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Abstract—Analysis for the propagation of elastic waves in 
arbitrary anisotropic plates is investigated, commencing with a 
formal analysis of waves in a layered plate of an arbitrary anisotropic 
media, the dispersion relations of elastic waves are obtained by 
invoking continuity at the interface and boundary of conditions on 
the surfaces of layered plate. The obtained solutions can be used for 
material systems of higher symmetry such as monoclinic, 
orthotropic, transversely isotropic, cubic, and isotropic as it is 
contained implicitly in the analysis. The cases of free layered plate 
and layered half space are considered separately. Some special cases 
have also been deduced and discussed. Finally numerical solution of 
the frequency equations for an aluminum epoxy is carried out, and 
the dispersion curves for the few lower modes are presented. The 
results obtained theoretically have been verified numerically and 
illustrated graphically. 

Keywords—Anisotropic, layered, dispersion, elastic waves, 
frequency equations.

I. INTRODUCTION

NGINEERING materials such as fiber reinforced 
composite, graphite and laminate, where high strength-to-

weight and stiffness-to-weight ratios are required.  These 
materials are crucial for structural applications, and have 
resulted in considerable research activities on their behavior.  
Consequently studies of the propagation of elastic waves in 
the layered media [1]-[4], which are anisotropic in nature, 
become very important and have long been of interest to 
researchers in the fields of geophysics, acoustics, and 
nondestructive evaluation  

Compared to the extensive literature on the elastic waves in 
infinite anisotropic media; relatively little attention has been 
given to elastic waves in anisotropic plates. Although a 
complete review of the extensive literature on this subject 
cannot be undertaken, several salient contributions should be 
mentioned in [5]-[9]. Propagation of waves in free isotropic 
plates were first reported by Lamb in 1917 in his famous work 
[10], and followed by several authors [3] and [11]-[15]. 
Propagation of free guided waves in anisotropic homogeneous 
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plate has been studied in detail by authors [16]-[18]. These 
studies provide an interesting picture of the rich dispersion 
characteristic of these guided waves. Several others authors 
[8], [12], [15] and [19] have studied free Lamb waves. 
 In this paper analysis for the propagation of elastic waves 
in plates of general anisotropic media is investigated on the 
basis of an exact theory. Dispersion relations of elastic waves 
are obtained by invoking continuity at the interface and 
boundary of conditions on the surfaces of layered plate. The 
obtained solutions can be used for material systems of higher 
symmetry such as monoclinic, orthotropic, transversely 
isotropic, cubic, and isotropic as it is contained implicitly in 
the analysis. The cases of free layered plate and layered half 
space are considered special cases have also been deduced 
and discussed separately. It is also demonstrated that the 
particle motions for SH modes decouple from rest of the 
motion, if the propagation occurs along an in-plane axis of 
symmetry.  Some special cases have also been deduced and 
discussed. Finally numerical solution of the frequency 
equations for an aluminum epoxy is carried out, and the 
dispersion curves for the few lower modes are presented and 
the results obtained theoretically have also been verified 
numerically and illustrated graphically. 

II. FORMULATION

Consider an infinite generally- anisotropic plate, having 
thickness d, whose normal is aligned with the 3x axis of a 

reference Cartesian coordinate system 1 2 3( , , )ix x x x . The 

mid-plane of the plate is chosen to coincide with the 1 2x x
plane. The equations of motion in the absence of body forces 

ij j iu,                                                                      (1) 

where
=i j i jk l k lC e                                                                  (2) 

 is the density, t is the time,ui is the displacement in 

the xi direction, ij  and eij  are the stress and strain tensor 

respectively; and the fourth order tensor of the elasticity C ijkl

satisfies the (Green) symmetry conditions:  
C ijkl = C klij = C ijlk = C jikl .                          (3) 

Strain-displacement relation  
e u uij i j j i( ), , 2                                                        (4) 
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The displacement, stress components at the surface of the 
plate are: 
S x( ) { , , )3 13 23 33                                    (5) 

D x u u u( ) { , , )3 3 2 3                          (6) 
and the bar means the amplitudes of the displacement, stress 
are the  function of x3  only. 
The boundary conditions on the plate surfaces are: 
S d( )2 0                (7) 

