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On the Reduction of Side Effects in Tomography
V. Masilamani, C. Vanniarajan and Kamala Krithivasan

Abstract— As the Computed Tomography(CT) requires normally
hundreds of projections to reconstruct the image, patients are exposed
to more X-ray energy, which may cause side effects such as cancer.
Even when the variability of the particles in the object is very less,
Computed Tomography requires many projections for good quality
reconstruction. In this paper, less variability of the particles in an
object has been exploited to obtain good quality reconstruction.
Though the reconstructed image and the original image have same
projections, in general, they need not be the same. In addition
to projections, if a priori information about the image is known,
it is possible to obtain good quality reconstructed image. In this
paper, it has been shown by experimental results why conventional
algorithms fail to reconstruct from a few projections, and an efficient
polynomial time algorithm has been given to reconstruct a bi-level
image from its projections along row and column, and a known sub
image of unknown image with smoothness constraints by reducing the
reconstruction problem to integral max flow problem. This paper also
discusses the necessary and sufficient conditions for uniqueness and
extension of 2D-bi-level image reconstruction to 3D-bi-level image
reconstruction.

Keywords— Discrete Tomography, Image Reconstruction, Projec-
tion, Computed Tomography, Integral Max Flow Problem, Smooth
Binary Image.

I. INTRODUCTION

OVER the last three decades there has been a revolution
in diagnostic radiology as a result of the emergence

of computerized tomography(CT), which is the process of
obtaining the density distribution within the human body from
multiple X-ray projection. More formally, CT attempts to
reconstruct a density function f(x) for x in R2 or R3 from
the knowledge of line integral Xf (L) =

∫

L

f(x)dx for lines L

through the space. This line integral is the X-ray of f(x) along
L. The mapping f → Xf is known as the radon transform.
Since an enormous variety of possible density values may
occur in the body, a large number of projections are necessary
to ensure the accurate reconstruction of their distribution.
There are other situations in which we desire to reconstruct
an object from its projections, but in which we know that the
object to be reconstructed has only a small number of possible
values. For example, a large fraction of objects scanned in
industrial CT(for the purpose of non destructive testing or
reverse engineering) are made of single material and so that
the ideal reconstruction should contain only two values: zero
for air and the value associated with material composing
the object. similar assumptions may even be made for some
specific medical application; for example, in angiography
of the heart chambers the value is either zero indicating
absence of dye) or the value associated with the dye in the
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chamber. Another example arises in the electron microscopy
of biological macromolecules, where we may assume that the
object to be reconstructed is composed of ice, protein, and
RNA. One can also apply electron microscopy to determine the
presence or absence of atoms in crystalline structures, which
is again a two valued situation. In many of these applications
there are strong technical reasons why only a few projections
of the objects can be physically collected. This brings us to the
following central theme : How to make use of the knowledge
that the reconstruction should contain only a few values to
make up for the lack of availability of the number of projec-
tions typically required in CT Tomography has application in
fields such as: image processing [8], statistical data security
[9], biplane angiography [1], graph theory, crystallography,
medical imaging [2] and Neutron Imaging [3] etc. [4] gives
the fundamentals related to this topic.

Here this paper considers the problem of reconstructing
smooth bi-level image from its projections along row and
column, and a priori information namely a sub image of the
unknown image.

An important area where binary image reconstruction ob-
tained is medical imaging, in particular, Digital subtraction
angiography [2]. In Digital subtraction angiography, the re-
constructed image is the difference between images acquired
before and after intra-arterial injection of radio-opaque con-
trast medium and hence if the difference of a few projections of
those two images are given, binary image can be reconstructed.

