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Abstract—Decision Feedback equalizers (DFEs) usually 

outperform linear equalizers for channels with intersymbol 
interference. However, the DFE performance is highly dependent on 
the availability of reliable past decisions. Hence, in coded systems, 
where reliable decisions are only available after decoding the full 
block, the performance of the DFE will be affected. A symbol based 
DFE is a DFE that only uses the decision after the block is decoded. 
In this paper we derive the optimal settings of both the feedforward 
and feedback taps of the symbol based equalizer. We present a novel 
symbol based DFE filterbank, and derive its taps optimal settings. 
We also show that it outperforms the classic DFE in terms of 
complexity and/or performance. 

 
Keywords—Coding, DFE, Equalization, Exponential Channel 

models. 

I.  INTRODUCTION 

ECISION Feedback Equalizers (DFEs)[1][2][3] have 
long been used in digital communication systems. In 

channels with high intersymbol interference they outperform 
linear equalizers such as the zero forcing (ZF) [4] or minimum 
mean squared error (MMSE) equalizers [5]. Theoretical 
derivations of optimal DFE taps as well as its performance 
assume correct decisions at its output, and hence its estimated 
performance will be close to the actual performance only 
when this is the case. This will be true in non-coded systems 
and in high signal to noise ratio (SNR) regions. However, in 
coded systems, and since there might be a high disparity 
between the error performance at the chip level, and the error 
performance at the block level obtained after decoding the full 
block, the performance of classical DFEs, or chip based DFEs 
might suffer. The concept of a symbol based DFE was 
introduced in [6]. In a symbol based DFE, only reliable 
decoded bits are fedback into the feedback section of the 
equalizer and zeros would be fedback in between decoding 
blocks. In [6], symbol based DFE taps were derived based on 
least squares (LS) or least mean squares (LMS) training. 
However, no theoretical derivation of the optimal taps was 
presented. In this paper we derive the optimal taps of the 
symbol based DFE. Moreover, we introduce the novel symbol 
based DFE filterbank (SDFEF), and we theoretically derive 
the optimal taps of such a filterbank which can be shown to  
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outperform the symbol based DFE of [6]. 
This paper is organized as follows. In the next section we 

briefly overview the classic DFEs. In section III, we briefly 
re-introduce the concept of symbol based DFEs and we derive 
the optimal settings of both the feedforward and feedback 
sections of the equalizer. In section 0, we introduce the 
concept of the symbol based DFE filterbank and explain that it 
would outperform the symbol based DFE. In section V we 
present the performance of our SDFEF over two different 
coded systems, one using a classic BCH [7] code, and another 
using a synthetic code utilizing Hadamard sequences [8]. We 
show that the performance of the SDFEF outperforms the chip 
based DFE over some regions of SNR while it always has 
lower complexity. We end with the conclusion in section VI.  

II.  CHIP DECISION FEEDBACK EQUALIZERS 

DFEs have been studied extensively in the literature. A 
block diagram of a DFE is shown in Fig. 1.  

 

 

 

 

Fig. 1 Decision Feedback Equalizer 

 
In this DFE, the input from the channel is passed through a 

feedforward filter. The output of the feedback filter is then 
subtracted from the output of the feedforward filter. The past 
decisions of the bits are fedback into this feedback filter. 
Hence, the feedforward filter is used to equalize part of the 
channel while the remaining inter-symbol interference is 
subtracted from its output using the feedback filter. Optimal 
filters for DFEs are infinite in length [8], and their taps depend 
on the channel, and signal and noise correlations. Since, we 
usually oversample the input from the channel; a fractional 
DFE was derived in [9]. Since infinite DFEs are not used in 
practice, optimal setting for a finite impulse response DFE 
was derived in [1]. Based on this derivation we will later 
derive our symbol based DFE and symbol based DFE 
filterbank.  

DFEs are used in a variety of systems, and hence a multi-
input-multi-output (MIMO) DFE was presented in [10]. Since 
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the noise at the output of optimal DFEs can be shown to be 
white, DFEs have also been shown to equalize the noise 
correlation and enhance the performance of frequency shift 
keying modulation as the one used in the Bluetooth system in 
[11]. 

III.  SYMBOL BASED DFEs 

Symbol based DFEs are DFEs that get decisions fedback 
into them only after a whole symbol, or block, is decoded. In 
between symbols, zeros are fedback into the feedback section 
of the DFE. A block diagram of a symbol based DFE is shown 
in Fig. 2. 

