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Abstract—Maximal length sequences (m-sequences) are also
known as pseudo random sequences or pseudo noise sequences
for closely following Golomb’s popular randomness properties: (P1)
balance, (P2) run, and (P3) ideal autocorrelation. Apart from these,
there also exist certain other less known properties of such sequences
all of which are discussed in this tutorial paper. Comprehensive proofs
to each of these properties are provided towards better understanding
of such sequences. A simple test is also proposed at the end of
the paper in order to distinguish pseudo noise sequences from truly
random sequences such as Bernoulli sequences.
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I. INTRODUCTION

MAXIMAL length sequences (which are also called m-
sequences, pseudo random sequences or pseudo noise

sequences) are certain binary sequences of length N = 2n−1
that satisfies a linear recurrence given by the corresponding
primitive polynomial of degree n [1]. Although these se-
quences are not truly random because they can be predicted
by a definite recurrence relation, nevertheless, they have
many useful properties for which rapidly generated such m-
sequences with ‘fairly acceptable’ randomness properties are
essential components in a wide variety of modern applications
including radar, spread spectrum, error correction, crypto-
graphic systems, and Monte Carlo simulations. Acceptable m-
sequences should exhibit no statistical bias in the occurrence
of individual symbols or small blocks of symbols. With these
goals in mind, in his classic book, S. Golomb [2] defined a
pseudo noise (PN) sequence to be a periodic binary sequence
that passes three well known statistical tests for randomness:
balance, run, and, ideal autocorrelation; each of which we take
up one by one in next section. It is also shown in [2] that such
sequences can be rapidly generated using linear feedback shift
register (LFSR) via primitive polynomials over a certain finite
field (called, Galois field, or, GF (q) where q denotes a finite
prime number).

Although these PN sequences have many properties [3]-[5]
apart from the three mentioned above, a simple and compre-
hensive account of all of their properties altogether is given
in none of the existing literature including standard texts. We
provide those in this tutorial paper along with the respective
proofs towards better understanding of such sequences. A
few applications of these properties in communication theory
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are also given in the form of Lemmas. Further, we propose
a simple randomness test in order to distinguish the PN
sequences from any fair coin tossing experiment, i.e., Bernoulli
sequence. In the literature, there exist many randomness tests
[6]-[7] for the same purpose yielding very good results. Our
proposed test, however, is so simple that it can be easily taken
up by the undergraduate students as an assignment in any
‘advanced communication’ course.

II. PROPERTIES OF PSEUDO NOISE SEQUENCES

Before going into the properties of PN sequences, let us
briefly describe the background materials first. We define a
primitive polynomial p(x) of degree n over a GF (2n) as

p(x) = anxn + an−1x
n−1 + ... + a1x + a0 (1)

where, all the coefficients ai, i = 0, 1, ..., n are members of
GF (2), i.e., integers {0, 1} with an = a0 = 1. We generate the
recurring PN sequences with countably infinite list of values
(s0, s1, ...) via such primitive polynomials and define them as
follows.

Definition 1: A PN sequence is a (2n−1) length sequence
that satisfies a linear recurrence, defined over GF (2), given
by any corresponding primitive polynomial p(x) of degree n.

Remark 1: For any primitive polynomial p(x), the recipro-
cal polynomial p∗(x), defined as p∗(x) = xnp(x−1), is also
a primitive polynomial, and the PN sequence generated by
p∗(x) is exactly the reverse of the PN sequence generated by
p(x).

Although three randomness properties (balance, run, and
ideal autocorrelation) of these sequences are widely known,
there exist some other properties also through which we
usually characterize such sequences. Below, we provide all
the properties of (2n − 1) length PN sequences along with a
proof of each of them.

Property 1: Recurrence: In general, any PN sequence of
order n satisfies the linear recurrence given by

si+n =
n−1∑

k=0

aksi+k, ∀i ≥ 0 (2)

where, as earlier, ak ∈ GF (2).
Proof: The relation p(x) = 0 is called the characteristic

equation of polynomial (1). Putting this value and by replacing
xk with si+k in (1), we get (2) as, in GF (2), minus signs can
be changed to plus signs for modulo-2 arithmetic.