S d( )2 0 ,                                                  (8) 
     where 0  is  a zero vector. 
Substituting eqs. (2) and (4) into eq. (1), equation of motion  
are expressed by displacements as follows: 
C u ujkl k jl i,                   (9)   

III. ANALYSIS

If Assume that solutions to eqs. (9) are expressed by 
u U n x n x n x ctj j exp[ ( )]1 1 2 2 3 3 , j =1, 2, 3        (10) 

where  is the wave number, i 1  c is the phase velocity 

( = / ),  is the circular frequency, U j  are the constants 

related to the amplitudes of displacement, nk  ( k = 1,2,3) are 
the components of the unit vector giving the direction of 
propagation. Substituting eq. (10) into eq. (9), this leads to the 
three coupled equations   

ik kU 0                                                       (11) 

where ik k ikc2 , ik  is the Kronecker delta, and  

ik  are the Christofied stiffness as follows: 
6

3 1 1 2 2( )
1

exp( )exp[ ( )]ik k l ll
l

e p B x n x n x ct       (12) 

where
p n q n qik l k i l i k l( ) ( ) ( )( ) /= + 2, ( , , , )i k = 1 2 3         (13) 

The stress tensor is 
6

3 1 1 2 2( )
1

exp( )exp[ ( )]k k l ll
l

D B x n x n x ct     (14) 

where
D C pik l jkl pq l( ) ( ) , ( , , , 1, 2 , 3)i k p q                  (15) 

In eqs.  (12) and (19), 3 ln ( , . . . . )l 1 2 6 .
With eqs. (14) and (18), we have 
u u n x n x ctj j l( ) exp[ ( )]1 1 2 2 ,                        (16) 

i i l n x n x ct3 3 1 1 2 2( ) exp[ ( )],                          (17) 

 where 
6

( ) 3( )
1

exp( )j l j l ll
l

u q x B ,                                    (18) 

6

3( )
1

exp( )ik ik l ll
l

D x B ,                         (19) 

Eqs. (18)-(19)  can be expressed in the matrix form : 
( ) ( ) ( )n n nF = R B ,                                                               (20)

in which ( )
1 2 3 4 5 6( , , , , , )n A A A A A AB ,

( )
33 13 23 1 2 3{ , , , , , )n u u uF  and ( )nR is the matrix, 

the elements of which are specified in the (18)-(19).
Considering the origin of co-ordinates at the ( 1n )th
interface, the relation between the stresses, displacements and 
vector ( ) ( 1)n n, -F within the n th layer at the ( 1n )th interface 

,and the vector ( )nB
( ),( ) ( ) ( )n n n nF = S B                                                             (21)

where ( )nS is derived from ( )nR  by putting 3 0x .

Similarly stresses, displacements vector ( ),( )n nF within the 
n th layer, at the interface is 

( ),( ) ( ) ( )n n n nF = U B                                                           (22)

where ( )nU is derived from ( )nR  by putting ( )
3

nx h
Using (20) to (22), ( ),( 1)n nF  and ( ),( )n nF  at the upper and 
bottom surface of n th layer we can related,  

( ),( ) ( ) ( ),( 1)n n n n nF = G F ,

where
1( ) ( ) ( )n n nG = U S                                                   (23)                   

Using the boundary and continuity 
conditions ( ),( 1) ( 1),( 1)( )n n n nF = F  at each interface and 
considering that no slips occur at the interface. 
On applying (23) to each interface in turns gives

( ),( ) ( ) ( 1) (1) (1),(0) (1),(0)n n n nF = G G ...G F = GF             (24)                   

A. Free layered plate:
If the semi-infinite medium is absent, consider a free layered 
plate. The characteristic equation for such a situation is 
obtained by invoking stress-free 33 13 23( 0)
upper and bottom surfaces. Partitioning the 6 6  matrix 
G into four 3 3  sub-matrices 1 2G ,G etc., and partitioning 
the vector conformably 
We obtain the characteristic equation as (24) 