 

 

 

 

 

Fig. 2 Symbol DFE Block Diagram 
 

Note that what gets fedback into the feedback filter is not 
direct decision on the output of the summer, but rather these 
outputs are first decoded using the block decoder to produce 
higher reliability bits, then these bits are then re-encoded to 
produce the bits, or chips, that can be used to subtract the ISI 
from the output of the feedforward filter. The encoder will 
output zeros for duration of one less than the length of the 
encoded block. Then at the instant the block is decoded and 
re-encoded, the full block will replace these zeros in the 
feedback filter. In [6], this DFE was used, and its taps were 
estimated using training techniques. In this paper, we will 
derive the optimal DFE taps from the point of view of 
minimizing the mean squared error at the output of the 
decision device. 

Now, and following the terminology of [1], let the sampled 
input from the channel at time k be ky . Then, we could say 

k k ky Hx n= +       (1) 

where H  is a matrix containing the channel coefficients, kx  

is a vector with the transmitted bits, and kn  is the noise 
vector. Now, assume that the feedforward filter is the row 
vector *w  and that the feedback filter is the row vector *b , 

and define 
*~

*[0 0 0 0 . . .1 ]b b=  where the number of 
zeros is a variable to be optimized for. If the number of zeros 
is termed Δ , define the vector 

T

[ (1) (2) (3) .... ( ) ( 1) 0 0 . .

. . ( 2)  ( 2) ... ]

i
k k k k k k

k k

x x x x x x

x i x i

= Δ Δ +

Δ + + Δ + +
,   (2) 

where ( )kx j  is the jth element of the vector kx . Note that 

the number of zeros after the element ( 1)kx Δ +  are i zeros, 
and i is an index that takes values from 0 up to L-1, where L is 
the length of the code word, or the full block length. This 
index i would be 0 at the instant a block is decoded and is 
ready to be fedback into the feedback filter, and then it will be 
increased by 1 each time a new chip is decided upon, but its 
block is not yet complete for decoding and re-encoding.  

Our mean squared error at a certain instant can hence be 
written as  

* *~ ~ ~ ~
* *i i i i

xx xy yx yyMSE b R b b R w w R b w R w= − − +     (3) 

where, 
* *( ),  ( ),i i i i i

xx k k xy k kR E x x R E x y= = and *( )yy k kR E y y= . If 

we define, *( )i
i
k kx xR E x x=  and * ( )nn k kR E n n= , then we 

could say ,i
i
xy x xR R H=  and 0 *

yy xx nnR HR H R= +  

Note that our equation (3) is equivalent to a similar one in 
[1], but only when the index i is set equal to 0. Our overall 

MSE now becomes, 
1

0
MSE

i L
i

i
MSE

= −

=

= ∑ , which using 

equation (3) can be written as 
* *~ ~ ~ ~

* *
xx xy yxMSE R R R yyb b b w w b w R w= − − +      (4),  

where, 
1 1

xx xy
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L L

i i
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We can then follow the derivation in [1] to obtain the 
optimal setting of the feedforward and feedback filters, but 
substituting with our matrices, xx xyR , R , .and yxR . If we 

follow the same assumption as in [1], we would arrive at the 
following setting for the filters, 

~

opt
b LeΔ=                                         (5) 

where, -1 * 1 *
xxR nnH R H LDL−+ =  and 

opt
eΔ is a vector with 

zeros everywhere except at the element optΔ  where it is equal  

to 1, and, 
* 1 * 1 * 1

opt opt nnw d e L H R− − −
Δ Δ=                          (6) 

where 
opt

dΔ  is the optΔ -th element  of the diagonal of the 

matrix D .  