Remark 2: Specifying the initial values (s0, s1, ..., sn−1)
completely specifies the sequence. Indeed, specifying any
n consecutive values specifies all remaining values. Since
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there are only 2n possible combinations of s0, ..., sn−1, any
sequence satisfying (2) must repeat after the period of 2n−1 as
the all-zero state cannot occur unless the sequence is itself all
zeros. This also leads to 2n−1 different possible PN sequences
depending upon the initial combination of s0, ..., sn−1. If we
assume a set S containing all these PN sequences, it then
follows from (2) that there are n linearly independent PN
sequences in S .

Property 2: Closure: The elements of any PN sequence
(s0, s1, ..., s2n−2) of length N , formed with respect to the
recursion (2), repeat the original sequence beyond s2n−2.

Proof: Following some elementary results in group the-
ory, one can find that if b 6= 0 (mod q), where b ∈ GF (q), then
bq−1 = 1. Multiplying both sides by b shows that bq − b = 0
for b 6= 0. Since this is also true for b = 0, we see that every
element in GF (q) satisfies the following polynomial equation:
xq − x = 0 which has q roots with each root being exactly
the elements in GF (q). As GF (qn) is also a valid finite field,
putting q = qn above yields the equation xqn − x = 0, or,
xqn−1 = 1. Mapping this result in (2) with q = 2, one obtains

s2n−1+i = si ∀i ≥ 0. (3)

Following (3), any countably infinite list of values with re-
currence (2) take the form (s0, s1, ..., s2n−2, s0, s1, ...). This
proves the property.

Property 3: Shift: If s = (si, si+1, ..., si+2n−2), ∀i ≥ 0, is
a PN sequence in S , then any right or left cyclic shift on s is
also in S.

Proof: Consider any PN sequence s′ =
(si+1, si+2, ..., si+2n−1) ∈ S which comes out of a
different initial state such that s 6= s′. Using Property 2, we
get s2n−1+i = si. Hence s′ = (si+1, si+2, ..., si+2n−2, si),
meaning it is nothing but a left circular shift on s. Similarly,
taking another s′′ = (si−1, si, ..., si+2n−3) ∈ S , it is easy to
show that it is a right circular shift on s. This holds true for
all i ≥ 0, which proves the stated property.

Remark 3: The above Shift Equivalence Property can also
be proved in an alternate nice manner. Let us reformulate the
above property as: any two different s and s′, generated by
the same primitive polynomial p(x), must be in S. We can
then prove it as follows. For n ≥ 2, it is well known that
2n−1 < 2n−1 < 2n, meaning construction of a length 2n−1
PN sequence is not possible with less than n-tuples, where
except the all zero state, we use all the other possible 2n − 1
states to generate such a sequence. Now, if any two s and
s′ are shift distinct, then the total number of different initial
states needed to generate s and s′, keeping p(x) same, would
be 2 × (2n − 1) > 2n which is a contradiction since only
(2n − 1) nonzero n-tuple states are available. Thus, any two
s and s′ must be shift equivalent.

Property 4: Add: The sum of any two PN sequences in S
(formed componentwise, modulo 2, without carries) is another
sequence in S .

Proof: Let us take a simple recursion si+n = si +
si+1. With this, adding s and s′ yields the sequence
(si+n, ..., si+2n−2, si, ..., si+n−1). By Property 3, it is also in
S . The same holds true for any general recursion as given in
(2) [the readers are encouraged to do it].

Property 5: Shift-and-Add: The sum of a PN sequence in
S and a cyclic shift of itself is another PN sequence in S .

Proof: The proof is trivial which follows from Properties
3 and 4.

Remark 4: A PN sequence in S which obeys Property 5,
will also obey “Shift-and-Subtract” rule as, in GF (2), minus
signs can be changed to plus signs.

Property 6: Window: If 2n − 1 non-overlapping windows
of width n bits each are framed along any PN sequence in S
(let us take n repetitions of the same PN sequence to place all
these windows properly), each of the distinct 2n − 1 nonzero
possible combinations of s0, ..., sn−1 is seen exactly once in
each window.

