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 Abstract—The Sphere Method is a flexible interior point 

algorithm for linear programming problems. This was developed 
mainly by Professor Katta G. Murty. It consists of two steps, the 
centering step and the descent step. The centering step is the most 
expensive part of the algorithm. In this centering step we proposed 
some improvements such as introducing two or more initial feasible 
solutions as we solve for the more favorable new solution by 
objective value while working with the rigorous updates of the 
feasible region along with some ideas integrated in the descent step. 
An illustration is given confirming the advantage of using the 
proposed procedure. 

 
Keywords—Interior point, linear programming, sphere method, 

initial feasible solution, feasible region, centering and descent steps, 
optimal solution. 

I. INTRODUCTION 
HE problem of maximizing or minimizing a linear 
function subject to linear constraints is called linear 

programming problem . The constraints may be equalities or 
inequalities. Given a polytope , a linear programming method 
will find a point in the polytope for the largest or smallest 
value, respectively, for this function. If the point exists, it can 
be found through the polytope vertices.  

Linear programs are problems that can be expressed in the 
form: 

Maximize   xcT  
Subject to  bAx ≤  

 
where x  represents the vector of variables which are to be 
solved, while c  and b  are vectors of numerical coefficients 
and A  is a matrix of coefficients. The expressions bAx ≤  
are the constraints describing a convex polyhedron. The 

objective xcT  is to be maximized or minimized from these 
expressions. 

The problem of solving a system of linear inequalities dates 
back at least as far as Fourier, after whom the method of 
Fourier - Motzkin is named. Linear programming arose as a 
mathematical model developed during the Second World War 
to plan expenditures and returns in order to reduce costs to the 
army and increase losses to the enemy. It was kept secret until 
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1947. Postwar, many industries found its use in their daily 
planning. 

The founders of the subject are Leonid Kantorovich, a 
Russian mathematician who developed linear programming 
problems in 1939, George B. Dantzig, who published the 
simplex method in 1947, John Von Neumann, who developed 
the theory of the duality in the same year. The linear 
programming problem was first shown to be solvable in 
polynomial time by Leonid Khachiyan in 1979, but a larger 
theoretical and practical breakthrough in the field came in 
1984 when Narenda  Kamarkar introduced a new interior point 
method for solving linear programming problems. 

The Simplex Algorithm became the main algorithm used to 
solve linear programs. As an LP problem solver, this 
algorithm might be one of the most famous and widely used 
mathematical tools in the world. Its philosophy is to move on 
the underlying polyhedron, from a vertex to adjacent vertex, 
along edges until an optimal vertex is reached. However, the 
interior point algorithm will take the route that will pass not in 
the edges or extreme points of the set of feasible solutions. 
This algorithm will take the interior path towards the optimal 
extreme point. Thus, finding the optimal extreme point using 
interior point algorithm will save more time and effort, 
especially when the data is large. With the advent of fast 
computers and effective interior point algorithm software, the 
calculations become more reliable  [1].  

Among the many interior point methods, the sphere 
methods were introduced and made popular by Katta Murty. 
These methods claim the ideas of reaching the optimum values 
at a reasonable pace. 

Hence, this study will try to refine the work of Murty,then 
use the refined work for a process that uses multiple interior 
points in reaching the optimal value.   

II.  OBJECTIVES OF THE STUDY 
The main goal of this study is to be able to address the 

concern for the refinement of the Interior Point Algorithm of 
Professor Katta G. Murty on the search for the optimal value 
of the linear programming problem by the use of centering 
and descent steps in the algorithm. Specifically this study will 
attempt to: 

2.1 Determine some innovations in both centering 
and descent steps that will further improve the 
sphere method. 

2.2 Establish an improved approach concerning 
interior point algorithm using the sphere method 
in solving linear programming problems. 
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2.3 Provide results that would lead to less iteration 
and at minimum computing time. 

