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Online Measurement of Fuel Stack Elongation

Sung Ho Ahn, Jintae Hong, Chang Young Joung, Tae Ho Yang, Sung Ho Heo, Seo Yun Jang

Abstract—The performances of nuclear fuels and materials are
qualified at an irradiation system in research reactors operating under
the commercial nuclear power plant conditions. Fuel centerline
temperature, coolant temperature, neutron flux, deformations of fuel
stack and swelling are important parameters needed to analyze the
nuclear fuel performances. The dimensional stability of nuclear fuels
is a key parameter measuring the fuel densification and swelling. In
this study, the fuel stack elongation is measured using a LVDT. A
mockup LVDT instrumented fuel rod is developed. The performances
of mockup LVDT instrumented fuel rod is evaluated by experiments.

Keywords—Axial deformation, elongation measurement, in-pile
instrumentation, LVDT.

I. INTRODUCTION

OR a fuel performance analysis, it is invaluable to have

access to direct measurements of the parameters related to
the in-pile performance of fuel. The important direct
measurement parameters are the onset temperature for fission
gas release, fuel operating temperature, and dimensional
stability of the fuel stack. A variety of in-pile instruments have
developed for on-line monitoring and measurements during
fuel and material irradiation tests [1], [2]. The fuel temperature
measurement is an essential requirement for fuel performance
evaluation. Fuel centerline temperature can be measured with a
thermocouple or expansion thermometer. The fission gas
release mechanisms and fuel rod internal pressure are key
issues for extending the burn-up of fuel in power reactors. An
LVDT (Linear Variable Differential Transformers) is used for
monitoring the position of the magnetic core, and thus the fuel
rod internal pressure can be monitored. The neutron flux is
measured with SPND (Self Powered Neutron Detector). And
the coolant temperature is measured with thermocouples.

The dimensional stability of nuclear fuels is a key
performance parameter measuring the fuel densification and
swelling [1], [3]. Fuel densification and swelling are of interest
because they impact the development of gap closure. The
deformations in fuel stack length can be monitored with an
in-core fuel elongation detector. LVDTs are applied for
measurement of dimensional deformations in the fields of fuel
and material irradiation as well as general industries [4]-[6].

In this study, an online elongation deformation measurement
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device of the fuel stack is developed using LVDT. A magnetic
core is attached to a spring loaded plate in contract with the fuel
pellet at one end of the fuel stack, which follows the expansion
and contraction of the fuel stack. As the magnetic core, housed
within the fuel rod end-plug, changes the position relative to the
LVDT that surrounds the fuel rod end-plug, it generates a signal
that can be converted into the change in length. The
performances of the developed -elongation deformation
measurement device are evaluated experimentally using a
mockup LVDT instrumented fuel rod. The experimental results
show that the developed device has an excellent measurement
performance for the elongation deformation of the fuel stack.

I1. DISPLACEMENT MEASUREMENT USING LVDT

LVDT has been used throughout many decades for the
accurate measurement of displacement and within closed loops
for the control of positioning [7], [8]. Fig. 1 shows the
cross-sectional view of the LVDT core and windings [9].
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Fig. 1 Cross-sectional view of LVDT core and windings

The LVDT consists of a coil assembly and a core. The coil
assembly consists of a cylindrical array of primary and
secondary coils. And the coil assembly consists of three coils of
wire wound on the hollow form [9]. A magnetic core connected
to the fuel stack can move freely through the center of primary
and secondary coils. When the primary is excited by an AC
input, the magnetic flux is coupled to the two secondary coils.
The output gives DC or 4-20 mA output proportional to the
core movement and also indicates its directions, positive or
negative from the central zero point.

Fig. 2 shows that the magnitude of the differential output
voltage varies with the core position. The output value at the
maximum core displacement from the null depends upon the
amplitude of the primary excitation voltage and the sensitivity
factor of the particular LVDT. The phase angle of this AC
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output voltage by the primary excitation voltage stays constant
until the center of the core passes the null point, where the
phase angle changes abruptly by 180 degrees, as shown in Fig.
3. The 180 degrees phase shift can be used to determine the
direction of the core from the null point by means of
appropriate circuitry such as a phase sensitive demodulator and
low pass filter. Fig. 4 shows the polarity of the output signal,
which represents the core’s positional relationship to the null
point [10].