Proof: The above property, in other words, can be
written as: each possible n-tuple is seen only once in a
full period of any PN sequence. To prove this, let us re-
call that the relation p(x) = 0 is called the characteristic
equation of (1). Let u be a root of this equation, meaning
un =

∑n−1
k=0 akuk. Multiplying both sides by ui, we get

ui+n =
∑n−1

k=0 akui+k which shows that the sequence defined
by si = ui satisfies the recurrence in (2). If p(x) is an
irreducible polynomial over GF (2n), this equation will have
n distinct roots: {1, u1, u2, ..., un−1}. Then, any element of
this field, i.e., {1, u1, ..., u2n−1}, can be expressed in terms of
linear combinations of {1, u1, u2, ..., un−1} as given above,
meaning, each element of GF (2n) will have a n-tuple vector
representation. Let, G be an n×(2n−1) generator matrix with
the rows to be the binary n-tuples which are these rectangular
co-ordinates for all 2n − 1 elements {1, u1, ..., u2n−2} (it is
easy to check from Property 2 that u2n−1 = 1). Reformulating
the above result as ui+n = ui

∑n−1
k=0 akuk, it then means

any row of G is a linear combination of {1, u1, u2, ..., un−1}
multiplied by a unique element uI where I ≡ i (mod 2n−1).
If the combination

∑n−1
k=0 akuk is linearly independent, i.e.,∑n−1

k=0 akuk = 0 iff all ak = 0 where ak ∈ GF (2), only then
each row will show a unique non-zero element. Conversely,
any consecutive n bits in a PN sequence will represent this
unique uI iff the above combination is linearly independent.
To show this, we only need to show that none of the elements
{1, u1, u2, ..., un−1} is zero (they must be distinct as stated
above). Assume that any uk, k = 1, ..., n− 1, is zero (u0 = 1
cannot be a zero) so that

∑n−1
k=0 akuk = 0 with ak 6= 0 for

that k. As uk is also a root of p(x) = 0, putting the value in
the equation it yields a0 = 0 which is a contradiction with the
definition of p(x). Hence, any uk 6= 0, leading to the required
result.

Remark 5: Property 6 is also called Span property since the
n element subset {1, u1, u2, ..., un−1} spans the entire S , i.e.,
forms the basis of GF (2n). A PN sequence, which follows this
property, is called a Punctured de Bruijn sequence of span n.

Remark 6: The n linearly independent PN sequences in S
corresponds to n linearly independent solutions of p(x) = 0.

Property 7: Balance: Any PN sequence in S contains 2n−1

ones and 2n−1 − 1 zeros.
Proof: As all zero initial combination of s0, ..., sn−1

is not permitted, all the other combinations take equivalent
decimal values between 1 and 2n−1. Since there are 2n−1 odd
numbers and 2n−1−1 even numbers between this range, with
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binary representations finishing with 1’s and 0’s, respectively,
we get the above result.

Property 8: Run: In any PN sequence, 1/2 of the runs have
length 1, 1/4 have length 2, 1/8 have length 3, 1/16 have
length 4, and so on, as long as these fractions give integral
numbers of runs. Also, in each case, the number of runs of
0’s is equal to the number of run’s of 1’s.

Proof: A run of length k is a basically a block of k
consecutive identical digits that is not contained in a longer
block of consecutive digits. In other words, it is a block
(si, si+1, ..., si+k−1) in any PN sequence such that si−1 6=
si = si+1 = ... = si+k−1 6= si+k. With this definition of run,
if we now want to prove the run property, we have to take the
help of Property 6 which states that every non-zero n-tuple
occurs exactly once in any PN sequence. Since every possible
n-tuples occur for a single time, the n-tuple 11...1︸ ︷︷ ︸

n

must occur

only once and it must be preceded and followed by a 0 each,
indicating a run of length n of ones. As this (n+2)-tuple with
zeros at both the extreme ends can alternately be visualized
as

n+2︷ ︸︸ ︷
0 11...1︸ ︷︷ ︸

n

0 → 01

n︷ ︸︸ ︷
11...1︸ ︷︷ ︸
n−1

0 or

n︷ ︸︸ ︷
0 11...1︸ ︷︷ ︸

n−1

10

it is evident that there can be no run of length (n−1) ones in
the sequence since the n-tuples 11...10 or 01...1 occur only
once in the sequence. However, there will be exactly one run
of length (n − 1) zeros, represented as 1 00...0︸ ︷︷ ︸

n−1

1, since all-

zero n-tuple cannot occur. Now let us consider the run of
ones of length r where 0 < r ≤ n− 2. Each such run can be
represented in the form of n-tuples as:

n︷ ︸︸ ︷
0 11...1︸ ︷︷ ︸

r

0 xx...x︸ ︷︷ ︸
n−r−2

where x are any arbitrary digits (either 0 or 1). Such arbitrary
digits can be arranged in 2n−r−2 ways. This means the number
of such n-tuples of run length r is 2n−r−2. A similar argument
gives the same number of runs of zeros of length r. Hence,
any run of length r, 0 < r ≤ n − 2, occurs 2n−12−r times
including runs of both ones and zeros. Runs of length n and
n − 1 occur only once for zeros and ones, respectively. This
completely determines the run structure of PN sequences as
given above.

