinear hysteretic model shown in Fig.2 
and mitigation of its vibrations by active controlling has been 
studied. The stiffness is bilinear elastic-plastic with an elastic 
stiffness K1=8.5273×104 kN/m and a post elastic stiffness 
K2=9.7455×103 kN/m .The floor mass is 345.6 tons and the 
natural frequency of the structure based on initial stiffness is 
2.5 Hz. The linear viscous damping coefficient C is 54.29 
kN.sec/m which corresponds to a damping ratio of 0.5%. 
Yielding occurs at a lateral relative displacement of Xyielding 
=2.4 cm. In this study, it has been assumed that the actuator-
structure interaction effect is not significant.  

The uncontrolled structure was subjected to white noise 
ground accelerations of different intensities, denoting by 
W1(t), a white noise with PGA=100cm/s2 as shown in Fig. 3, 
the white noise, Wα(t) =  α W1(t) has a  PGA= 100α  cm/s2 . 

The effect of α on the maximum displacement assuming the 
system would not fail is represented in Fig.4. For α ≥ 2, the 
system has experienced nonlinearity beyond Xyielding = 2.4 cm. 
Hence to design the controller, it was decided to use the white 
noise with α=4.9 which could produce large nonlinear 
uncontrolled displacement, denoted by Xu, where Xu = 3.6 cm 
= 150% Xyielding.  

The extended nonlinear Newmark method with γ = 0.25 and 
δ = 0.5 as suggested in literature [14] to stability of numerical 
analysis has been used for nonlinear analysis of the system 
where the integration time interval has been 0.002 seconds to 
achieve the required accuracy. 

 
Fig. 1 SDOF Structure–Actuator   model with active tendon control 
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Fig. 2 Nonlinear bilinear Elasto-Plastic stiffness model  
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Fig. 3 White noise excitation, W1 (t), with PGA=100 cm/s2 
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Fig. 4 Maximum displacement of the nonlinear SDOF frame versus 

different white noise amplitude factor (α)  
 

A. Optimal Design of Controllers According to Case (a): 
For different values of actuator capacity, usat, optimization 

problem defined through (19a-c) has been solved. The 
parameters of the DGA have been as follows: 

 Number of subpopulations = 2, Number of individuals in 
each subpopulation = 40, Number of elites = 8, Number of the 
newborns = 40, mutation rate = 0.04, Migration interval = 20 
and Migration rate = 0.20. 

 
1) Finding the Optimum Q by DGA for usat=100 kN  

It was desired to design the controller to minimize the 
displacement under a ground white noise acceleration of 
amplitude α=4.9 while the maximum control force is below 
the actuator capacity.  

Following the DGA procedure, 2 subpopulations each with 
40 randomly generated vectors of control parameters Q = (Q1, 
Q2, Q3) were generated as the initial population. The response 
as well as the maximum displacement was recorded and the 
objective function was calculated for each Q. The 
convergence behavior of the DGA towards the optimum 
answer Q* is shown in Fig.5 for three runs, where the 
optimum objective function value for each generation has 
been plotted versus the generation number in three runs. 
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Obviously the convergence is monotonic because the elites in 
each generation have survived to enter the next generation, 
taking the best objective function value of any generation to 
the next one. Also all runs ended approximately with the same 
objective function value.  From solving the optimization 
problem by DGA the optimum answer has been as follows: 

umax = maximum control force = 99.98 kN; 
Xmax = maximum displacement = 2.71 cm;  
It is clear that the maximum control force is approximately 

equal with the actuator capacity, as expected in Case (a).  
 

B
es

t F
(Q

)

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0 100 200 300 400 500
Generation number

Run.1 
Run.2
Run.3

 
Fig. 5 The best fitness value of chromosomes in three runs of DGA  

 
2) Designing of Optimal Controllers for Different 
Actuator Capacity: 

Following the same procedure, new controllers were 
designed for different values of usat but for the same white 
noise with α = 4.9. The maximum normalized response of 
controlled structure has been shown for different actuator 
capacity, in Fig.6. The average control force, uave , which can 
be used as an index to show the value of consuming energy 
for control system, has been defined in (22). 

                uave = 
max

k

1k
k

k

u
max

∑
=                                    (22) 

For different usat the normalized average control force has 
been shown in Fig.6, too. 

B. Optimal Design of Controllers According to Case (b): 
Following the same procedure explained for Case (a), new 

controllers have been designed for different actuator capacity 
while the Case (b) has been used for considering the actuator 

saturation constraint according to equations defined in (21a-
c). Fig.7 shows the maximum normalized response of 
controlled structure and average control force. From the 
results it is clear that in this case average control force is 
approximately equal with the actuator capacity which shows 
that in most times the applied control force is equal with the 
actuator capacity.  

Comparing the results shown in Fig.6 and Fig.7 shows that 
applying Case (b) for considering the actuator saturation, 
leads to more reduction in maximum displacement of structure 
in comparison with Case (a), while it requires larger average 
control force consequently larger amount of required 
consuming energy.  

For the same average control force, for Cases (a) and (b) 
the maximum response of uncontrolled and controlled 
structures has been shown in Table I for different actuator 
capacity. According to results shown in Table I, it can be 
concluded that by considering the same value for the average 
control force, Cases (a) and (b) have approximately the same 
performance for considering the actuator saturation in 
designing the optimal controllers. 

VI. CONCLUSION 
In this paper two methods have been proposed for 

considering the actuator saturation in designing the optimal 
controllers for nonlinear frames. The methods have been 
based on defining an optimization problem to minimize the 
maximum response of structure and considering the actuator 
capacity as constraint. For active control of nonlinear 
structures by using Newmark integration method for 
numerical simulation, the extended nonlinear instantaneous 
optimal control method that considers full feedback of 
response in performance index, has been used. 

 For different values of actuator capacity Distributed 
Genetic Algorithms (DGA) has been used successfully in the 
design of optimum nonlinear controllers for the objective of 
minimizing the maximum displacement of a SDF nonlinear 
structure modeled by bilinear elastic-plastic stiffness, under 
white noise excitation. It has been shown that the proposed 
method has been successful in designing the optimal 
controllers when the actuator saturation has been considered.  
Also the results of the numerical simulation show that in 
considering the actuator saturation, the actuator capacity and 
the average of required control force are two important 
indexes in designing the controllers.  
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Fig. 6 Normalized maximum response and average control force versus actuator capacity when Case (a) used for considering actuator 

saturation  
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Fig. 7 Normalized maximum response and average control force versus actuator capacity when Case (b) used for considering actuator 

saturation 
 
 

 
 

TABLE I 
  RESPONSE OF UNCONTROLLED AND CONTROLLED STRUCTURES FOR DIFFERENT ACTUATOR CAPACITY WHEN THE SAME AVERAGE 

CONTROL FORCE USED FOR CASES (A) AND (B). 

Case(a) Case(b) 

Dis. Vel. Acc. Dis. Vel. Acc. 

 
 

                           Response 
 
 

                  Actuator 
              Capacity (kN) 

(cm) 
 

(cm/s) 
 

(cm/s2) 
 

(cm) 
 

(cm/s) 
 

(cm/s2) 
 

0 3.60 46.61 981.7 3.60 46.61 981.7 

50 3.17 48.86 964.7 3.40 44.75 977.4 

100 2.71 39.98 956.1 2.83 41.52 955.3 

150 2.03 30.16 845.2 1.99 29.99 845.8 

200 1.75 25.01 736.6 1.75 25.07 736.5 

250 1.51 22.39 649.4 1.57 22.97 668.7 
    Dis. =displacement, Vel. =velocity, Acc. = acceleration 
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