  
 Theory and Concept 
 

 The Sphere Method: 
 The sphere method is an interior point algorithm. It needs an 
initial interior feasible solution. Every iteration of the method 
begins with the best interior feasible solution obtained at the 
end of the previous iteration. It consists of the centering and 
descent steps. 
 The centering step will find a ball center, which is an 
interior feasible solution and is the center of a largest ball 
inside the feasible region of the original LP subject to the 
constraint on its center.  After the ball center is found, the 
descent step carries out different several descent steps from 
this ball center, and the iteration stops when the best point is 
obtained with these descent steps. 
 The sphere method   considers Linear Programs in the form: 

                   

bAx
tosubject

cxzMin

≥

=
:

         (1) 
 

where A is an m × n data matrix; with a known interior 
feasible solution 0x  (i.e., satisfying bAx > ). Let K denote 
its set of feasible solutions, and  K0  its interior. We assume 
that c, and each row vector of A is normalized so that ||c|| = 
||Ai.|| = 1 for all i = 1 to m. Here Ai .denotes the  i-th row vector 
of A.  

 The following concepts will be used: 
Largest inscribed ball B(x, δ(x)) inside K with x as center, 

for 0Kx ∈ : It is the largest ball with x as center that can be 
inscribed in K, and δ(x) = min{Ai.x−bi : i = 1 to m} is its 
radius. So, B(x, δ(x)) = {y : ||y − x|| ≤ δ(x)}. 
A ball center of K: It is a point 0Kx ∈ such that  
B(x, δ(x)) is a largest ball that can be inscribed in K, i.e., x 
maximizes δ(y) over 0Ky ∈ . 

A ball center of K on the objective plane H = {x : cx = t}: It 
is a point KHx I∈ that maximizes δ(y) over y  H ∩ K. 

The  index  set  of  touching  constraints  in  (1),  T(x):   
Defined  for 0Kx∈ , is the set of all indices I satisfying: Ai.x 
− bi = Min{Ap.x − bp: p = 1 to m} = δ(x). The facetal 
hyperplane {x :Ai.x = bi} is a tangent plane to B(x, δ(x)) for 
each )(xTi ∈ . 

           
{ ,bxA,bAx:xK 1m.1m

1r
++

+ ≥≥=
 

where 
}∈−−=−= +++

r
1.1m1m.1m xAb,cA

 
∈  is a small positive tolerance. 1+rK , is the set of feasible 

solutions of (1) updated corresponding to the current point 
obtained rx1 after rth iteration. This updated set of feasible 
solutions keeps getting smaller during the algorithm [2].  

In [2] techniques for computing a ball center of K are 
discussed, or a ball center of K on a given objective plane H, 
approximately, using a series of line search steps. In each of 
these steps, at the current point x , the algorithm selects a 
direction y which is a profitable direction to move at x , i.e., 

)( yx αδ + strictly increases as α increases from 0; and 

determines the optimum step length to maximize )( yx αδ +  
over α ≥ 0 .This optimum step length is obtained by solving a 
2-variable LP: 

 

edunrestrictis
mibxAyA

tosubject
Max

iii

αδ
αδ

δ

,0
.,..,1,..

≥
=−≤−

             (2) 

and δ is the optimum objective value )( yx αδ + . 
A direction y has been shown in [2] to be a profitable 

direction at 0Kx ∈  iff Ai.y > 0 for all )(xTi ∈ . 
 In the descent step, the following concept is used: 
Let ic  denote the orthogonal projection of Tc on 

}0:{ . =xAx i ,i.e, .1,))(( .. mtoiforcAAIc T
i

T
i

i =−=

The directions ic−  for )(xTiε are called GPTC (gradient 

projection on touching constraint) directions, where x  is the 
current ball center [3]. 

The Centering Step in Iteration r+1 in Sphere method: 
Let rx be the initial interior feasible solution for this 

iteration. This step consists of a series of line searches in 
profitable directions with the aim of finding an x that 
maximizes δ(x) subject to the constraint cx ≤ rcx . In each of 
these line searches, given the search direction, the optimum 
step length to take in that direction is determined by solving a 
2-variable LP of the form (2) as described above.  

III. METHODOLOGY 

In this paper LSFN (Line Search in Facetal Normal 
Directions) is carried out in selecting profitable search 
directions from the set of facetal normal directions. The 
following concepts are found in [2]: 

Beginning with the initial point rx , this generates a 

sequence of points krx , , k = 1, 2, along which the radius of the 

ball δ is strictly increasing. At the current point krx , , it selects 
a profitable directions from the set 

{ }mPP .1.1 ,..., ±±=Γ ,where ( ) T
i

T
i AccIP .. −=

,the orthogonal projection of T
iA .  (the direction normal to the 

facet of K defined by the i-th constraint in (1)) on the 
hyperplane {x : cx = 0}, for i = 1 to m. So any step length 
from a point in the current objective plane, in a direction from

1Γ , will keep the point on the current objective plane. The 
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procedure continues as long as profitable directions for line 
search are found in 1Γ , and this sequence terminates with the 

final point which we denote by rx~ . 