Remark 7: The maximum length of a run cannot be greater
than n which comes from Property 1 that is governed by the
primitive polynomial of (1). As shown above, one run of this
length and one run of length n− 1 will take place in the total
sequence. Putting the value of r for all other runs, the total
number of runs comes out to be K = (1+1+2...+2n−2) =
2n−1. Any PN sequence always follows this total number of
runs in a single period.

Property 9: Ideal Autocorrelation: The autocorrelation
function r(i) of any PN sequence of length N is given by

r(i) =
{

1 for i = 0
− 1

N for 1 ≤ |i| ≤ N − 1.
(4)

Proof: We usually define the autocorrelation function
(ACF) of any real sequence as r(i) = 1

N

∑N−1
j=0 sjsj+i

for |i| ≥ 0. For a binary sequence where any si ∈
{0, 1}, let us replace 1’s by −1’s and 0’s by 1’s so
that any sequence (s0, s1, ..., s2n−2) can be represented as
{(−1)s0 , (−1)s1 , ..., (−1)s2n−2}. In that case, the ACF takes
the form 1

N

∑N−1
j=0 (−1)sj+sj+i . Now, if A is the number of

places where any sequence (s0, s1, ..., s2n−2) and its i cyclic
shift (si, si+1, ..., si−1) agree and D is the number of places
where they disagree so that A+D = N , then, from the above
definition of ACF,

r(i) =
A−D

N
. (5)

From Property 5, the elementwise sum of the above two
sequences must be in S . Then D will denote the number of 1’s
in the resultant sequence and A would represent the number
of 0’s (mod 2). By Property 7, A = 2n−1 − 1 and D = 2n−1

for any i 6= 0. For i = 0, the resultant sequence will be a all
zero sequence, leading to a value of ACF= 1. We thus get (4).

Remark 8: Every punctured de Bruijn sequence of span n is
balanced and has shift-and-add, run and ideal autocorrelation
properties.

Remark 9: The value of D = 2n−1 signifies the minimum
distance between any two sequences in S , i.e., in how many
digits they differ from each other. This is treated as an impor-
tant parameter in communication theory. Also, this denotes the
weight of a PN sequence which is defined as the number of
1’s in it.

Remark 10: Another important measure in communication
theory is Figure of Merit (FoM), which is defined as

FM =
r2(0)∑
i 6=0 r2(i)

=
r2(0)

2
∑N−1

i=1 r2(i)
(6)

since ACF is a symmetric function. FoM usually gives a
quantitative spectral information of the sequences such as, for
low FoM, the spectrum is narrow or irregular whereas for
high FoM, it is the other way round. From (4), we see that
PN sequences have an FoM = N2

2(N−1) , which yields quite a
high value for high N . It then follows that such sequences
must have applications in wideband communications.

Property 10: Construction of Hadamard Matrices: If an
(N + 1) × (N + 1) array is formed whose rows are each of
the PN sequences in S, by replacing 1’s with −1’s and 0’s
with 1’s of each sequence, along with adding an initial row
of length N and an initial column of length (N + 1) with all
1’s, the resultant array is a 2n × 2n Hadamard matrix.

Proof: Any n × n real matrix Hn with all its entries as
±1 is called a Hadamard matrix if it satisfies the relation:
HnHT

n = nI , where the superscript T denotes the transposi-
tion operation and I is an n × n unit matrix. Following the
construction of H2n as given above, it is easy to check that
H2nHT

2n = 2nI which follows from a trivial modification of
Property 9 in the expression (4).

We show some of these properties of PN sequences via Figs.
1 to 4. In Fig. 1, the LFSR structure is shown corresponding to
the recurrence si+4 = si+1 + si. Fig. 2 shows all the possible
15 PN sequences obtained from this recurrence simply by left
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Fig. 1. The LFSR structure corresponding to the recurrence relation si+4 =
si+1 + si.

shifting the first sequence 15 times. Fig. 3 demonstrates the
window property of this sequence. Finally, the typical ACF
nature of this sequence is depicted in Fig. 4.