Another area where binary image reconstruction obtained
is crystallography. In [10], Peter Schwander and Larry Shepp
proposed a model that identifies each possible atom location
with a cell of integer lattice Z3 and the electron beams with
lines parallel to a given direction. The value 1 in a cell
of Z3 denotes the presence of atom in the corresponding
location of crystal and the value 0 in a cell of Z3 denotes
the absence of atom in the corresponding location of the
crystal. The number of atoms that are present in a line passing
through the crystal defines the projection of the structure
along the line. The set of all projections of the structure
along each line parallel to a given direction denotes one
projection of the object. The number of atoms present in a
line(straight) can be computed by making quantitative analysis
of two-dimensional images taken by the transmission electron
microscope. The transmission electron microscope uses high
energy rays which penetrates the crystal. Hence to get more
projections, large amount of energy is to be transmitted
through the crystal, which can damage the crystal itself(the
atomic configuration may be changed). The conventional
Computed Tomography needs more projections(usually
hundreds of projections) for effective reconstruction of the
objects. Hence the Computed Tomography(Radon transform
based algorithms) is not the desirable reconstruction technique
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to reconstruct crystalline structures. Discrete T omography

considers the case where the objects need to be reconstructed
with a few projections(usually two to four).

As a crystal is represented by a binary matrix, reconstructing
a crystal is the same as reconstructing a 3D-binary matrix.
A 3D-binary matrix can be reconstructed by slice-by-slice
reconstruction. Hence the problem of reconstructing a 3D-
binary matrix is reduced to reconstructing 2D-binary matrices.
Reconstructing 2D-binary matrix was studied much before the
emergence of its practical application. In 1957 Ryser [11]
and Gale [12] gave a necessary and sufficient condition for a
pair of vectors being the projections of binary matrices along
horizontal and vertical directions. The projections in horizontal
and vertical directions are equal to row and column sums
of the matrix. They have also given necessary and sufficient
conditions for the existence of unique 2D-binary matrix which
has a given pair of row sum and column sum. In general, the
class of binary matrices having same row and column sums is
very large. Though the reconstructed matrix and the original
matrix have same projections, they may be very different. One
of the main issues in Discrete T omography is to reconstruct
the object which is more close to the original object with a few
projections only. One approach to reduce the class of possible
solutions is to use some a priori information about the objects.
For instance, convex binary matrices have been reconstructed
uniquely from projections taken in some prescribed set of four
directions in [13]. Another approach is given in [14], where the
class of binary matrices having same projections is assumed to
have some Gibs distribution. By using this information, object
which is close to the original unknown object is reconstructed.

This paper considers the first approach, known sub image
and smoothness constraints in particular, to limit the possible
solutions of 2D-binary images having given projections. For
instance, non invasive imaging techniques such as MRI can
be used to get sub image. The more clear portion of MRI
image can be considered as sub image of original image to
be reconstructed and unclear portion of MRI image may be
obtained by X-ray tomography from less number of projec-
tions.Algorithm given in [6] considered sub image constraint,
but this paper considers smoothness constraint in addition to
sub image constraint.

In the next section, a need of unconventional reconstruction
algorithms is discussed. In section 3, notations and definitions
are given. In section 4, uniqueness problem is discussed.
Section 5 contains the reconstruction algorithm and illustrate
with an example. In section 6, some results obtained by
simulation studies are shown. In section 7, the correctness
and complexity of the proposed algorithm are discussed. This
paper concludes with a brief remark in section 9.

II. NEED OF UNCONVENTIONAL RECONSTRUCTION

Reconstruction algorithms such as filtered back projection
algorithm, convolution back projection algorithm and algo-
rithm based on Fourier slice theorem have been used to
reconstruct objects from their projection images. As filtered
back projection algorithm and convolution back projection
algorithm are different implementation of inverse Radon trans-
form, correctness of these algorithms depends on the existence