Once  a  profitable  direction  y  at  the  current  point  x  
has  been  determined,  the  optimum  step length α  in this 

direction that maximizes )( yx αδ + over  α ≥ 0  is α , where 

(δ, α  ) is the optimum solution  of  the  2-variable  LP  (2). 
So, the line search for the maximum value of δ in the 

direction y involves solving this 2-variable LP, which can be 
carried out efficiently by the simplex algorithm. The following 
theorems and discussions were shown by Prof. Murty.  

Theorem 1: Consider the system of linear inequalities Ax ≥ 

b where A = )( ija  
is an m×n matrix and  b =  )( ib mℜ .So, 

the constraints in the system are ixi bA ≥. , i {1, . . . ,m}. If 
this system has a feasible solution, then there exists a subset P 
= { ip , . . . , sp }  {1, . . . ,m}such that every solution of 

the system of equations ixi bA =.  ,i P is also a feasible 
solution of the system of linear inequalities Ax ≥ b. 

The radius of the largest ball inside K with the current point 
rx   as center is { }mtbxA t

r
ir ,...,1:min . =−=δ , the 

minimum right hand side (RHS) constant in (2). Let 
{ }sttT .,..,1= be the set of all t that tie for the minimum in 

the definition of rδ . Then the minimum RHS constant in (2) 

is unique only if 1== sT , where it is attained at 1tt =
only.  

Theorem 2: iP.  is unprofitable direction to move at the 

current point  Tsiffxr =:   defined above is greater than 

1, and the coefficients of α in (2) in rows { }sttTt ...,1=∈
have both positive and negative values among them. 

 
A. Descent Steps in Iteration r+1 in Sphere Method  
The following discussions are stated in [2]. 

Let
r

x  denote the approximate ball center obtained in the 
centering step of this iteration.Each descent step carried out in 
this iteration requires one minimum ratio computation.For 

example, consider a descent step from the current center 
r

x in 
the descent direction y (i.e.,satisfying cy < 0). If the step 

length is λ, the move leads to the point 
r

x + λy. Select a small 
positive number ∈as the tolerance for minimum 

}1:{ . mtoibxA ii =− for the point x to be in the interior 

of K. Then we will take the step length from 
r

x in the 
direction y to be: 1ε− + (the maximum step length possible 
while remaining inside K), which is 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<
++−

= 0:min .
.

1. yAthatsuch
yA
bxA

i
i

ii ε
λ

 
 

and then the point obtained at the end of this descent step will 

be 
r

x + λy if λ is finite. If λ = ∞, the objective function z(x) is 
unbounded below in (1). Terminate the method if this occurs. 
We now list the various descent steps carried out in this 
iteration. After each descent step, include the point obtained at 
the end of it, along with its objective value, in a list. These 
descent steps can be found in [2]. 

D1, Descent Step 1: From the ball center 
r

x take a descent 
step in the direction Tcd −=1  . 

D2, Descent Step 2: From the ball center 
r

x take a descent 
step in the direction 11

2 , −−−= rrr xwherexxd denotes 
the ball center computed in the previous iteration r. So, this 
direction is the direction of the path of ball centers generated 
in the algorithm. 
D3, Descent Steps 3: Carry out descent steps from the ball 

center 
r

x in each of the GPTC directions at 
r

x . After these 
descent steps are carried out, define =3d direction among the 
GPTC directions that gives maximum reduction in objective 

value when the descent step is taken from the center 
r

x . 

D4, Descent Step 4: From the ball center 
r

x take a descent 
step in the direction  
 

                  
( )

|)(|

)(:
4 r

ri

xT

xTiforc
d ∑ ∈−

= ,  

 
the average direction of all the GPTC(gradient projection on 

touching constraints) directions at 
r

x . 