III. APPLICATION OF THESE PROPERTIES IN
COMMUNICATION THEORY

If we consider a set T that contains all the possible
22n−1 combinations of binary (2n − 1)-tuple, then the set
S containing all PN sequences is definitely a proper subset
of T . T is called an N digit permutation alphabet while S
is called an N digit PN alphabet. Properties 1 to 10 of S ,
as stated and proved above, have certain importance in the
theory of communications [8]. Firstly, the PN sequences in S
form ‘block codes’ or ‘forward error correction codes’, with
the properties: systematic, cyclic, and linearity, that enable a
limited number of errors to be detected and corrected without
retransmission. Such a code is referred to as (N, n) code,
meaning, n information bits are encoded in N = 2n − 1
code bits with a code rate n/N . Secondly, such codes always
maintain a minimum Hamming distance among them. Next,
the dual to such a block code is called (N, N − n) Hamming
code, which is an important code in digital communications.
Below, we state a few utilities of the stated properties of S
in the form of Lemmas. The proofs to these Lemmas are
not provided as it is easy to prove them using some of the
properties given in the last section.

Lemma 1: The PN alphabet S forms a block code, closed
under addition and multiplication over GF (2), of length 2n−1,
span n, weight 2n−1 and minimum distance 2n−1.

Lemma 2: The minimum distance between any two codes
in N digit PN alphabet S is always greater than or equal to the
minimum distance for any other N digit permutation alphabet
T .

Lemma 3: The probability that a transmitted sequence of
an N digit PN alphabet S is incorrectly received as another
sequence in S is always less than or equal to the corresponding
probability for any N digit permutation alphabet T .

IV. A PROPOSAL TO DISTINGUISH PN SEQUENCES FROM
BERNOULLI SEQUENCES

Mainly, window, balance, run and ideal autocorrelation are
the four properties which justify the name pseudo-random
sequence as these are the properties which one would expect
from the resultant sequence formed by tossing a fair coin
2n − 1 times (say, ‘head’ is assigned the value 1 and ‘tail’

Fig. 2. The 15 possible PN sequences corresponding to the recurrence of
Fig. 1.

Fig. 3. The window or span property corresponding to the PN sequence
obtained from Fig. 1.

is 0). In fact, these are the properties for which PN sequences
are fairly useful in secured communications. Nevertheless,
PN sequences are not truly random as all the stated 10
properties hold true for all PN sequences whereas in a fair
coin tossing experiment (Bernoulli experiment), there must be
some variations from sequence to sequence. This is why PN
sequences are not suitable for serious encryption purposes.
Many tests thus have been proposed, including the popular
chi-square test that examines the uniformity of distribution, to
distinguish PN sequences from truly random sequences such
as Bernoulli sequence. Below, we provide a brief account of
two such standard tests along with a simple proposal of a new
randomness test which is quite easy for checking purpose.
However, before dealing with these tests, we briefly discuss
certain probabilistic values of these sequences some of which
would be useful in the discussion of the randomness tests in
the sequel.

A Bernoulli sequence is a discrete-time stochastic sequence
consisting of a finite or infinite number of independent random
variables X1, X2, X3, ..., such that (a) for each i, the value of
Xi is either 0 or 1; and (b) ∀i, the probability that Xi = 1 is
the same number p1. For sufficiently large number of trials,
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Fig. 4. The ACF of the PN sequence obtained from Fig. 1.

we assign p1 and p0 (the probability of Xi = 0) as p1 =
p0 = p = 1/2 which is a fairly reasonable assumption. We
assume this condition in the rest of this paper instead of taking
p0 = (1 − p1). Using this condition, we get the mean and
variance of a Bernoulli sequence as: E[X] = p1 = 1/2 and
V ar[X] = p1p0 = 1/4, respectively. However, from Property
7 of a PN sequence, we can write

p1 =
2n−1

2n − 1
, p0 =

2n−1 − 1
2n − 1

(7)

where p1 and p0 denote the probability of getting a 1 and 0
respectively for the said PN sequence. From (7), we get

E[S] =
2n−1

2n − 1
, V ar[S] =

2n−1(2n−1 − 1)
(2n − 1)2

. (8)

A. Two Standard Tests

Among the many standard randomness tests available in
literature, we describe here one time domain test, i.e., matrix
rank test [4], and another frequency domain test, i.e., spectral
test [7].