of inverse of Radon transform. Existence of inverse Radon
transform needs projection images for all angles from 0 to
180 degrees. The reconstruction algorithm based on Fourier
slice theorem also needs projection images for all angles(0
to 180 degrees ). Hence, in order to find the projections
for missing angles, normally various interpolation techniques
are used. In order to obtain good interpolation, we need to
know a good number of projections. The currently available
CT scanners use 700 to 900 projection images. Hence with
a few projections(two or three), it is impossible to get rea-
sonable interpolation. Hence all the conventional reconstruc-
tion algorithms(Radon transform and Fourier slice theorem
based algorithms) fail to reconstruct images of interior of
three dimensional objects from their projection images. A
conventional algorithm based on Fourier slice theorem for
the phantom images(2D-slice images) given in Figure 5 and
Figure 7, gives the reconstructed images that are shown
in Figure 11 and Figure 12. Hence both theoretically and
practically, it is evident that it is impossible to reconstruct
objects from very few projection images using conventional
reconstruction algorithms, but it is possible to reconstruct some
images(images with less variability) with combinatorial image
reconstruction approach(proposed approach) from very few
projections. The filtered back projection algorithm for three
synthesized images give the results that are shown in Fig.A,
Fig.B and Fig.C.

As the conventional smoothing(low pass filtering) alter the
projections, a combinatorial approach may be followed for
reconstructing smooth binary image from projections.

III. NOTATIONS AND DEFINITIONS

Let τm×n be a family of bi-level images of size m× n,

A ∈ τm×n, R = (r1, r2, . . . , rn) and C =
(c1, c2, . . . , cn). For each 1 ≤ i ≤ m, ri is the number
1′s in row i. For each 1 ≤ j ≤ n, cj is the number of
1′s in column j. vector R and C are said to be projections
of the image A along row and column respectively. An image
S = (si,j) is said to be a sub image of A = (ai,j) if si,j = ai,j

or si,j = ∗. A binary matrix with holes X = (xi,j) is defined
as xi,j = 0 or 1 or h. X is said to have hole at (i, j) if
xi,j = h. The set H = {(i, j)|xi,j = h} is called as hole-set
of X . R = (r1, r2, . . . , rm) and C = (c1, c2, . . . , cn)
are said to be consistent if

∑m

i=1 ri =
∑n

j=1 cj .

Smooth-number of a binary matrix is defined as the total
number of flips, where flip is two adjacent pixels in row or
column directions with different pixel values(i.e
if xi,j = 0 then xi,j+1 = 1 or xi,j−1 = 1 or xi+1,j = 1 or
xi−1,j = 1 or
if xi,j = 1 then xi,j+1 = 0 or xi,j−1 = 0 or xi+1,j = 0 or
xi−1,j = 0)

Example 1:

A =

⎡

⎢
⎢
⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤

⎥
⎥
⎦B =

⎡

⎢
⎢
⎣

1 0 1 0
1 0 1 0
0 1 0 1
0 1 0 1

⎤

⎥
⎥
⎦

For both matrices A and B, R = (2, 2, 2, 2) and
C = (2, 2, 2, 2) are the projections along row and column
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Fig.A(a):1 pro. (b):2 pro. (c): 5 pro.

Fig.A (d): 60 pro (e) 90: pro (f): 180 pro

Fig.B(a):1 pro. (b):2 pro. (c): 5 pro.

Fig.B(d): 60 pro (e) 90: pro (f): 180 pro

Fig.C(a):1 pro. (b):2 pro. (c): 5 pro.

Fig.C (d): 60 pro (e) 90: pro (f): 180 pro

respectively.

and a sub image : S =

⎡

⎢
⎢
⎣

1 ∗ ∗ 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ 1

⎤

⎥
⎥
⎦

, but smooth numbers for A and B are 8 and 16 respectively.

IV. UNIQUENESS PROBLEM

Given row projection R = (ri), column projection C = (cj)
and a sub image S = (si,j) of an unknown bi-level image
A = (ai,j), the goal is to check whether or not there is unique
smooth bi-level image B = (bi,j) such that R and C are the

row and column projections of B = (bi,j) respectively, and
S = (si,j) is a sub image of of B.

