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Online Prediction of Nonlinear Signal Processing
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Abstract—This paper presents two of the most knowing kernel
adaptive filtering (KAF) approaches, the kernel least mean squares
and the kernel recursive least squares, in order to predict a new output
of nonlinear signal processing. Both of these methods implement a
nonlinear transfer function using kernel methods in a particular space
named reproducing kernel Hilbert space (RKHS) where the model is
a linear combination of kernel functions applied to transform the
observed data from the input space to a high dimensional feature
space of vectors, this idea known as the kernel trick. Then KAF is the
developing filters in RKHS. We use two nonlinear signal processing
problems, Mackey Glass chaotic time series prediction and nonlinear
channel equalization to figure the performance of the approaches
presented and finally to result which of them is the adapted one.

Keywords—KLMS, online prediction, KAF, signal processing,
RKHS, Kernel methods, KRLS, KLMS.

I. INTRODUCTION

S IGNALS and signal processing pervade our everyday

lives, that’s why it becomes the most interesting topic

in electrical engineering. Signal processing is a large field,

it is the operation that applied to an original input signal

in order to produce a new output signal, and it can be

applicable to implement a certain processing task, studying

a certain signal and to predict a system’s output which is

the main object of this work. In the most cases, signal

processing problems require online adaptive procedure with

sparsification to handle the huge amount of data, and it

needs a high-dimensional space hypothesis, so we are talking

about the reproducing kernel Hilbert space (RKHS) [1]

where the model is a linear combination of kernel functions

applied to transform the observed data from the input space

to a high dimensional feature space of vectors, this idea

known as the kernel trick. All kernel methods formulate

learning and estimate problems in RKHS, kernel methods

are powerful nonlinear approaches and they are widely used

in many fields such as bioinformatics, machine learning and

nonlinear signal processing. For offline scenario, the most

popular kernel methods are support vector machines (SVM)

[2] and kernel principal component analysis (KPCA) [3], these

methods are designed to regression, classification, and novelty

detection, but they are inefficient for online prediction. The

great methodology dealing with online prediction problems is

adaptive filtering, were filtering is the process of removing

certain portions of the input signal in order to create a new

signal, so a filter is the most important operation in signal
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processing, it acts on a signal to produce a modified one.

By developing adaptive filter in RKHS, we get the so-called

”kernel adaptive filtering” (KAF) [4]. KAF algorithms are a

family of online kernel learning algorithms, where a linear

combination of kernel functions used to implement linear

adaptive algorithms in order to obtain nonlinear filters in the

original input space. The aim of this work is to use two of

the most popular KAF algorithms, kernel least mean squares

(KLMS) [5] and recursive recursive least squares (KRLS) [6],

so as to predict output of nonlinear signal processing problems.

The remainder of this paper is divided into four sections. We

start by introducing adaptive filters in Section II. An overview

of the reproducing kernel Hilbert space is presented in Section

III. Next in Section IV, we give a brief introduction to both

kernel recursive least squares and kernel least mean squares

methods. We experimentally prove the most adaptive methods

for online prediction problems in Section V. Finally Section

VI summarizes the conclusions of this work.

II. ADAPTIVE FILTERING

Adaptive filtering imply the changing filter coefficients by

the time to adapt changing signal characteristics. An adaptive

filter is a computational device that recursively models the

relationship between the input and output signals of the filter.

The adaptive filter consist of a signal processed by the filter,

formulation defining the way how the output of the filter

is computed according to its input, adjustable coefficients

that update iteratively, and the adaptive algorithm describing

how the coefficient are adjusted. The most knowing adaptive

algorithms are those presented next in this paper. An adaptive

filter requires an additional input signal d(n) and returns an

additional output signal e(n). A typical adaptive filter contain

the following elements:

• x(n) is the input signal

• y(n) is the corresponding output signal

• d(n) is an additional input signal to the adaptive filter

• e(n) is the error signal (difference between d(n) and y(n))

Adaptive filter can be used in different applications such

as noise cancellation, inverse modeling, system identification

and prediction problems witch is our focus in this article.