1) Matrix rank test: Let s0, s1, ..., sm−1 be m consecutive
binary digits from a PN sequence of length N = 2n−1, where
m < N , which form the matrix

M =




s0 s1 ... sm−y

s1 s2 ... sm−y+1

... ...
sy−1 sy ... sm−1


 (9)

with n < y < m/2. Then rank(M) over GF (2) must
always be less than y as, from Property 1, there exists only n
linearly independent PN sequences in S . If, on the other hand,
s0, s1, ..., sm−1 is a segment of a coin tossing sequence, then,
Pr{rank(M) < y} ≤ 22y−m−1 where Pr{rank(M) < y}
is the probability of rank(M) < y. This value becomes very
small if y ¿ m/2. The question “is rank(M) = y?” is thus
a test on certain number of digits from any PN sequence to
show a departure from true randomness. Here, as said above,
we have taken p0 = p1 = 1/2.

2) Spectral test: This test is a sequential test which ul-
timately outputs whether a sequence is ‘not random’ or
it ‘may be random’. First, representing the binary string
s0, s1, ..., sN−1 with values ±1 as in ACF, the fast Fourier
transform (FFT) of the string is computed. The FFT consists
of N

2 + 1 independent values of the cosine transform while
N
2 − 1 independent values of the sine transform. These

are represented as the indexed variables vm and wm. Next,
N
2 − 1 estimates of the periodogram is computed as Im =
(1/N)[v2

m + w2
m] and the expected value of r-th power of

Im, i.e., E[Ir
m] for r ≥ 2, is deduced within the range

m ≤ (N/2)− 1. It can be shown that excluding the boundary
expectation values, i.e., E[Ir

0 ] and E[Ir
N/2], all the other mean

values E[Ir
m] are almost same if the input sequence is a true

random sequence. On the other hand, for any PN sequence,
E[Ir

m] will have divergent values for different order moments
and different m. Readers are suggested to test it on V ar[Im].

B. The Proposal: One Simple Test

Although for less number of digits, one can simply calculate
E[S] and V ar[S] as given in (8) that would yield same value
for all PN sequences all the time whereas for truly random
sequences these will go on fluctuating; one cannot rely on
these measurements as they almost converge to E[X] and
V ar[X] for higher values of n.

Our proposed test is a direct consequence of Property 7
(balance) which doesn’t require any of these measurements.
It is also simple in the sense that it neither needs to compute
the rank of any matrix nor to compute the periodogram or
Fourier transforms. Property 7, in other words, can be stated
as ‘the difference of number of 1’s and number of 0’s in a
single period of any PN sequence is always 1’. As the all
valid PN sequences are shifted versions of any basic sequence
(by Property 3), following the proof of Property 7 it also then
means ‘number of 0’s cannot be more than the number of 1’s in
a single period of any PN sequence’. Thus, if we want to find
the probability of “number of 2n−1 zeros in a single period of
2n − 1 length PN sequence”, the outcome should always be
zero as this is an absurd event. However, for any truly random
sequence like Bernoulli sequence, the probability of getting
2n−1 zeros in 2n− 1 independent binary number outcomes is
given as

(
2n−1
2n−1

)
p2n−1

(1 − p)2
n−2n−1−1, where it is assumed

that p is probability of getting a single zero. As earlier, putting
p = 1− p = 1

2 , we get the value of this expression as

Pr{02n−1
12n−1−1} =

1
22n+n−2

(2n − 1)!
(2n−1 − 1)!2

(10)

where the L.H.S. means the probability of getting 2n−1 zeros
and 2n−1−1 ones. Calculations show that for N = 3, Pr{.} ≈
0.4; for N = 7, Pr{.} ≈ 0.3; for N = 15, Pr{.} ≈ 0.2; for
N = 31, Pr{.} ≈ 0.1, and so on. This in turn means that after
certain iterations, for any PN sequence the required probability
will be zero but for a truly random sequence, the value will
go on fluctuating with a value greater than zero and ultimately
will converge to the theoretical value for a large number of
digits. It is easy to test the proposed approach in any standard
software.
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V. CONCLUDING REMARKS

In this paper, we have provided a simple and comprehensive
discussion of all of the properties of PN sequences, includ-
ing the less known properties like window, shift-and-add or
closure, along with the respective proofs towards the better
understanding of such sequences. A few applications of these
properties in communication theory have also been given in the
form of Lemmas without proving them as the the task becomes
trivial with the knowledge of the discussed properties. Lastly, a
simple randomness test is proposed in order to distinguish the
said PN sequences from any fair coin tossing experiment, i.e.,
Bernoulli sequence. The proposed test is effective yet simple
in comparison with the standard tests existing in the literature
and thus can be easily taken up by the undergraduate students
as an assignment.
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