In [11], a necessary and sufficient conditions for unique
reconstruction of a binary matrix from two orthogonal pro-
jections ( not with a priori information ) is given. The
necessary and sufficient condition is the presence of switching
components in the binary matrix. The switching components
are defined as follows:

[
ai,j ai,j′

ai′,j ai′,j′

]

where ai,j = ai′,j′ = 1 and ai,j′ = ai′,j = 0 or
ai,j = ai′,j′ = 0 and ai,j′ = ai′,j = 1

It is obvious that a necessary and sufficient conditions
for unique reconstruction of smooth bi-level image from
two orthogonal projections and sub image is the absence of
switching components that do not increase the smooth number,
and ai,j , ai,j′ , ai′,j and ai′,j′ are not in sub image .

By switching 0′s to 1′s and 1′s to 0′s in the switching
components, we can get an another bi-level image with the
same projections.

Example 2: Consider the the following images:

A =

⎡

⎢
⎢
⎣

1 0 0 0 1
0 0 1 0 0
0 1 0 0 0
1 0 0 0 1

⎤

⎥
⎥
⎦ B =

⎡

⎢
⎢
⎣

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
1 0 0 0 1

⎤

⎥
⎥
⎦

Projection along row R = (2, 1, 1, 2), projection along
column: C = (2, 0, 1, 1, 2)

sub image of A: S =

⎡

⎢
⎢
⎣

∗ ∗ ∗ ∗ 1
0 ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
1 ∗ 0 ∗ 1

⎤

⎥
⎥
⎦

Here even though both the matrices A and B have same
orthogonal projections R and C , the sub image S, and
same smooth-number(8), they are different. The switching
component [

a2,2 a2,3

a3,2 a3,3

]

is switched to [
b2,2 b2,3

b3,2 b3,3

]

and the remaining entries of matrices A and B are the same.

V. RECONSTRUCTION PROBLEM

Given row projection R = (ri), column projection C = (cj)
and a sub image S = (si,j) of an unknown bi-level image
A = (ai,j), the goal is to obtain a bi-level image B = (bi,j)
such that R and C are row and column projections of B =
(bi,j) respectively, the smooth number for B is minimum, and
S = (si,j) is a sub image of B.

We construct network G for the given hole-set H and the
projections R = (r1, r2, . . . , rm) and C = (c1, c2, . . . , cn)
as follows:
G = (V, E, C) be a weighted directed graph where
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V = U ∪ W ∪ {s, t}
U = { ui | 1 ≤ i ≤ m }
W = { wj | 1 ≤ j ≤ n }
E = {(ui, wj) | (i, j) �∈ H, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(s, ui) | 1 ≤ i ≤ m } ∪ {(wj , t)| 1 ≤ j ≤ n }
For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, if (ui, wj) ∈ E,

C(ui, wj) = 1; C(s, ui) = ri; C(wj , t) = cj

where s is the source and t is the sink.
Theorem 1: Let H be a hole-set and R =

(r1, r2, . . . , rm) and C = (c1, c2, . . . , cn) be
two integral vectors. There is a binary matrix X = (xi,j)
with hole-set H such that row and column projections of X

are R and C respectively iff R and C are consistent and max
flow value for the network G corresponds to R, C and H is
|f | =

∑m

i=1 ri.
Proof: Assume that X = (xi,j) is binary matrix with

hole-set H and having row and column projections R =
(r1, r2, . . . , rm) and C = (c1, c2, . . . , cn) respectively.
Then, the network G corresponds to R, C and H has flow
f : V × V → Z∗ such that

For each 1 ≤ i ≤ m and 1 ≤ j ≤ n,

f(s, ui) = ri, f(wj , t) = cj ,

f(ui, wj) = 1 if xi,j = 1,

f(ui, wj) = 0 if xi,j �= 1,

f(s, ui) = −f(ui, s), f(wj , t) = −f(t, wj),
f(ui, wj) = −f(wj , ui)
and f(e) = 0 for all e ∈ V ×V such that f(e) is not defined
above. The flow f has the following properties:
Capacity constraint: f(e) ≤ C(e) for all e ∈ V × V . From
our definition of f , capacity constraint is evident.
Skew symmetry: f(u, v) = −f(v, u) for all (u, v) ∈ V × V.