Prediction is to estimate the values of a signal at a future

time without having any prior knowledge. Given a random

signal x(n), the delayed version of the random signal is u(n),
the filter generates an output y(n) in order to bring out the

error e(n) between the desired response (additional input) and

the first output delivered by the filter. Then e(n) denote the

second system output.
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III. REPRODUCING KERNEL HILBERT SPACE

A. Positive-Definite Kernel (PDK)

Let X be an input space, the function k : X ×X → R is a

positive definite kernel [7] if:

1) k(ai, aj) = k(aj , ai)
2) ∀ a1, ..., an ∈ Xn and p1, ..., pn ∈ R+ then:

n∑
i=1

n∑
j=1

pipjk(ai, aj) ≥ 0

B. Reproducing Kernel

Let H be a Hilbert space, ∀ f, g ∈ H , the inner product is

designed by < f, g > , and the norm of f in H is ||f || =<
f, f >

1
2 . The function k : X × X → R labeled reproducing

kernel of H iff:

1) ∀ x, y ∈ X , kx(y) = k(x, y).
2) ∀ x ∈ X , ∀ f ∈ H , then: f(x) =< f, kx >H

C. RKHS

The reproducing kernel Hilbert space (RKHS) [1] is a

Hilbert space where, there is a reproducing kernel k of H .

The RKHS, denoted by Hk, the norm indicated by ||.||Hk
,

and the inner product symbolized by < ., . >Hk
.

D. Optimization Problem

The main goal is to infer a functional relation ŷ =
f(x) based on a set of training experimental data D =
{(x1, y1), ..., (xn, yn)}, where xi = [xi,1, ..., xi,d]

T ∈ R
d

and yi = [y1, ..., yi]
T ∈ R are the inputs and the outputs,

respectively. Thanks to the statistical learning theory [8], the

problem in the RKHS Hk, can be figured as a minimization

of the regularized empirical risk. Thus, the function ŷ ∈ Hk

has the following form [9]:

ŷ = min
f∈Hk

1

n

n∑
i=1

(yi − f(xi))
2 + λ||f ||2Hk

(1)

where n is the number of training data and λ is a regularization

parameter chosen in order to ensure a generalization ability

to the solution [10]. Thanks to the Representer Theorem [2],

a large class of optimization problems in the RKHS have

solutions that can be expressed as kernel expansions in terms

of the training data only. Then, the optimization problem can

be expressed as:

ŷ =

n∑
i=1

αik(xi, x) (2)

where α is a vector of parameters. The number of parameters

is equal to the number of observations used in the training

sequence.

IV. KERNEL ADAPTIVE FILTERING APPROACHES

The basic idea behind kernel adaptive filtering can be

figured as follows:

1) Transform data into a high dimensional feature space

φi = φ(ui) (3)

2) Construct a linear model in the feature space H

y =< ω, φ(u) >H (4)

3) Adapt iteratively coefficients by gradient descent

ωi = ωi−1 + η ΔJi (5)

4) Compute the output

fi(u) =< ωi, φ(u) >H=

ni∑
j=1

αik(u, cj) (6)

5) According to the universal approximation theorem, fi(u)
can approximate any continuous training data mapping

arbitrarily close in the Lp norm. Then the equation 5

will expressed as follow:

ωi = ωi−1 + e(i) φ(ui) (7)

Hence

fi(u) = fi−1 + η e(i)k(ui, .) (8)

A. Kernel Mean Least Squares

The kernel least mean square (KLMS) [5] is the nonlinear

version of the least mean square where the hypothesis space is

the RKHS, this approach was developed in 2007. The KLMS

is the simplest and one of the most knowing kernel adaptive

filtering algorithms. The kernel least mean squares algorithm

needs an error in order to update the filter coefficients, that’s

why it is an efficient algorithm dealing with online problems.

1) Principle: Unlike the least mean squares (LMS), the

kernel LMS transform the input u(i) from the original space

into a high dimensional space H by the kernel mapping

function φ. After that the training data will be expressed as

{φ(i), d(i)} where φ(i) = φ(u(i)). Then the KLMS algorithm

[11] is the follow:⎧⎪⎨
⎪⎩

ω(0) = 0

e(i) = d(i)− < ω(i− 1), φ(i) >

ω(i) = ω(i− 1) + η e(i) φ(i)

(9)

Were η is the step size, e(i) is the prediction error at iteration

i and ω(i) indicates the estimate of weight vector in H .

Knowing that fi is the composition of ω(i) and φ, ie. fi =<
ω(i), φ(.) > . According to the expression φ(u) = k(u, .),
the learning rule return to the original space and the KLMS

algorithm will be
⎧⎪⎨
⎪⎩

f0 = 0

e(i) = d(i)− fi−1(u(i))

fi = fi−1 + η e(i) k(u(i), .)

(10)
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This algorithm turn out an increasing Radial Basis Function

(RBF) network by giving a new kernel unit for every new

sample with input u(i) as the center and η e(i) as the

coefficient, that’s why it needs a procedure handles this

problem.