IV.   SYMBOL BASED DFE FILTERBANK  

The motivation behind the symbol based DFE filterbank 
(SDFEF) to be introduced in this section stems from the fact 
that different vectors are filtered with the feedback section of 
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the DFE for each index, i. Specifically, a different number of 
zeros are fedback, or in other words, different positions of the 
signal vector kx  are not yet decided upon and hence are not 
filtered by the DFE filter at each index. Hence, one could 
envision a filterbank composed of several filters, both a 
feedforward section and a feedback section, such that we have 
a distinct filter for each index i. Hence, one would obtain a 
better iMSE  at each i than the case of the same symbol based 
DFE, and consequently a better overall total MSE . A block 
diagram of the SDFEF is shown in Fig. 3. There are L filters 
numbered from 0 to L-1. Note that at each index i, only filters 
numbered i are active, and hence the feedforward filter i gets 
its input from the channel and the feedback filter i gets its 
input from the block decoder. The summer i feeds the block 
decoder at index i as well. One has to note that the block 
decoder would produce a block, or symbol, decision when it 
gets the estimate of the last bit, or chip, of the symbol, indexed 
L-1. At this instant, it is able to produce a codeword estimate 
which gets re-encoded using the block encoder into L chips. 
These L chips can then be fedback into filter number 0. For 
subsequent indices, and since no codeword decision is yet 
ready, zeros are fedback into the filter similar to the symbol 
based DFE. The derivation of each feedforward and feedback 
filter taps can be achieved via optimization of equation (3) for 
each index i. Hence we would have L-1 optimization problems 
to solve. One can also assume that the feedback filter taps are 
set to zero in the positions corresponding to unknown chips, 
and hence be able to use matrices 0

xxR .and 0
xyR  through all 

the optimization without having to compute all L-1 versions of 
these matrices. In this way one can derive the optimal taps of 
the feedforward and feedback filters as follows. Using the 
matrix defined in [1], 0 1 0

/x y xx xy yy yxR R R R R⊥ −= − , we define 

the matrix, iRΔ , where, 
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Fig. 3 Symbol-based DFE Filterbank (SDFEF) 

Then we could say,  

* 1
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We can then minimize each MSEi to obtain the L-1 
feedback filters, and can then substitute in 
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* * 0 1[1 ]i i

xy yyw b R R−=  to obtain the L-1 feedforward filters. 

Note that the value of the delay, Δ , should be optimized for 
each i and we need not assume a constant Δ  throughout. Our 
simulations actually show that the value of optimal Δ , that 
which achieves a minimum MSE, does in fact differ with the 
values of i. Note that also, we cannot here assume the same 
assumption as in [1], namely that the number of feedback taps 
is equal to the channel memory. Here, we allow the number of 
feedback taps to change to use the maximum possible number 
of feedback taps to obtain the optimal settings minimizing the 
MSE, and hence we use a number equal to 1iN i−Δ − −  

where iΔ  is the optimal value of Δ  at index i. One can see 
that if the value of iΔ  is the same for all i’s, then the number 
of feedback taps will decrease by 1 for each increase in i. 
However, our simulations show that the optimal delay at 
larger i's is smaller than that at lower i’s, and hence the 
number of feedback taps at higher i's need not always be 
smaller than number of feedback taps used at lower i’s. 

V.  SIMULATION RESULTS 

In this section, we will present some results showing the 
performance of our symbol based DFEs. In these results we 
use the exponential Rayleigh fading channel represented by a 
number of taps, each of which has a Rayleigh distribution. 
The zero delayed path is at the highest average power and the 
average power of the following paths decreases exponentially. 
In this channel model, the total power of all the paths is 
normalized to one for every channel realization. This channel 
is represented by  

2 21 1

2 2

2 2

0

2 2
0(0, ) (0, ),

1 1,s

k k k

T

k

skT
kh N jN

e

eσ σ

σ σ

σ σ
−

−
= +

= − =

=

∑  

where kh  is the ith tap, and Ts is the ratio between the 

sampling interval and the delay spread of the channel. The 
number of paths depends on Ts , and in the simulation results 

shown below we use a Ts  value of approximately 0.45 and a 

number of taps of 23. We also use QPSK modulation. 
Fig. 4 compares the average probability of error 

performance of both the chip DFE where we still correct the 
decisions after each symbol, and the performance of our 
SDFEF, for a communications system utilizing the BCH(15,5) 
code[7]. The BCH decoder uses hard decisions of the bits 
constituting the BCH codeword, obtained via applying a 
threshold to the output of the summer of the DFE. The 
“EbNo” shown in our simulation results are chip signal to 
noise ratio.  

Fig. 4 shows that our proposed symbol based DFE 
filterbank outperforms the classical chip DFE. Both 
techniques use the same length feedforward filter and our 

SDFEF uses the same length of the chip DFE feedback filter 
at index 0, but shorter filters for other indices. Our average 
feedback filter length was calculated to be 9.68, while the 
length of the chip DFE feedback filter was 12, which means 
that it achieves better performance at lower complexity.  