Skew symmetry is also evident from our definition of flow f

Flow conservation: For all u ∈ V − {s, t}
∑

v∈V f(u, v) =
0. Since for each 1 ≤ i ≤ m, row i has ri 1′s, the number
of outgoing edges with capacity 1 from ui is ri. Hence total
amount outgoing flow from ui is ri. The only incoming flow
to vertex ui is from the source, which is also ri. Since f is
skew symmetry and incoming flow is same as outgoing flow
at node ui,

∑
v∈V f(ui, v) = 0 where 1 ≤ i ≤ m.

Since for each 1 ≤ j ≤ n, column j has cj 1′s, the number
of incoming edges with capacity 1 to wj is cj . Hence total
amount outgoing flow from wj is cj . The only outgoing flow
from vertex wj is to the sink, which is also cj . Since f is skew
symmetry and incoming flow is same as outgoing flow at node
wj ,

∑
v∈V f(wj , v) = 0 where 1 ≤ j ≤ n. Hence the

flow conservation.
The value of flow f is |f | =

∑
v∈V f(s, v) =∑m

i=1 f(s, ui). Since |f | ≤
∑

v∈V C(s, v) for any f and for
our f , |f | =

∑
v∈V C(s, v), |f | =

∑m

i=1 ri is the maximum
flow.

Since |f | =
∑m

i=1 f(s, ui) and |f | =
∑n

i=1 f(wj , t),∑m

i=1 ri =
∑n

j=1 cj . Hence R and C are consistent.

Assume that H is a hole-set and R =
(r1, r2, . . . , rm) and C = (c1, c2, . . . , cn) are
two consistent integral vectors, and the max flow value for
the network G corresponds to R, C and H is |f | =

∑m

i=1 ri.
X = (xi,j) is defined as follows.

1
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Fig. 1 Flow Network Fig. 2 Max Flow

For each 1 ≤ i ≤ m and 1 ≤ j ≤ n,

xi,j = 1 if f(ui, wj) = 1
xi,j = h if (i, j) ∈ H

xi,j = 0 otherwise
From the definition of X, the hole-set of X is H . Since max
flow value |f | =

∑m

i=1 ri and C(s, ui) = ri, the amount
of flow goes through ui from the source s is exactly ri.
Therefore there are exactly ri outgoing edges from vertex ui

have flow value 1. Hence there will be ri cells in row i in X

filled with 1′s.
Since |f | =

∑n

j=1 cj and C(wj , t) = cj , the amount of flow
goes from wj to the sink t is exactly cj . Therefore there are
exactly cj incoming edges to the vertex wj have flow value
1. Hence there will be cj cells in column j in X filled with
1′s. Hence the theorem.

Example 3:
Consider the projections R = (2, 1, 1, 2), C =

(1, 1, 3, 1) and the hole-set H =
{(1, 4), (2, 2), (2, 3), (2, 4), (3, 1), (3, 4), (4, 2)}.
The binary matrix with projections R and C and hole-set H

is

X =

⎡

⎢
⎢
⎣

0 1 1 h

1 h h h

h 0 1 h

0 h 1 1

⎤

⎥
⎥
⎦ ,

Figure 1 is the corresponding flow network and figure 2 is a
maximum flow in the flow network.