( ),( )
1 2 3

(1),(0)1 2
1 2 3

3 4

0,0,0 , , ,

         = 0,0,0 , , ,

n n
u u u

u u u
G G
G G

        (25) 

that is    
(1),(0)

2 1 2 3, , 0u u uG                                                  (26) 

and
( ),( ) (1),(0)

1 2 3 4 1 2 3, , , ,n nu u u u u uG                        (27) 

If
(1),(0)

1 2 3, ,u u u  is not to be null, therefore, 2G  must be 

singular, that is   

2det( ) 0G                                              (28) 
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The elements of 2G are functions of the elastic constants 
and thickness of the layers. Equation (28) is the desired 
dispersion equation. The numerical values of det( 2G ) can be 
computed by the successive multiplication of the matrices 

( )nG  for each layer, and equation (28) can be solved by 
applying a suitable iterative method. 

B.  Semi-infinite medium 
If the Semi-infinite medium is present, then the problem 
reduces to that of a layered half space, pre-multiplying (3.29) 

by 
1

( )n+1S  gives 

1
( ) ( ) ( ) ( ) ( ) ( )n+1 n+1 1 , 0 1 , 0B = S GF = JF                       (29) 

where
1

( )n+1J = S G .

The conditions on the semi-infinite medium are that there be 
no sources at infinity and this implies that 1 2 3, , and u u u  are 

expressible in terms of 3exp( )i x , respectively , i.e. 

1 2 3 4 5 6, ,  and A A A A A A . Again partitioning J into 

four 3 3  sub-matrices 

1 2 3 1 2 3

(1),(0)1 2
1 2 3

3 4

, , , , ,

    0,0,0 , , ,

A A A A A A

u u u
J J
J J

               (30) 

so that if   is not to be null, 2 4J J must be singular. The 
dispersion equation for layered half space is therefore 
det ( 2 4J J ) = 0                                                               (31) 

Eq. (31) is to be solved with some iteration process, when 
this has been done; the displacement ratio on the top surface is 
given by  

2 4 1 2 3, , 0u u uJ J                       (32) 

and the displacements, ,stresses at other depths can be 
obtained as for the free plate. 

In both the half-space and free plate problems, the 
dispersion equation involves only the last two columns of 
J or G , and there is no need to compute more than this. 
Further, the dispersion equation for a half space involves the 
matrices 2 4J J . This can be obtained directly by pre-

multiplying J by the matrix 

2

I I
I

I I
              (33) 

in which I  represents a 3 3  unit matrix. Thus 

1 3 2 4

1 3 2 4

1
( ) ( ) ( 1) (1)n n

2

n+1
2

J - J J - J
I J

J - J J - J

I S G G ...G

.                       (34) 

Finally,  
( 1) ( ) (1)

2 4
n nJ - J M G ...E

in which ( 1)nM is 3 6  matrix formed by the top three rows 

of
1

( )n+1
2I S and (1)M is 6 3  matrix formed by the last 

four columns of (1)E . With this modification, the dispersion 
equations both for free plate and a half space involve only a 
3 3matrix and only this part of this matrix need to be 
computed. To make sure on these equations, it may be noted 
that they yield the dispersion equation for a uniform plate in 
the form 

0(2)G                                                                          (35) 

which is in agreement with the exiting solutions by Abubakar
[11] when coupling constant is zero. Similarly, the dispersion 
equation for a medium half-space reduces to the usual 
Rayleigh wave equation. 

IV. FREE SINGLE LAYER PLATE

A. The Monoclinic Case 
For monoclinic materials having x1-x2 as a plane of 

mirror symmetry , and  x1-x3 as  the plane of incidence, the 

equations of motion for monoclinic plate can be written as : 

11 1,11 55 1,33 13 55 3,13

1 16 2,11 45 2,33

( )c u c u c c u
u c u c u

16 1,11 45 1,33 36 45 3,13

2 66 2,11 44 2,33

( )c u c u c c u
u c u c u

13 55 1,13 55 3,11 33 33

3 36 45 2,13

( )
                ( )
c c u c u c u

u c c u
                             (36) 