D5.1, Descent Steps 5.1: For 
r

x , let irx denote the 

orthogonal projection of the center 
r

x on the touching facetal 
hyperplane }:{ . ii bxAx = ; it is the point where this facetal 

hyperplane touches the ball  ))(,(
rr

xxB δ . The points irx   

for  )(
r

xTi ∈ ) are called the touching points of the ball

))(,(
rr

xxB δ  with its touching facetal hyperplanes of K.  
Let 10 << ε  be a small positive tolerance

)1.0( docan=ε .Then for )(
r

xTi ∈ , the point on the line 

segment joining 
r

x and 
irx  close to the touching point  irx , 

irrir
xxx )1( εε −+= is called the near touching point 

(NTP) corresponding to the tangent plane }:{ . ii bxAx = of 
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the ball ))(,(
rr

xxB δ . The D5.1 consists of |)(|
r

xT for 

each descent steps: )(
r

xTiε ), it carries out a descent step in 

the GPTC direction ic− from the NTP 
ir

x . The output of 

D5.1, denoted by 
1~ r

x  is the best point obtained in it. 
After all these descent steps are carried out, the best feasible 

solution in objective value from all these descent steps, is the 
output of this iteration. With that interior feasible solution we 
go to the next iteration. 

B. Termination Condition 
Just as other IPMs, this method also terminates when the 

change in the final points obtained in successive iterations is 
smaller than some tolerance (i.e., it terminates at the end of the 

iteration 1+r  if  1
||||

|||| 1 <
−+

r

rr

x
xx

, concluding that 1+rx an 

optimum solution of (1)). This means that after having two 
successive iterations, if the successive outputs have negligible 
difference, then the approximate optimal value is reached. 

C. The Case when K is Unbounded 
Suppose K, the set of feasible solutions of (1) is an 

unbounded polyhedron. The method works even when K is 
unbounded. If cx is unbounded below on K, it will terminate 
in some iteration with the step length in one of the descent 
steps as ∞ , this is the indication that cx is unbounded below 
on K. 

IV. SUMMARY OF FINDINGS 

The following improvements on the sphere method 
provided by Prof. Murty in Section IV are expected to reduce 
the number of computing time and iterations in reaching the 
optimal.  

A.  Updating the Feasible Region 
Let us use two points  0

1x and 0
2x , where  0

2
0
1 xx ≠  as 

initial interior feasible solutions. Then after the first iteration 
with the sphere method for each of these, we arrived with two 
new interior feasible solutions 1

1x and 1
2x . We choose the best 

solution in objective value to be used for the next iteration, say 
1
1x . Then we update the feasible region in accordance to [2]. 

This means that  for the succeeding iterations when 1,1 ≥rxr  
is the current initial feasible solution, the updated feasible 
region is 

 
{ ,,: 1.1

1
++

+ ≥≥= mm
r bxAbAxxK  

 
where 
 

}∈−−=−= +++
r

mmm xAbcA 1.11.1 ,  

 

∈  is a small positive tolerance. 1+rK , is the set of feasible 
solutions of (1) updated by the current value is strictly 
monotonic decreasing in the algorithm, and hence this updated 
set of feasible solutions keeps getting smaller during the 
algorithm. Note the decrease of the feasible region compare to 
that of [2] that uses only a single initial feasible solution. We 
used two initial interior feasible solutions, and whichever 
comes out as the best in objective value, that becomes our 
point for the updating of the feasible region.  

In general, the feasible region of (1) consists of infinitely 
many interior feasible solutions. If only we are lucky to hit 
that point where upon the use of sphere method only one 
iteration is required to reach the solution for the Approximate 
Optimal Value (AOV) then after the second iteration, we are 
through. Our goal is to reach this point. If we use three, four or 
more initial interior feasible solutions the more chances we 
have to hit or get closer and closer to that point for the AOV. 
But since every initial point means an iteration, as we increase 
the number of initial interior feasible solutions the number of 
iterations increases (if we count the number of iterations this 
way). Thus, it is recommended that when the number of 
constraints in (1) is greater than 100 (the number of variables 
may not do much problem), try to use three or four points as 
initial feasible solutions for the sphere method, otherwise use 
two or three points. Observed that if we consider three initial 
interior feasible solutions 0

3
0
2

0
1 , xandxx . Then after the 

first iteration with the sphere method for each of these, we 
arrived with three new interior feasible solutions