2) Sparsification: online learning algorithms need a

dictionary to store the training data to be used iteratively,

the problem here is that the dictionary increase linearly

with the training data resulting big amount of memory with

unuseful data and high power consummation influencing to the

algorithm’s performance. To avoid this issue, it must discover

a technique dealing with growth, able to limit the size of

dictionary by obsleting the training data that doesn’t satisfy

to some criteria. The criteria varying from approach to anther.

There is various sparcification techniques proposed in the

literature, for the KLMS algorithm it is required to use the

Novelty Criterion (NC) [4].

3) Novelty Criterion: The steps of this sparsification

procedure are the follows:

1) Forming the dictionary

C(i) = {cj}mi
j=1 (11)

A new trainig data arrives (u(i+ 1), d(i+ 1))
2) Compute the distance to the present dictionary

dis = min
cj∈C

||u(i+ 1)− cj || (12)

3) If dis < δ1, then u(i + 1) will not be added into the

dictionary

4) Otherwise, the prediction error is computed and only if

|e(i+1)| > δ2, u(i+1) will be accepted as a new center.

The δ1 and δ2 are two arbitrary parameters. In most cases

δ1 = 0.1 and δ2 equal to the square of mean square error.

That’s what we will proved next in the experiments section.

B. Kernel Recursive Least Squares

The kernel recursive least squares was proposed by Engel

[6] in 2004, KRLS is the nonlinear or kernelized version of

RLS, this method is an efficient online approach that find

the least squares linear predictor by minimizing the weighted

loss function. The KRLS algorithm produce high accuracy

and has fast convergence rate, it deals with both memory and

computational complexities.

1) Principle: Given a sequence of training data Di =
{(x1, d1), (x2, d2)...(xi, di)}, taking from some system. In the

prediction problem, the main goal is to find the best ŷ for di
given Di−1 ∪ {xi}, by online procedure where the predictor

will be updated for each new training data. Then the KRLS

algorithm suppose a functional form denoted by

ŷ = f(xi) (13)

and minimizes the loss function L

L = min
f

N∑
i=1

|di − f(xi)|2 + λ||f ||2 (14)

According to the kernel trick, the functional will be as

follow

f(x) =< w, φ(x) > (15)

Hence, the loss function will be:

L = min
w

N∑
i=1

|di− < w, φ(x) > |2 + λ||w||2 (16)

Then, the KRLS algorithm determine the loss function

recursively and estimate the weight vector as a linear

combination of {φ(xi)}.

w =
N∑
i=1

a(i) φ(xi) = Φi a(i) (17)

where

φi = [φ(x1), φ(x2), ..., φ(xi)] (18)

and

a(i) = [a(1), a(2), ..., a(i)]T (19)

Finally, the predictor has the following expression:

ŷ =

N∑
i=1

ai < φ(xi), φ(xt) >= ai k(xi, xt) (20)

2) ALD Sparsification: The Approximate Linear

Dependence (ALD) is a powerful sparsification technique,

which based on sparse dictionary of input data, where the

new input data will added only if it cannot be represented

as a combination of other input data already stored in

the dictionary. In this context, the application φ(xt) must

be approximately linearly dependent on the sequence

{φ(x1), φ(x2), ..., φ(xt−1)}, according to an approximation

threshold ν, arbitrarily chosen, where the algorithm uses

a projection error δt to obtain the sparse dictionary, this

projection error must satisfy the following condition:

δt = min
a

||
t−1∑
i=1

ai φ(xi)− φ(xt)||2 < ν (21)

3) Algorithm: The kernel recursive least squares algorithm

with ALD sparsification can simplify by the following:

1) Initialize the sparse dictionary and the weight vector.

2) Take the first input data x1 and put it into the dictionary.

Compute the weight vector.

3) Receive the new training data (xt, dt). Execute the ALD

test.

4) If the criterion δt < ν is satisfy, then keep the dictionary

unchanged.

5) If ALD test fails, then added the new input data into the

dictionary. Update the weight vector.

6) Prepare the adjusted dictionary and the updated weight

vector for the next iteration.
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Fig. 1 Evolution of MSE for NSE

V. EXPERIMENTS

Before starting a simulation, we have to clarify some points.