Algorithm: Constrained binary image reconstruction

Input: A sub image S of an unknown bi-level image A and
row and column projections R = (r1, r2, . . . , rm) and
C = (c1, c2, . . . , cn) of A

Output: Smooth bi-level image B = (bi,j) such that R and C

are the row and column projections of B = (bi,j) respectively,
and S = (si,j) is a sub image of of B.
Initialisation: m := the number of components in R,

n := the number of components in C. For each
1 ≤ i ≤ m and 1 ≤ j ≤ n, bi,j := 0

Step 1: For each 1 ≤ i ≤ m and 1 ≤ j ≤ n,

bi,j := si,j if si,j �= ∗

Step 2: Compute R′ = (r′1, . . . , r′m) C′ = (c′1, . . . , c′n)
where r′i =

∑n

j=1 bi,j , c′j =
∑m

i=1 bi,j and
1 ≤ i ≤ m, 1 ≤ j ≤ n
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Step 3. Construct integral weighted directed graph as given
bellow.
Let G = (V, E, C) be a weighted directed graph where
V = U ∪ W ∪ {s, t}
U = { ui | 1 ≤ i ≤ m }
W = { wi | 1 ≤ i ≤ n }
E = {(ui, wj)| si,j = ∗, 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {(s, ui)| 1 ≤ i ≤ m } ∪ {(wj , t)| 1 ≤ j ≤ n }
C(ui, wj) = 1, C(s, ui) = ri − r′i and C(wj , t) = cj − c′j

where 1 ≤ i ≤ m and 1 ≤ j ≤ n

Step 4. Compute the integer max flow f for the network
G = (V, E, C) constructed in step 3 by using Ford-
Fulkarson max-flow algorithm, in which the augmenting path
is chosen as given bellow:

Step 4(a). Find shortest path Pi for each pair (ui, t) where
1 ≤ i ≤ n

Step 4(b). For each 1 ≤ i ≤ n Compute augmenting path P ′

i

which is from s to ui and then along the path Pi

Step 4(c). Choose the augmenting path form all augmenting
paths computed in step 4(b) such that the augmenting path
that updates the image being constructed should result in less
smooth-number.
Step 5. Construct matrix B as follows.
For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, bi,j := 1 if f(i, j) = 1

Note: It is to be noted that step 4 is iterative, which
terminates when there is no augmenting path.

EXAMPLE 4:
The above algorithm is illustrated with an example,

Input : R = (2, 3, 1, 2) C = (1, 3, 3, 1)

and a sub image

⎡

⎢
⎢
⎣

∗ 1 ∗ ∗
0 ∗ 1 ∗
∗ 0 ∗ ∗
∗ ∗ 1 0

⎤

⎥
⎥
⎦

Initialisation:

m = 4, n = 4 and B =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

Step 1:

B =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0

⎤

⎥
⎥
⎦

Step 2: The row and column projections of the matrix B are
R′ = (1, 1, 0, 1), C ′ = (0, 1, 2, 0) respectively

Step 3: The network that corresponds to the given instance of
the problem is given in figure 3.
Step 4: The maximum flow of the network is given in figure.
4.

The reconstructed matrix is:
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Fig. 3 Flow Network Fig. 4 Max Flow

B =

⎡

⎢
⎢
⎣

1 1 0 0
0 1 1 1
0 0 1 0
0 1 1 0

⎤

⎥
⎥
⎦

VI. SIMULATION STUDIES

A phantom image (figure 5 ) was considered, and row and
column projections of the phantom image were computed.
The algorithm given in [11] is implemented, and the recon-
structed image is given in figure 6. For the implementation
of proposed algorithm, the row and column projections of the
same phantom image and a priori sub image given in figure 9
are considered as input. The reconstructed image obtained by
implementing proposed algorithm is exactly same as the input
phantom image (figure 5). But for the phantom image given
in figure 7 and for the known portion of the image given in
figure 9, the reconstructed image by proposed algorithm (figure
10) is not the same as the original image. The reconstructed
image obtained by implementing algorithm given in [11] for
the phantom image given in figure 7. is given in figure 8.
For phantom image considered in Fig.A(square with black
background), the reconstructed image from two projections is
same as the unknown image, but the conventional algorithms
takes 90 projections to get the perfect reconstruction.