1
3

1
2

1
1 , xandxx . We choose the best solution in objective 

value to be used for the next iteration, say 1
1x . Then we update 

the feasible region in accordance to [2]. This means that for 
the succeeding iterations when 1,1 ≥rxr  is the current initial 
feasible solution, the updated feasible region is 
 

{ ,,: 1.1
1

++
+ ≥≥= mm

r bxAbAxxK
  where 
}∈−−=−= +++

r
mmm xAbcA 1.11.1 ,  

∈  is a small positive tolerance. Note the further decrease (in 
general) of the feasible region compare to that of [2] that uses 
only a single initial interior feasible solution. We used three 
initial interior feasible solutions, and whichever comes out as 
the best in objective value, that becomes our point for the 
updating of the feasible region 

Consider n initial interior feasible solutions
00

2
0
1 ,...,, nxxx . Then after the first iteration with the 

sphere method for each of these, we arrived with new interior 
feasible solutions 11

2
1
1 ,...,, nxxx . We choose the best 

solution in objective value to be used for the next iteration, say 
1
1x . Then we update the feasible region in accordance to [2]. 

This means that for the succeeding iterations when 1,1 ≥rxr

the current initial feasible solution is, the updated feasible 
region is 
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{ ,,: 1.1
1

++
+ ≥≥= mm

r bxAbAxxK  

where 
}∈−−=−= +++

r
mmm xAbcA 1.11.1 ,  

 

∈  is a small positive tolerance. Note again the much 
decrease ( in general ) of the feasible region compare to that of 
[2] that uses only a single initial feasible solution. We used n 
initial feasible solutions, and whichever comes out as the best 
in objective value, that becomes our point for the updating of 
the feasible region 

 
B.  Another Approach in the Update of the Feasible Region 
Let us use two points  0

1x and 0
2x , where  0

2
0
1 xx ≠  as 

initial interior feasible solutions. Then after the first iteration 
with the sphere method for each of these, we arrived with two 
new interior feasible solutions 1

1x and 1
2x . We take the 

average, 
2

1
2

1
1 xx

x
+

= , apply the descent method to x  then 

the resulting new interior feasible solution, say 2x
 
will be 

compared to 1
1x  and 1

2x . The best of the three in objective 

value, say  2x  will be our choice for the next iteration and the 
updated feasible region is  
 

{ ,,: 1.1
1

++
+ ≥≥= mm

r bxAbAxxK
 

where 
}∈−−=−= +++

2
.11.1 , xAbcA mmm , 

 ∈  is a small positive tolerance. Note the decrease of the 
feasible region, especially when  1

1x  and 1
2x  are located in the 

opposite parts of the feasible region. Observed that in this case 
the x  is also on top of the feasible solution for the optimal 
value. Thus, 2x  is expected to be close to the said feasible 
solution. Now, we can do similar process to three, four,.  .  . n 
initial feasible solutions for the sphere method. Note that if the 
two or three initial feasible solutions were spread (scattered far 
from each other) and will  have their paths in the different 
faces of the convex polyhedron ( feasible region) during the 
algorithm, the location of the average point would be much 
better.     

C.  Trial and Error Approach 
Now, as the strategy in selecting three interior points that 

are scattered far from each other is still under development, let 
us consider trial and error approach in collecting as many 
interior points from the feasible region, may be a set of ten 
interior points that are scattered far from each other, then 
using intelligent guesses, we select two or three from the set. 
Then proceed with the process. For the meantime, this strategy 
may be an expensive part in the process.    

 

D.  Improvement on the Descent Steps  
In order to minimize the number of iterations in reaching 

the optimum value of the objective function is proposed to 
implement the following steps. 

In the descent step, we include the following: 

1. D4.1 From the ball center 
r

x take a descent step in the 

direction  
( )

2
)(:

1.4
∑ ∈−

=
ri xTiforc

d the average 

direction of the two  GPTC directions at 
r

x that give the best 
two objective values.   

 

2.  D4.2 From the ball center 
r

x take a descent step in the 

direction 
( )

3
)(:

2.4
∑ ∈−

=
ri xTiforc

d   the average 

direction of the three GPTC directions at 
r

x that give the best 
three objective values. 

