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Abstract—The Stokes equation connected with the fluid flow 

over the axisymmetric bodies in a cylindrical area is considered. The 

equation is studied in a moving coordinate system with the 

appropriate boundary conditions. Effective formulas for the velocity 

components are obtained. The graphs of the velocity components and 

velocity profile are plotted. 
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I. INTRODUCTION 

HE stationary and non-stationary Newtonian fluids are 

investigated by numerous of authors by means of Navier-

Stokes equation with the specific boundary conditions (see for 

example [1]-[11]). 

We consider the fluid flow over some axisymmetric bodies 

which moves in the infinite cylindrical channel filled with a 

viscous fluid. These bodies have the same axis of symmetry. 

We admit that the pressure fall is a constant. In this case the 

velocity of the fluid satisfies the linearized Navier-Stokes 

equation with the appropriate initial-boundary conditions. The 

solutions of this equation have been obtained. Hence, the 

velocity components of the Stokes flow are found. 

II.  STATEMENT OF THE PROBLEM 

Let fluid occupied some cylindrical channel of the diameter 

0)(d >d  and consider in this channel the motion of some 

system of axisymmetric bodies at a speed ),,( 000
0 zyx

VVVV
→

. For 

low Reynolds number the Stokes equation with the equation of 

continuity are valid [1]-[6]: 
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V ) is the velocity vector , P  is the pressure, 
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 is the external force, ρ  is a density of the fluid, 

ν -is a viscosity . 
Equation (1) can be rewritten in terms of velocity 

components in the form: 
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Also the following boundary conditions are satisfied: 

 

0 0 0
0, 0, 0x S y S z SV V V= = =                   (6) 
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where ),(),(),( 000 tVtVtV
zyx

are the given functions, S  is a 

surface of the moving bodies, 
0
S  is a surface of the cylindrical 

channel. The surface S  and the width of a channel d  will be 

defined according to the solutions. 

Let the axis of symmetry is ox  and consider the moving 

coordinate system. Suppose, that the bodies move parallel to 

the axis of symmetry at a constant speed ),,( 000
0 zyx

VVVV
→

 and  

 

,
1

0CF
x

P
x =−

∂

∂

ρ
,0

1
=−

∂

∂
rF

r

P

ρ
 

 

where 
0

C  is a definite constant, 
rx

FF ,  are the components of  

the force in the cylindrical coordinates. 

In a cylindrical coordinates (2), (3), (4), (5), becomes 
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where 
rx

VV , ,are the components of the velocity, 
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The boundary conditions will be given by: 

 
0 , 0x r h x xV V V=± Γ= − =                       (11) 

 

0, 0r r h rV V=± Γ= =                          (12) 

 

where Γ is the contour of the bodies, /2dh = .  

In the next chapter we will find the bounded solutions of the 

system (8), (9), (10), (11), (12), and  Γ . 

III. SOLUTION OF THE PROBLEM 

The function: 
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where q  and c are the certain parameters, is the solution of (8) 

for 01 =C , [11]. 

By direct verification we obtain, that the pair of functions: 
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where )0( >AA  is the definite constant, is the solution of 

the system (8), (9), (10), Also, the pair of functions: 
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will be the solution of this system. 

1. For odd ,...2,1,12, =−= nnmm the solutions of the 

system (8), (9), (10) are given by the formulas 
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where *,
kk

αα , are the definite constants. 

2. For even ,...2,1,2, == nnmm the solutions of system (8), 

(9), (10) are given by 
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where *
,

kk
ββ , are the definite constants. 

For the different values of ,, cq  and A  we obtain the 

different fluid flow over some axisymmetric bodies, the shape 

of which will be defined by the formulas  
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In the following chapter some examples are given and the 

graphics of velocity components and velocity profile are 

plotted by using Maple. 

Note. The Stokes equation has a real physical sense for low 

velocities only. So not for each parameters cq , , and A , the 

solutions of (8), (9), (10), (11) ,(12), are suitable according to 

the physical viewpoint.  

IV. THE CASE OF 1=m AND 2=m , EXAMPLES 

1. In case of 1=m , by (13), (14), we obtain 
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In Fig. 1, the lateral cross-section of the cylindrical area 

with the axisymmetric body is represented.  

In Fig. 2 graphics of the corresponding velocity components 

are given (the black surface is 
1x

V , the gray surface is 
1r

V ) in 

case of 10/1;9;1;5/1
1

==== qACc . In Fig. 3 the 

corresponding velocity profile V ,
2
1

2
1 rx VVV += , is 

plotted. 

 

 

Fig. 1 The lateral cross-section of the cylinder of width 21 << d  in 

case of 10/1;9;1;5/1
1

==== qACc  

 

 

Fig. 2 The graphics of 1xV (black surface), and 1rV (gray surface) in 

case of 10/1;9;1;5/1
1

==== qACc  

 

 

Fig. 3 The graphic of the velocity profile in case of 

10/1;9;1;5/1
1

==== qACc  

2. In case of m=2 by (15), (16), we obtain 
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In Fig. 4, the lateral cross-section of the cylindrical area 

with the axisymmetric body is represented.  

In Fig. 5 graphics of the corresponding velocity components 

are given (the black surface is 
2x

V , the gray surface is 
2r

V ) in 

case of 10/1;9;1;1 1 ==== qACc . In Fig. 6 the 

corresponding velocity profile V ,
2
2

2
2 rx VVV += , is 

plotted. 

 

 

Fig. 4 The lateral cross-section of the cylinder of width ,31 << d  in 

case of 10/1;9;1;1
1

==== qACc  

 

 

Fig. 5 The graphics of 2xV (black surface), and 2rV  (gray surface) in 

case of 10/1;9;1;5/1
1

==== qACc  
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Fig. 6 The graphic of the velocity profile in case of 

10/1;9;1;1
1

==== qACc  

V. CONCLUSION 

The effective solutions of the system (1), (2), with the 

initial-boundary conditions (6), (7), in the axisymmetric case 

are given by the formulas 1. (13), (14); or 2. (15), (16); and 

these solutions represent fluid flow over the system of 

axisymmetric bodies, contours of which are given by the 

formulas (17), (18), respectively. 
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