It should be noted that figures 13 and 14 have same
projections along the row and column directions, however,
figure 14 has lesser smooth number than that of figure 13.
(Figure 14 has been obtained using our algorithm).

VII. CORRECTNESS AND COMPLEXITY

By Theorem 1, a bi-level image with holes can be recon-
structed from its orthogonal projections if the number of 1′s in
the image is the max flow value and no bi-level-image exists
if the number of 1′s in the image is not same as the max
flow value. The algorithm considers the non * locations of the
known sub image as the hole-set. The algorithm copies the
sub image and then unknown portion of the unknown image
is reconstructed by considering non * locations of the known
sub image as the hole-set.

The time complexity of Step 1, step 2 and step 3 of our
algorithm is ©(mn) where m is number of rows and n is
number of columns. The dominant part of proposed algorithm
is computing max flow (step 4).The FORD-FULKERSON
algorithm for solving max flow problem can be implemented
in ©(V 3) where V is the number of vertices in the network.
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Fig. 5: Unknown(a) Fig. 6: Ryzer(a) Fig. 7: Unknown(b)

Fig. 8: Ryser(b) Fig. 9: Sub Image Fig. 10: prop. Rec

Fig. 11: Fourier(a) Fig. 12: Fourier(b) Fig. 13: Smooth

Fig. 14: Non-smooth

The augmenting path that minimizes smooth-number in every
iteration is chosen. The augmenting path is computed in
©(n3) time. As this algorithm computes n augmenting paths
when a single path is computed in max-flow algorithm, the
time complexity of step 4 of proposed algorithm is©(V 3∗n3)
where V = m + n + 2. Hence the the time complexity of our
algorithm is ©(V 3 ∗ n3) where V = m + n + 2.

VIII. CONCLUSION

In this paper, reconstruction of a smooth 2D-bi-level image
from its two orthogonal projections and a priori sub image is
considered. 2D-bi-level image reconstruction from two orthog-
onal projections has polynomial time algorithm [11], 2D-tri-
level image reconstruction from two orthogonal projections
is still open, 2D-four-level image reconstruction from two
orthogonal projection is NP-hard. The problem that we have
solved is more complex than 2D-bi-level image reconstruction
from two orthogonal projections and less complex than 2D-tri-
level image reconstruction from two orthogonal projections.
The proposed algorithm is implemented and the quality of
reconstructed image by the proposed algorithm is compared
with the quality of reconstructed image by algorithm given
in [6], and it is noticed that the reconstructed image by
proposed algorithm is more close to original image even
outside the known sub image portion of the original image
than 2D-bi-level image reconstruction from two orthogonal
projections without smoothness constraint (algorithm given in
[6]). The reconstruction of 3D-bi-level smooth image from two

orthogonal projections with a priori sub image can be done
by slice-by-slice reconstruction using the proposed algorithm.
One of the possible areas in which our algorithm can be used
is medical imaging. Non-invasive imaging techniques such as
MRI can be used to get a sub image. The more clear portion
of MRI image can be considered as sub image of original
image to be reconstructed and unclear portion of MRI image
may be obtained by X-ray tomography from less number of
projections. Another area of application is crystallography.
The proposed algorithm can be used to reconstruct crystalline
structure from two projections without damaging the crystal.
Though the proposed algorithm always gives solutions that
satisfy projection constraints, and sub image constraints, the
smoothness is not optimum, and we conjecture that obtaining
optimum smoothness is NP-hard.

Future work will be on exploring possibilities of Simulated
Annealing based approach to get better smooth binary images.
As a new binary image can be obtained from current binary
image by switching the switching component, and all switch-
ing components can be computed in polynomial time, we can
get a new binary image by switching the switching component
that results in less smooth-no. As the above greedy method
may not lead to binary image with least smooth-no, Simulated
Annealing which makes use of above method may give binary
image with minimum smooth-no.
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