Magnitude of differential
AC output

- Core displacement +

Fig. 2 LVDT response for core displacement

Phase angle of output
relative to primary

- Core displacement +

Fig. 3 Phase angle for core displacement

Output signal from
appropriate circuitry

Core displacement +

Fig. 4 Output signal from appropriate circuitry

III. Mockupr LVDT INSTRUMENTED FUEL ROD

The temperature of a nuclear fuel is increased when the fuel
is irradiated by neutrons. Thus, the on-line deformation
measurement of the fuel stack is needed when the irradiation
test is performed. The fuel stack length elongation can be

monitored using an in-core fuel elongation detector. An online
elongation deformation measurement device of the fuel stack
was developed using an LVDT. The LVDT core connected at
one end of the fuel stacks is located at an end plug type of the
test fuel. In addition, the core can move freely within the end
plug for the elongation of the fuel stacks. The core moves with
compression of the spring when the fuel stacks are expanded.
Moreover, it moves to the opposite direction with the elasticity
of spring when the fuel stacks are contracted. The test fuel is
manufactured to withstand the internal pressure increasing by
the neutron irradiation.
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Fig. 5 Upper part of mock-up fuel rod with LVDT core (a) Schematic
diagram, (b) Composition, (c) Assembled LVDT core

(b)

Fig. 6 Mock-up LVDT instrumented fuel rod (a) Before assembling, (b)
After assembling

The upper part of a mock-up fuel rod with an LVDT core is
shown in Fig. 5. It consists of a magnetic core, connecting rod,
cover plug, cover, end plug gender, and supporter. The LVDT
core for the fuel stack elongation measurement should not be
affected by the cladding elongation. Thus, the supporter,
connecting rod, and LVDT core are installed to be affected only
by the fuel stack elongation. A magnetic core is attached to a
spring loaded plate located at one end of the fuel stack, which
follows the expansion and contraction of the fuel stack. Fig. 6
shows the mock-up LVDT instrumented fuel rod. The end part
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including the magnetic core is inserted into the LVDT coil
assembly, consisting of a cylindrical array of the primary and
secondary windings. The end plug and the cover are welded.

IV. EXPERIMENTAL RESULTS

A. Experiments

Fig. 7 Experiment for fuel stack elongation measurement

The mock-up LVDT instrumented fuel rod is installed at a
test device. The test device consists of a mock-up LVDT
instrumented fuel rod with an LVDT, a fuel stack elongation
simulator connecting to micrometer, and signal readout, as
shown in Fig. 7. The fuel stack elongation simulator is
connected in close adhesion on the fuel stack. The initial point
of'the LVDT core is established by keeping away from the dead
zone. When the fuel stack is moved through handling of the
micrometer, the LVDT core is moved. Finally, the signal
readout displays the voltage signals using the LVDT sensing
signals.

B. Measurement Results
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Fig. 8 Signal output from readout

The performances of the developed elongation deformation
measurement are evaluated by experiments using a mockup
LVDT instrumented fuel rod. Fig. 8 shows the measured signal
output from the signal readout for the fuel stack elongation. The
measurement sensitivity is about 1 mV/ 6 um. There is a dead
zone between -4 um and 87 pum near zero a crossing point, as
shown in Fig. 9, because of high sensitivity and structural shape
of the primary and secondary coils. The measurement range

including the dead zone is about from -2,500 mm to 2,500 mm.
Fig. 10 shows the feasible measurement range (from 100 mm to
2,500 mm), which can be applied to measure the fuel stack
elongation. The initial position of the LVDT core can be
established by keeping away from the dead zone. It is
concluded that the developed device has an excellent
measurement performance for the elongation deformation of
the fuel stack.
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Fig. 9 Nonlinear characteristics at dead zone
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Fig. 10 Feasible measurement range

V.CONCLUSION

The developed fuel stack elongation measurement device has
an advantage that the precise fuel stack deformation
measurement is possible without friction. The developed
device can be applied to the nuclear fuel and material
irradiation tests using research reactors. The further studies
based on this research result include the manufacturing of a real
test fuel rod based on the mock-up device, and application in a
neutron environment.
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