First, the performance of the predictor is defined by the

Mean Square Error (MSE), which is an estimator of the

thorough deviations between predicted and original values. It

is describing as follow:

MSE =
1

N

N∑
i=1

(ŷi − di)
2 (22)

Second, the execution time of the algorithms Te, this term

depending on the simulation machine. For our works, the

training data experiments were run on a Windows 10 Microsoft

system with Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz and

32GB of RAM. MATLAB was used to run all tests. For all

algorithms, a Radial Basis Function (RBF) kernel was used:

k(x, y) = exp(
−||x− y||2

2σ2
) (23)

where σ is the kernel’s parameter. Third, the validation of the

estimated model to predicted one. The important challenge

in modeling is how good is the predicted model? One way

to check this out is to simulate it and compare the predictor

output with original output. We are going to select a section of

the original data (validation data) that was not used in building

the predictor. Once the validation data has been pre-processed,

we use the MSE to view the quality of prediction. Finally, the

training vector which it can be expressed by:

xi = [u(i− l), u(i− l − 1), u(i− l − 2), .., u(i− 1)]T (24)

where u is the input signal and l is the input dimension. The

two signal processing problems used are the Mackey Glass

chaotic time series and the nonlinear channel equalization.

A. Nonlinear Channel Equalization

1) Description: The nonlinear channel equalization (NCE)

is used widely to prove performance of many KAF algorithms,

the NCE model contain two elements, sequence connection

of linear filter and memory-less non-linearity. The process is

describing by [12]. A binary signal {b(1), b(2), ..., b(N)} is

fed into a nonlinear channel. When this binary signal has

been received by the channel, the signal deviated with the

addition of a Gaussian noise, then it will be figured as the

corresponding noisy signal (u(1), ..., u(N)). The goal of NCE

is to form an inverse filter that reconstructs the original signal

with the minimum error. The training data is the sequence:

xi = {([u(i), u(i+ 1), ..., u(i+ l)], b(i−D))} (25)

where l is the input dimension (embedding length) and D is

the equalization delay (equalization time lag). The NCE model

is defined as follow

x(i) = b(i) + 0.5 b(i− 1) (26)

u(i) = x(i)− 0.9 x(i)2 = n(i) (27)

where n(i) is the white Gaussian noise with a variance v.

2) Parameters: We use NCE for both KLMS and KRLS

algorithm, where we choose the Radial Basis Function kernel

with σ = 1, the training size is 1000 (N=1000), input

dimension of 4 (l = 4) and the equalization delay equal to

zero (D = 0). The variance of the white Gaussian noise is

fixed to 0.1 (v = 0.1).

For the KLMS algorithm, we use the step size η = 0.15, null

value of Bias and the sparsification parameters are δ1 = 0.05
and δ2 = 0.01. The KRLS specific algorithm parameters are

the regularization parameter λ = 0.9, the forgetting factor

μ = 1 and the threshold ν = −1.5. The execution times are

Te(KLMS) = 0.03s and Te(KRLS) = 2.04s.

3) Comparative Results: Fig. 1 show the MSE determined

between the prediction output and the desired signal of both

algorithms, and it obviously prove that the KRLS has the

lower MSE rate and then gives the best performance for this

prediction problem.

B. Mackey Glass

1) Description: The Mackey Glass chaotic time series

(MG) [13] is produced by numerical integration of time delay

ordinary difference equation that was proposed as a model of

white blood cell production

du(t)

dt
=

a u(t− τ)

1 + u(t− τ)10
− b u(t) (28)

where a = 0.2, b = 0.1 and τ = 30. Then MG will be denoted

by MG30, it is discretized at a sampling time of six seconds.

2) Parameters: The Gaussian noise with variance v=0.002

and zero mean. The parameter of the used kernel is σ = 1.

We use 300 samples for the training data and another 150 for

testing, where the input dimension is l = 6, ie.

x(i) = [u(i− 6), u(i− 5), ..., u(i− 1)]T

The specific parameters of the KLMS algorithm are the

thresholds of the sparsification procedure δ1 = 0.01 and

δ2 = 0.05, the step size η = 0.3 and the Bias equal to zero. For
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Fig. 2 Evolution of MSE for MG

KRLS, the regularization papmeter is λ = 0.8, the forgetting

factor μ = 1 and the sparsification threshold is ν = 0.2. After

running simulation, the execution time for such algorithm is

Te(KLMS) = 0.065s and Te(KRLS) = 0.066s.

3) Comparative results: Fig. 2 gives the MSE of both

algorithms, where we can extract that the KLMS algorithm

performance is close to the KRLS, but the second presents

the minimum MSE values.

VI. CONCLUSIONS

Two KAF algorithms were presented KRLS and KLMS,

these algorithms are efficient in online prediction problems

which give a good correlation between predicted and real

values and they are recommended for nonlinear signal

processing. As the comparative study shows, the KLMS is

the simplest, where it takes the least time execution and the

KRLS more adapted in term of performance. In future study,

we interest to implement some KAF methods with multiple

kernel, where there are more than KRHS space.
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