 
E.  Illustration on the Advantage of the Proposed Procedure   
We will now present an example of a simple application of 

LP from the class of product mix models from [2], [4], A 
fertilizer company makes two kinds of fertilizers called Hi-
phosphate (Hiph) and Lo-phosphate (Lo-ph). The manufacture 
of these fertilizers requires three raw materials called RM 1, 2, 
3. At present their supply of these raw materials comes from 
the company’s own quarry which is only able to supply 
maximum amounts of 1500, 1200, 500 tons/day respectively 
of RM 1, RM 2,RM 3. Even though there are other vendors 
who can supply these raw materials if necessary, at the 
moment they are not using these outside suppliers. They sell 
their output of Hi-ph and Lo-ph fertilizers to a wholesaler who 
is willing to buy any amount that they can produce, so there 
are no upper bounds on the amounts of Hi-ph and Lo-ph 
manufactured daily. At the present rates of operation their 
Cost Accounting Department estimates that it is costing the 
quarry $50, 40, 60/ton respectively to produce and deliver RM 
1, RM 2, RM 3 at the fertilizer plant. Also, at the present rates 
of operation, all other production costs (for labor, power, 
water, maintenance, depreciation of plant and equipment, floor 
space, insurance, shipping to the wholesaler, etc.) come to 
$7/ton to manufacture Hi-ph or Lo-ph and to deliver them to 
the wholesaler. The sale price of the manufactured fertilizers 
to the wholesaler fluctuates daily, but their averages over the 
last one month have been $222, 107/ton respectively for Hi-
Ph, Lo-ph fertilizers. The Hi-ph manufacturing process needs 
as inputs 2 tons of RM 1, and 1 ton each of RM 2, RM 3 for 
each ton of Hi-ph manufactured. Similarly the Lo-ph 
manufacturing process needs as inputs 1 ton of RM 1, and 1 
ton of RM 2 for each ton of Lo-ph manufactured. So, the net 
profit/ton of fertilizer manufactured is $(222 − 2 × 50 − 1 × 40 
− 1 × 60 − 7) = 15, (107 − 1 × 50 − 1 × 40 − 7) = 10 
/respectively for Hi-ph, Lo-ph.  

We will model the problem with the aim of determining 
how much of Hi-p and Lo-ph to make daily to maximize the 
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total daily net profit from these fertilizer operations. There are 
clearly two decision variables; these are: 
 

1x   = the tons of Hi-ph made per day 

2x   = the tons of Lo-ph made per day 
 

Since all the data is given on a per ton basis, it provides an 
indication that the linearity assumptions (proportionality, 
additivity) are quite reasonable in this problem to express each 
of the constraint and the objective functions. Also, the amount 
of each fertilizer manufactured can vary continuously within 
its present range. So, LP is an appropriate model for this 
problem. The LP formulation of this fertilizer product mix 
problem is given below. Each constraint in the model is the 
material balance inequality of the item shown against it. 
 
  Maximize   z( x )  = 15 1x  + 10 2x                   Item 

   Subject to 2 1x  + 2x   ≤  1500                          RM 1 

                      1x  + 2x   ≤  1200                          RM 2         (1)                                                  

                       1x   ≤  500                                     RM 3 

                        1x   ≥  0,  2x   ≥  0 
 
In minimization, this is: 
 
   Minimize   z( x )  = −15 1x  − 10 2x   

    Subject to  1500  −  2 1x  − 2x   ≥  0                                  (2)                                                                  

                     1200  − 1x  − 2x   ≥  0 

                     500 − 1x   ≥  0 

                     1x   ≥ 0 

                     2x   ≥  0 
 

Normalizing the coefficient vectors of all the constraints 
and the objective function to Euclidean norm 1, here it is gain: 
 
Minimize   z( x )  = − 0.832 1x  − 0.555 2x  

subject to   670.820  −  0.894 1x  −  0.447 2x   ≥  0                       

                   848.530  − 0.707 1x   −  0.707 2x   ≥ 0                (3) 

                   500 − 1x   ≥  0 

                  1x   ≥  0 

                  2x   ≥  0 

1. The Centering Step 

Let K denote the set of feasible solutions, and let  0x  = 

( )T1,10  be the initial interior feasible solution. When we 

plug in 0x  in the constraints in (3), the left hand side 
expressions have values   661.433, 840.753, 490, 10, 1   
respectively. So, the radius of the largest ball inside  K  with  

0x  as center is 0δ  = min{661.433, 840.753, 490, 10, 1} = 1. 