The use of solutions (10) in the form  

1 2 3

1 2 3 1 1 2 2 3 3

( , , )
        ( , , )exp[ ( )
u u u

U U U i n x n x n x ct
,   (37) 

j   = 1, 2, 3
 where (n1, n2 , n3 )  =  (sin  , 0 ,  ) ,  is the angle of 
incidence,  is still an unknown parameters, U1, U2 , and U3

are respectively the amplitudes of the displacements u1, u2

and u3 . Although solutions (37) are explicitly independent of 
x2 , an implicit dependence is contained in the transformation 
and the transverse displacement component u2   is non-
vanishing in eq. (37). The choice of solutions leads to three 
coupled eqs.  
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M Umn n( ) = 0 , m, n=1,2,3 (38)
where

M F c11 11 2
2= + , M F c12 12 5

2= +  , M F13 13=  ,

M F c22 22 6
2= +  , M F23 23  , M F c33 33 1

2= +
F11

2 2= -sin ,

F c12 4
2= sin , F c22 3

2 2= -sin , F c23 8= sin ,

F c33 2
2 2= -sin , F c13 7= sin ,

and
c c c1 33 11 , c c c2 55 11 , c c c3 66 11 ,

c c c4 16 11 , c c c5 45 11 , c c c6 44 11 ,

c c c c7 13 55 11( ) , c c c c8 36 45 11( ) ,
2 2

11c c .                                                                  (39) 
The system of eqs. (38) has a non-trivial solution if the 
determinant of the coefficients of  U1, U2, and U3 vanishes, 
which yields a sixth-degree polynomial equation relating  
to c, which can be written  as 

6
1

4
2

2
3 0A A A .                        (40) 

where
2 2

1 6 11 6 13 5 13 23 5 33
1 2

2 23 1 5 12 5 21 23 2 6 33

(

2 )

c c F c F c F F c F
A

c F c c F c F F c c F
2 2

11 23 13 22 6 11 33 1 11 22
2 2

1 12 12 13 23 5 12 33 2 22 33

(

2 2 )

F F F F c F F c F F
A

c F F F F c F F c F F
2

3 11 22 12 33( )A F F F F
2

2 6 5 1( )c c c c

This equation admits eight solutions for   (having the 
properties) 

2 1= - , 4 3= -  , 6 5= -   .                         (41) 
Incorporating eqs. (36) in (15) to (28), and inspecting the 
resulting relations, we conclude that monoclinic symmetry 
implies further restrictions 

q ql l2 1 2( ) ( )  , q ql l3 1 3( ) ( ) , l = 1, 3, 5

r33 1 33( ) ( )l lr , r rl l13 1 13( ) ( )+ = - , r rl l23 1 23( ) ( )+ = - ,  (42) 

where now 
r i c c c c q c ql l l l l33 7 2 8 5 2 1 3( ) ( ) ( )[( ) sin ( ) ] ,

r i c q c ql l l l l13 2 3 5 2( ) ( ) ( )[ ( sin ) ] ,

r i c q c ql l l l l23 5 3 6 2( ) ( ) ( )[ ( sin ) ] .           (43) 

q l1 1( ) , q l2
12 13 23 11

12 23 13 22
( ) ,

and q ql l3
11

13

13

12
2( ) ( )( ) ( )  are defined in  (11) 

Using the analysis of above section and  Eqs. (42) and (43) 
into equation (28), then after algebraic manipulations and 
reductions to the determinant equation (28), it reduce and 
partitioned  to a 2 2 diagonal matrix whose entries comprise 
of 3 3 square matrices. The determinant can therefore be 
separated, leading to the two uncoupled characteristic 
equations  

( ) tan ( )( )1 01
33

1

3
k

k
k

k kr G .                          (44) 

Consequent to symmetric and antisymmetric modes of 
vibrations, respectively, with 

G r r r r1 13 3 23 5 13 5 23 3( ) ( ) ( ) ( ) , G r r r r3 13 1 23 5 13 5 23 1( ) ( ) ( ) ( ) ,

G r r r r5 13 1 23 3 13 3 23 1( ) ( ) ( ) ( ) , d d2 2 .            (45) 

B. Orthotropic Materials 
1) Propagation off Principal Axes 

If x1 and x2 are chosen to coincide with the in-plane principal 
axes for orthotropic symmetry, then we have 