 

Fig. 4 Probability of error for BCH (15,5) 

 
In Fig. 5, we show the ninetieth percentile probability of 

error performance, which means that 90% of the channels 
achieve better performance than the shown performance. Our 
SDFEF still outperforms the chip DFE. 

 

Fig. 5 Ninetieth-percentile probability of error for BCH (15,5) 
 
One more important advantage of our SDFEF is that we can 

more accurately estimates the achievable MSE at the output of 
the DFE. One can see this from Fig. 6, where we show the 
estimated mean squared error calculated as a sum of MSE(i) 
using equation (7) for the SDFEF, and using the mean squared 
error equation in [1] for the chip DFE. We can see that we can 
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almost perfectly estimate the mean squared error of the 
SDFEF, while there is a gap between the estimated and actual 
errors in case of the chip DFE. This would have implications 
if, for example, soft decisions from this DFE are used to feed 
a decoder in another stage which makes us of the value of the 
noise variance.  

 

Fig. 6 MSE for BCH(15,5) 
 

We have also tested our SDFEF in a scenario where 4 bits 
are mapped into one of 16 complex Hadamard sequences [8], 
each of length 16. Again, the SDFEF has lower complexity 
than the chip DFE as the average feedback filter of the SDFEF 
was calculated to be 9.16, while that of the chip DFE is 13. 
We used two decoding techniques, the first utilizing 
correlation between the possible 16 Hadamard sequences, and 
the vector composed of 16 values from the summer of the 
DFE. The decoded vector is then the vector achieving the 
highest correlation value. For this technique, the average 
probability of error is shown in Fig. 7, and the ninetieth 
percentile probability of error is shown in Fig. 8. We can see 
that, at higher SNRs, our SDFEF outperforms the chip DFE. 
Also, and similar to the BCH case, using the SDFEF allows a 
more accurate estimate of the mean squared error at the output 
of the DFE as shown in Fig. 9. Note that the decoder we used 
does not utilize this information, and in fact assumes a 
constant noise variance for each chip, which is not actually the 
case. One would expect that if we did utilize the mean squared 
error information, we could obtain even better performance.  
 

 
Fig. 7 Probability of error for Hadamard sequences 

 
Fig. 8 Ninetieth-percentile probability of error for Hadamard 

sequences 

 
Fig. 9 MSE for Hadamard Sequences 
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The second decoding technique uses the hard decisions of 

the output of the summer, and feeds these hard decisions to 
the decoder utilizing the correlation. Again, our SDFEF 
achieves better performance than the chip DFE. The average 
probability of error is shown in Fig. 10. The SDFEF is shown 
to outperform the chip DFE. 

 
Fig. 10 Probability of error for Hadamard sequences using hard 

decisions 

VI.   CONCLUSION 

In this paper, we presented the theoretical derivation of the 
optimal settings of the symbol DFE equalizer. The symbol 
DFE equalizer is fedback with zeros when a symbol is not yet 
decoded rather than being fed with the unreliable estimates of 
the undecoded chips We also presented the new concept of the 
symbol based DFE filterbank, a DFE that uses a different 
filter for each position within the symbol, such that it has a 
filter that is optimized for the number of zeros that it is fed. 
This allows this SDFEF to obtain lower overall mean squared 
error, and hence lower expected probability of error. We 
presented equations to obtain the optimal settings of the filters 
of the SDFEF at each position within the codeword. 

Results showing the performance of the SDFEF were also 
shown. The results indicates that the SDFEF outperforms the 
chip DFE for the test cases we shown, where one of them 
utilized a BCH(15,5) code and the other utilized Hadamard 
sequences of length 16 as the codewords. We showed that the 
SDFEF outperforms the chip DFE in both cases of soft and 
hard decision decoding for the Hadamard case. Our test cases 
were simulated using the exponential channel model, but we 
can expect that the SDFEF will still outperform the chip DFE 
in other types of channel models and other codes as well. We 
also showed that the estimate of the mean squared error at the 
output of the SDFEF is more accurate than that at the output 
of the chip DFE, which allows a better use of this estimate in 
subsequent stages of the receiver. 
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