The objective plane through  0x   is the straight line in 2ℜ  
defined by   
               − 0.832 1x  − 0.555 2x   =  −8.875.  

This is the straight line joining (10.667, 0) T and  (0,15.991)
T in the 1x , 2x  - plane. So, the only direction on it is  1.P  =  

(10.667, −15.991) T . Moving from 0x  in the direction of  1.P  
a step length  α  leads to the new point (10 + 10.667α, 1 − 
15.991α) T . Finding the optimum step length  α  leads to the 
following 2-variable LP in variables  θ,  α: 
             

Maximize  θ 

Subject to: 

               θ  + 2.388 α ≤  661.433 

                θ  − 3.765 α ≤   840.753 

                θ + 10.667 α ≤  490                                             (4) 

               θ  − 10.667 α ≤   10 

          θ  + 15.991 α ≤    1 

               θ ≥  0, α is unrestricted in sign 

Since the minimum RHS constant in this problem occurs in 
only one row, the optimum value of α  in this problem will be 
nonzero. Actually the optimum solution of this problem is 

( θ , α ) T  = (6.4, −0.338) T . The new position for the center 

is 1x  = 0x  − 0.338 1.P   

         =  (10, 1) T  − 0.338(10.667, −15.991) T   = (6.4, 6.4) T , 
and the maximum radius ball with it as center has radius  6.4. 
Since 1.P   is the only direction in K ∩ { x : c x  = c 0x } in 

this case, this ball is the maximum radius ball inside K  with 
center on the objective plane through 0x . If we try to get a 

larger ball by moving from  1x  in the direction 1.P  a step 

length of  α, it can be verified that in the  2-variable LP to find 
the optimum step length  α, the entries in the RHS vector are: 
662.238, 839.48, 493.6, 6.4,6.4; and the coefficient vector of α 
remains the same as in the above table. In this problem the 
minimum RHS constant occurs in both rows 4 and 5; and the 
coefficients of α in these two rows have opposite signs, so the 
optimum value for step length  α  will be 0. This indicates that  

1x  is the best position for the center of the ball on the 

objective plane through 0x  in this problem. 
 
2. Descent Move Following Centering 
The current center is  1x  = (6.4, 6.4) T . In this initial 

iteration, the only descent direction we have available at  1x  

is   − c T  =  (0.832, 0.555) T . Moving from 1x   a step length γ 

in the direction   − c T  leads to the point  (6.4 + 0.832γ, 6.4 + 
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0.555γ) T . Taking the tolerance 1∈= , we see that the 
maximum step length is γ = min{666.571, 854.72, 592.067} = 
592.067. Fixing  γ  =  592.067, we get the new interior feasible 
solution  1

1x  =  (499, 335) T . The objective value is 

835,10)( 1
1 −=xc . So in {[2] Murty 2009]}, this is the 

result up to this point. The next iteration will use 1
1x  as the 

new interior feasible solution. 
Now if consider another interior feasible solution   such as  
0
2x  =  (100, 150). Then using similar process we arrive with  
1
2x  = (450.07, 600.208). The objective value is   

                         13.753,12)( 1
2 −=xc  

The results show that the initial feasible solution  
0
2x   is a 

better choice than
0x . Confirming the advantage of employing 

the proposed procedure in the updating of the feasible region.  
From this result, our new interior feasible solution for the next 

iteration is 
1
2x . The optimal value for this minimization 

problem is c(z) = −13,500. Thus, the optimal value for the 
original maximation problem (fertilizer problem) is c(z) = 
13,500. 

V.  CONCLUSION 
In the updating of the feasible region, though the two points 

are using possibly different directions or path, these are  
approaching the same approximate objective value (if the 
optimal value exists) and with the same objective function. 
The best initial feasible solution for the sphere method is just 
there in the feasible region. 

VI. RECOMMENDATION 
Let the optimal value exists for the given minimization 

linear programming problem. The reader may find interest in 
determining the set of points that can trigger for less iteration 
using the sphere method.  

Note that choosing different set of initial interior feasible 
solutions will result to either improve or no improvement than 
the current set. Thus, a strategy on how to select favorable 
initial interior feasible solutions for this process may be 
considered.  
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