6 450,  0,jc c 1,2,3j .                                      (46) 

Results for possessing transverse isotropy, can be easily 
obtained by noting the additional conditions imposed by 
symmetry, namely    

33 22 13 12 55 66 44 22 23,   ,  ,   2c c c c c c c c c
and 11 22 33 12 13 23 44 55 66,    ,  c c c c c c c c c
(for cubic symmetry)

11 22 33 12 13 23

44 55 66

2 ,    ,  c c c c c c
c c c

   (47)       

(for the isotropic case)
2) Axis of Rotational Symmetry 

       Returning to the case of orthotropic symmetry, we 
substitute from eq. (46), which particularize the constitutive 
relations to orthotropic media, into the coefficients of the 
Appendix A. Inspection of the resulting entries leads to the 
conclusion that, for propagation along rotational symmetry 
axes, the matrix elements c16 ,  c26  ,  c36  ,and c45  vanish 

implies that  4 5 8 0c c c , 12 23 0F F , also 
vanish, consequently,  M12 = M23 =0  in eq. (38). As  a 
consequence, eq. (40 ), reduces to 
c c c F c F F F F1 2

4
2 33 1 11 13

2 2
11 33 0( ) ,           (48) 

and
2 2

5 6 3 6( sin )c c                              (49) 

Here 5 6,  corresponds to SH motion, it means that SH 
wave motion uncouple from the rest of the motion and gives a 
purely transverse wave, which propagates without dispersion 
or damping. 
Equation (48) correspond to the sagittal plane waves, and for 
this, it is noticed that for each  l  (l =1, 2, 3, 4) the 
displacements, stress amplitudes reduce to 
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/ 2
11 2 133( )

( )l ll
q F c F ,                    (50) 

/ /
33( ) 7 2 1 3( )[ {( )sin }]l l lr i c c c q ,
/ /

13( ) 2 3( )[ ( sin )]l l lr i c q  .                            (51) 

For the SH type wave, one now has        
r r c23 6 23 5 6 5( ) ( ) .                                                    (52) 

By employing the new relations (47), and following the 
matrix reduction steps used in obtaining the results of eqs. 
(44), one gets the reduced coupled characteristic equations  
r r r r33 1 13 3 1 33 3 13 1 3 0( )

/
( )

/
( )

/
( )

/tan ( ) tan ( ) ,          (53) 

sin( )2 05                                                          (54) 
where   is defined in eq. (45), and eqs. (53) Constitute the 

characteristic equations for symmetric and antisymmetric 
modes of vibrations, propagating along an in-plane axis of 
symmetry of a plate. Equation (54) corresponds to SH motion 
and studied in detail by [20]. Furthermore, the relations (53) 
implicitly contain corresponding results for transversely 
isotropic, cubic, and isotropic material. Here one needs only to 
exploit the appropriate restrictions on the elastic properties as 
described in eqs. (47). 

V. SEMI-INFINITE MEDIUM SINGLE LAYER PLATE

A. Wave Propagates in an Arbitrary Direction of a 
Monoclinic Material 

   In order to have surface wave, the roots i
2  , l =1,2,3  of 

(40) must be either negative ( so that square roots are purely 
imaginary ) or complex numbers: this ensure that the 
superposition of partial waves has the properties of  
“exponential decay.”  There are two cases : 
  (a) i

2 i = 1,2,3 all are negative; and 

  (bi) 1
2 , is negative   2

2
3
2= *,  are complex conjugates. 

For the case (a), as thickness tends to infinity, {tan( i)}
i  so that we have eq. (44a)

For the case (b), as thickness tends to infinity ,{ tan( i)}
 i and if 2

2
3
2a ib a ib,  , b  , then  

{tan( l)}  i  and   {tan( l+1)}  i  ,  thus become 
eq. (44b) as

r G r G r G33 1 1 33 3 3 33 5 5 0( ) ( ) ( ) .                               (55) 

Surface wave velocity can be obtained by solving these 
equations.

B. Wave Propagation in Principal Direction (say 1x
direction) 

Similar to the situation described in subsection 1, we have two 
cases : 
 (a) i

2 , i = 1, 2 all are negative; and   

 (b) 1
2

2
2 ,  are complex conjugates.  

 Equations (53) become 

r r r r33 1 13 3 33 3 13 1 0( )
/

( )
/

( )
/

( )
/ ,                                     (56) 

This equation reduces to the well known Rayleigh wave 
equation for isotropic media. 

VI. SPECIAL CASE

When 90 deg. results obtained agree with the 
corresponding result obtained and discussed in detail by 
Nayfeh and Chementi [13]  and Yan Li & R. B Thomson[ 19]. 

VII. NUMERICAL DISCUSSION AND CONCLUSIONS

Numerical calculations of phase velocity verses wave 
number are carried out based on the expression (53) are 
computed for orthotropic, transversely isotropic and 
aluminum-epoxy composite plates, whose physical data are 
given as orthotropic [13] 

C11 = 128GPa, C12 = 7 GPa, C13 = 6GPa, C22 = 72GPa,
C23 = 25GPa, C33 = 32GPa, C44  = 18GPa, C55 = 12.25 GPa, 
C66 = 8 GPa, C13 = 6 GPa,  = 2.0 g/cm3.
Transversely isotropic (Graphite-Epoxy) 
C11 = 155.6GPa, C12 = C13 = 3.7GPa, C23 = 4.33 GPa,
C22 = C33 = 15.95GPa, C44  = 5.81GPa,
C55 = C66 = 7.46 GPa,  = 1.6 g/cm3.
Dispersion curves the symmetric and antisymmetric modes 

for orthotropic plate are plotted in Fig. 1and Fig 2, for 
transversely isotropic plate in Fig.3 and Fig 4, and finally for 
isotropic plates are illustrated in Fig 5 and Fig 6.  

Phase velocity vs. wave number curves plotted as a 
function of wave number .  It is observed that the phase 
velocities of lowers, symmetric and antisymmetric modes, is 
more effected at zero wave number limits, and little variation 
is observed as the wave number increases,  and all the curves  
approaches each others at high  where the phase velocity 
tends towards the Rayleigh surface wave speed. of phase 
velocity verses wave number are carried out based on the 
expression Using expression (35) phase velocity verses wave 
number giving the surface wave speed is plotted in Fig.7. 
Each of figure exhibit coupled wave speeds (quasi-
longitudinal, quasi-transverse etc.) due to the anisotropic 
effect as the distinction between the mode types is somewhat 
artificial. At zero wave number limits, for the higher value 
wave numbers higher modes appear in both cases (symmetric 
and antisymmetric) with  increases. One of the modes seems 
to be associated with quick change in the slope of the mode. 
Lower modes are found to highly influence at low values of 
wave number both in symmetric and antisymmetric modes, 
while in higher modes, change is observed at high values of 
wave number. 

In this article, exact formal solution for the displacements, 
and stresses, in infinite plates of arbitrary anisotropy of finite 
thickness are derived. Dispersion relations are derived for 
elastic waves for more specialized case of a monoclinic plate 
in closed form and separate the mathematical conditions for 
symmetric and antisymmetric are obtained. The cases of free 
layered plate and layered half space are considered special 
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cases have also been deduced and discussed separately. 
Results for elastic plates of orthotropic, transversely isotropic, 
cubic and isotropic materials are implicitly contained in the 
analysis.  The SH wave gets decoupled from the rest of 
motion and if propagation occurs along an in-plane axis of 
symmetry and it propagates without dispersion or damping.
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Fig. 1 Phase velocity vs wave number antisymmetric 
modes for orthotropic plate 

Fig. 2  Phase velocity vs wave number symmetric 
modes for orthotropic plate 

Fig. 3  Phase velocity vs wave number antisymmetric 
modes for transversely isotropic plate 
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Fig. 7 Surface wave velocity vs product of frequency and layer 
thickness

Fig. 4  Phase velocity vs wave number symmetric 
modes for transversely isotropic plate 

Fig. 5  Phase velocity vs wave number antisymmetric 
modes for aluminum-epoxy plate 

Fig. 6  Phase velocity vs wave number symmetric 
modes for aluminum-epoxy plate 


